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AN EXTENSION OF STOCHASTIC INTEGRALS
IN THE PLANE

By EUGENE WONG! AND MOSHE ZAKAI

University of California, Berkeley and
Technion-Israel Institute of Technology

For a Wiener process with a two-dimensional parameter {W,, z € R,2},
four types of stochastic integrals: §¢dw, §gpadwadw, {¢dwdz,
§ ¢ dzdW, have been defined under the condition

E{¢dz< o and Ef§¢?*dzdz < .

The main purpose of this note is to extend the definition of these stochastic
integrals by replacing E(+)< oo with (+)<oo a.s. in these conditions. Our
results are in fact even more general, allowing W to be replaced by a strong
martingale with appropriate properties.

1. Introduction. For two points a = (a,, a,), b = (b, b,) in the positive quad-
rant of the plane, we write a < b if a, < b, and a, < b,, and we write a A b if
a, < b, and a, > b,. R, will denote the rectangle {a: a < b}. A family of o-
fields (&, zeR,) is said to be increasing if a < b= ., C .F,. A two-
parameter stochastic process (X,, .#,, ze R, ) is said to be a martingale if
E(X,|-#,) = X,, a.s., whenever b > a. One of the simplest examples of two-
parameter martingales is the Wiener process ({W,, ze R, } is a Wiener process if
it is Gaussian with zero mean, E(W,W,) = min (a,, b,) - min (a,, b,) and almost
all its sample functions are continuous).

The following types of stochastic integral have been introduced recently:

(1) $r, 9cdM;
(2) §Sr,xr, Prc dMdM,,
(3) $,xz, Yoo dug dMo (S ¢ o dMdpy) .

The first integral, (1), was introduced in [5], [1] and [12] for the case where
M, is a Wiener process and extended to general martingales in [2]. The second
integral, (2) was introduced in [6] and extended to certain general martingales
in [4]. An extension of (1) and (2) for N parameter Wiener or Poisson processes
appears in [10]. The third integral, (3), was introduced in [7]. Applications of
these integrals appear in the references cited and also in [8] and [9]. The sto-
chastic integrals (1), (2), (3), were defined under conditions which (when M, is
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a Wiener process) become
E{g'd < oo, EV§gtodid! <oco, EV§gicduldl < oo.

The purpose of this note is to extend the definition by replacing the require-
ment E(+) < oo with (+) < oo a.s. Inthe one-parameter case such an extension
follows easily by a standard stopping argument; such an argument can still be
used for (1), but in general it can not be used in the two (or multi) parameter
case for the following reason: ‘Let T, = 1if {, ¢.*d{ < K and zero otherwise,
then this does not imply that {, , Tepd d{ < oo for z < z, (we used this wrong
argument in an early draft of [7] and wish to thank R. Cairoli and J. B. Walsh
for pointing our mistake out to' us). The method of proof given here follows
that of [4] (cf. also [3]). The results establish the existence of stochastic inte-
grals and sample continuity along nondecreasing paths, but not sample conti-
nuity in the plane.

The extension of (1) will be based on Theorems 2.2 and 2.3 of [2], the exten-
sion of (2) will be based on Theorems 2.5 and 2.6 of [2], the extension of (3)
will be based on Theorem 3.1 of [6]; it will be assumed that the reader is fami-
liar with those theorems and the related definitions and results. The notation
of [2] will be followed, and in addition we use:

(@) If z, = (s, t,) and z, = (s,, 1,) then z; ® z, will denote (s, ,).
(b) If X is a real random variable then N(X) will denote

(4) N(X) = E[wl JIFX||X|] .

Recall that ([2]) (a) # A .7 ,.,; (b) for a right continuous square integrable
martingale M,; [M], denotes the unique process satisfying the following con-
ditions: for each fixed t < ¢, {[M];,, s < 5,} is a one-parameter increasing process
which is predictable relative to the family { &, s < s,} and such that {M?, —
[M];, s =< s,} is a one-parameter martingale.

2. Preliminaries.

LEMMA 1. Let M,, z < z,, be a right continuous square integrable strong martin-
gale, and let {$,, z < z,}, be F ' predictable and either simple or such that
E[SRzO ¢, d[M],'] < oo. Then if (s, 1) = z < z, = (Sp L),

) N[$UPogizs, [z, Pc AM(]] < 4NY[(z, ¢ d[M] Y] -
Proor. Let I, T, I* be as follows;
I, = (g, ¢ dM;
T:=1, if §p, ¢ld[M]} < &
=0, otherwise.

Note that for z < z,, Tig, is & * predictable as a function of {; this allows us
to define:

I} =\, ¢ Tie, dM, .
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Then (Theorem 2.3 of [2]),
(6) E{(L)} = E{\z, 6Tt dIM] < &

and [; , is, for a fixed ¢, a one-parameter right continuous martingale in s.
Therefore, for fixed ¢

P{SUPgiss, || > 0} < P{(sUPygos,, |15 > 6) 0 (T:, . = 1)}
"l“ P{(Suposséso |Iz| > 0) n (T:io,t < 1)}
= P{sUPog,s,, 17| > 0} + P{T; , < 1}

2
< 2+ P, P d[M > €

=5
<e_2+P{ [Nz,, ¢ dIM]'] ¢ }
= 6 1+[§Rz0¢;2d[M](1]é 1 +¢
2 1 . )
< o = =TSN, g dIMIZ]]
Now, for any # = 0 and any rv X
7}
NX)< 2 _P(X|<6) 4 1.P{X| > 6},
(X)_1+0(||_)+ {1 X] > 6}

hence

&? 1+ . 114
N(sUPog,s,, 1) = 6 + wT N[[\z,, 8" dIM]]H] -

€
Setting § = ¢t and ¢ = N§[[§RZ0 ¢’ d[M].']*}], and since N(X) < 1, we get (5).

LemMA 2. Under the assumptions of Lemma 1, and if [M]* as a Borel measure is
dominated by A, where A is a deterministic increasing right continuous function, then

™) P\, I?d[M]} > 0] < %:1 + P{{z, ¢ d[M] = 64)

where I, = $z, 9 dM,.
PRrooF. As in the proof of Lemma 1:
Plin,, 1 d[M] > a} < P(§ (I d[M] > a} + P{{,, ¢l d[M] > &)

4,
< Dot Plie, pRdM]3 > .

(24
Setting a = 6, ¢ = 6%, we get (7).

LemMA 3. Let M,, z < z,, be a right continuous strong martingale for which
EM; < oo, and such that for almost all », [M]* and [M?] as Borel measures are domi-
nated by A, where A, is deterministic increasing right continuous function. Let ¢, ,,
be predictable and either simple or such that E | Sz, xz, P20 dA,dA,, < oo, and such
that ¢ . = 0 if L A L' is not satisfied. Then o

8) N ry [z, Pccr dMe) dAJE < ANA[§S s, cn, P00 dAc dALTH]
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Proor. Let b, T, b be as follows:
b= SR,O [Szz,o ¢c.c' d]Mc']2 dAe
T:=1, if SSR,xR, Pt o dA dA, < &
=0, otherwise.

Note that if {’ < z, Tig.and ¢, .., are, as functions of {’, & Lpredictable. This
allows us to define

b = SR,O [Szz,o T?c'®zo)¢’c,c' nd'P dAc :
Since A is deterministic and d[M]}, < dA,,
E(¥) =,y ElSn,, Teay$ho dIML) d4,
< E{§S 1, n,, T9* dA dA}

Therefore Eb* < ¢? and, as in Lemma 1,
2
P(bt > 0) < P[(b))* > 0] + P(T;,0 < % + P[gngosz0 Gt dA dA, = €]

and the rest is the same as in Lemma 1.
LemMmA 4. Under the assumptions of Lemma 3:
) N[Supoststo [§ SR(SO,“XR(SO,“ e, dM dM ]
= ANH[w,, [z, Pc.co ML ] dA ]
=< TNY[[§ SRzoszo Ot dA dAT] .

Proor. The second line follows from the first line by Lemma 3. To porve
the first line, let

a, = \\z,xz, $e,0 dM M,
Se=1, if SRz [V, e dM [P dA, < &
=0 , otherwise

af = (g, Sueolz, $r,c dM ] dM, .
Then,

(10) E(a)? <&,
Therefore,
P{Supogtgto |a(so,t)| >0} < P{Supo'ststo |afs0,t)| > 6}
+ P{SR,O [SR,O e dMyPdA, > €}

By (10) and following the arguments of the proof of Lemma 1 we get (9).

LEMMA 5. Under the assumptions of Lemma 3
(1) P{Sy, aldd, > 0} S A, 04+ 0= 4 P({{, o 9o dAcdA, > 03)
where a, = \\p «p ¢¢ dM dM,.
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Proor. Following the notation of Lemma 4,
P{, a'dA, > 0} < P, () dA, > 6} + PS5, < 1)
< S0 Pl [, e M T A > ).
Turning, now, to the notation of Lemma 3
Plin, aldd, > 0) < 220 4 2o > &)

&’A,
§—5~°+ Pb > %} + P{T3 < 1}

e’A, 2
<0 4 T P{VNk, i, Pl A dAL > &7
0 € 0=

Setting ¢* = 6 and ¢,* = 6% yields (11).

LEMMA 6. Let M,, z < z, be a continuous square integrable strong martingale.
Let p1, be a continuous random function of bounded variation adapted to & ,. Let
||, denote the variation of p.(|pl, = &, |dp.|) and assume that |p|,) < p°a.s., where
¢* < oo is a nonrandom constant. Let ¢, ., be predictable and either bounded or
such that E S""zo"Rzo Pt d|pl dIM]t < o), and such that ¢, ., = Ounless{ A C'.
Then

(12) N[[SR,0 [SR,O o dp’ dIM]L1E
< (VNI S, e, Pl AL
Proor. Let
b= SR,O [SR,O G dp dM ] s
2
Te=1, ifﬁwm%MMMWRéﬁ;
=0, otherwise.

Then, as we have seen in the previous lemmas:

b = SRzo [SR,O ch'®z0)¢c,c' dp P d[M].

and
E(b) < €.
Therefore,
P{Bt > 6} < P{(b)! > 6} + P{T;, < 1)
Z & P{ [§$ 2, xz,, " 4l d[M]]? e/(10) }
6 Ut [§3 g, xz,, ¢ dlel dIMT] © 1 4 /()7

A

_6_2 MN 2 XE 24 dIMT4T .
02+ e(/,go)—§ [[SS 20% z0¢ |#I [ ]]]
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Hence,

NEH) <0+ 54 VNI, 0, ¢ dlpl AP

and (12) follows as in Lemma 1.

LEMMA 7. Under the assumptions of Lemma 6

N[supog<e, |§ SR(,O,t,xzz(ao,t, Ge,e dpe dM ]
(13) = 4) NS, [V, e dpc]” AIMTT]
< 1) N[\ v, x,, $2co dlelc AIM]TY -
The proof follows along the same lines as the proofs of Lemmas 4 and 5 and
is therefore omitted.

3. Stochastic integrals. If X is a rv then N(X) is a quasinorm on the space
of random variables and N(X, — X) — 0, n— oo is equivalent to X, — X in
probability (cf. [11]). If M(X,,, — X,) < n~*, and since for any rv Y

Y| € 1+ ¢
14 P(Y|> 9 =P| | |= NY),
(14) (V1> 9 =P g > 75 |2 M)
it follows that P(|X,,, — X,| > n~?) < 2n% Therefore, by the Borel-Cantelli
lemma X, converges a.s. to a unique random variable.

PROPOSITION 1. Let {M,, z€ R, } be a right continuous (continuous) square inte-
grable strong martingale. Let * be the linear space of all &, predictable pro-
cesses {$,, ze R, } such that

(15) Sz, P d[M] < o as., i=1or 2.
Then I, = \ 5, ¢, dM, can be extended uniquely to all ¢ ¢ &£°, the resulting integral
satisfies (5) if i = 1 (or an obvious modification of (5) if i = 2). Furthermore, let
(15) be satisfied for i = 1 and i = 2, and let I' be a nondecreasing path from (0, 0)
to z,. Then a version of I, has a.s. right continuous (continuous) samples on the path

T; {I,, ze T} is a one-parameter locally square integrable martingale on I'. If [M]*
satisfies the condition introduced in Lemma 2, then (7) holds.

Proor. If ¢, € & then there exists a sequence of simple functions ¢ € £
so that

SRzO (¢," — ¢.)*d[M],*— 0 in probability as n— oo,
hence '
N{[SR,,O (9. — ¢) d[M]ci]é} —0.
By choosing a subsequence, if necessary, we can assume that
N{[§z,, (P — 6 d[M]TH} < n*
Hence, by Lemma 1 and the Borel-Cantelli lemma {, ¢.* dM, converges a.s.
to an rv I, which is independent of the particular choice of the approximating
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sequence ¢". Also by Lemma 1, and since Lemma 1 implies uniform conver-
gence along horizontal lines, there exists a version of I, which is right conti-
nuous (continuous if M is continuous) on a preselected horizontal (if / = 1), or
vertical (if / = 2) path which satisfies (5) for i = 1.

Let I" be a nondecreasing path from (0, 0) to z,. Let {, denote the smallest
zeT, such that { < z. Let { = (0, 7), {; = (oy, 7y); then, if (eI, ¢ = op,
T =y, in general either ¢ = o or v = 7. Define 4, = {{eR, 7 < 7}, 4, =
{€e RZO: o < op}. Set

¢ =¢., if Led,, ¢ =0, if Led,,
=0, otherwise; =0, otherwise;
then
I, =1z ¢ dM; + $5, ¢ dM, = 1" + 1P .

(1% F,,zel)and (If, & ,, zeT) are both one-parameter locally square inte-
grable martingales and so is /, = I,> 4+ I,’. Finally, if [M] < [A4], then by
Lemma 2, § ¢* dM satisfies (7), and therefore | ¢ dM also satisfies (7).

PROPOSITION 2. Let M,, z < z,, be a right continuous (continuous) strong martin-
gale for which EM,* < oo and such that for almost all w, [M],* < A, and [M],* < A,
Jor all § < zywhere A, is a deterministic right continuous increasing function. Let
£ be the linear space of all .7, predictable processes ¢, .., (z, Z) e R, X R,
such that ‘

(16) SSRZOXRZO ¢%,c' dA( dAC/ < co a.s.,

and ¢e . = 0if { A L' is not satisfied. Then I, = \§p vz, ¢, M, dM,, can be
extended uniquely to all ¢ € Z7°, the resulting integral satisfies (9) and (11). Further-
more, let ' be a nondecreasing path from (0, 0) to z,, then a version of I, has a.s.
right continuous (continuous) samples onT'; I, z € I is a one-parameter locally square
integrable martingale on T'.

vez!

Proor. The proof follows from Lemmas 4 and 5 along the same lines as the
proof of Proposition 1, with ¢* and ¢ replaced by ¢* and ¢#:

Sb?»ﬁ’ = ¢C,C' ’ lf C 4 C, € A* ’ ¢g,c' = ¢C,C’ ? lf C 4 C, € Aﬂ 4
=0, otherwise ; =0, otherwise.

The details are, therefore, omitted.
The proof of the next proposition follows from Lemma 7 along the same lines
as the proof of Proposition 1, and is also omitted.

PROPOSITION 3. Let M, and p, be as in Lemma 6, let £°° be the linear space of
all &, predictable processes ¢, ,., (2, 2') € R, X R, , such that

17 SSRzOXRzO Gt dp| d[M] < oo a.s.
and ¢, .. = 0if L A ' is not satisfied. Then I, = SSRzoszo Geodp, dM,. can be
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extended uniquely to all ¢ € &£ and satisfies (13). Furthermore, let H be a hori-
zontal path in R, . Then aversion of I, has a.s. continuous samples on H and I,, z ¢ H
is a one-parameter locally square integrable martingale on H.

ProrosiTion 4 (dominated convergence lemma for stochastic integrals).

(a) Let M, satisfy the the assumptions of Proposition 1 and let ¢ " € &£, ¢, € £
and |$."| < ¢ for all (e R, . If ¢ converges in probability to ¢, for all Le R, ,
then

(18) § ¢ dM; —p § o dM .
(') Let M, be as in Proposition 1, and in addition [M]* < A, where A is deter-
ministic and finite. Let ¢ "€ £, ¢, € £ and

SR,0(¢Cn)2 d4, < oo, SRzo(¢C)2 dA, < oo a.s.

If |§."| < ¢, for almost all L e R, where “almost all” refers to the A, measure, and
if ¢ converges in probability to ¢, for almost all (A, measure), { € R, holds.

(b) Let M, be as in Proposition 2 and let ¢ ., ¢, . €L and |9t | < &y
for almost all (with respect to the A, X A, measure) (, ') eR,,0 X Rzo' If ¢t .
converges in probability to ¢ ., for almost all (A X A measure), (C, (") in R, X R, ,
then

§§ 9t dM dM —p (e o dM dM,, .

(c) Let M,, p1, be as in Proposition 3. If ¢} .. € L°, ¢ € L° |9t o] < drr
forall (C, &) in R, X R,, and ¢7 . converges in probabibity to ¢ . for all ({, (')
in RZ0 X R,o, then

\§ 920 dp,dM —p \§ ¢ o dp dM,, .

The proof follows directly from the fact that the stochastic integrals satisfy
(5) for (a), (a’); (9) for (b); and (13) for (c); we omit the details.

REMARK. If M, is continuous, then under the assumptions of Proposition 1
(Proposition 2), the existence of a version of § ¢ dM ({{ ¢ dM dM) which is
continuous on a single nondecreasing path implies the existence of a version
which is continuous on countably many paths. The question whether the inte-
grals of Propositions 1, 2, 3 have continuous (or even bounded) versions in R,
(M, being continuous) is open.* A simple case where { ¢ dM (§ ¢ dM dM) has
continuous versions in R, is the case where almost all samples of ¢, are bounded
on RZO or essentially bounded with respect to the 4, measure introduced in Pro-
position 4 (¢, ., is essentially bounded 4, X A, for almost all w), a similar re-
mark holds for {§ ¢ du DM. The proof follows easily from an obvious modifi-
cation of Lemmas 1, 4 and 7, or directly from the results for E § ¢*d[M]* < oo
(E\§ ¢*d[M) d[M]' < oo, E({ ¢*d|p| d[M]* < o) by truncating the integrands
and passing to the limit.

* Added in proof. This question has been resolved in the affirmative in a forthcoming paper
to be published in this journal.
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