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THE SAMPLE FUNCTION CONTINUITY OF STOCHASTIC
INTEGRALS IN THE PLANE!

BYy EUGENE WONG AND MOSHE ZAKAI

University of California, Berkeley and the Technion,
Haifa, Israel

Sample continuity is proved for extended stochastic integrals involving
a two-parameter Wiener process.

1. Introduction. Let R,* be the positive quadrant of the plane. The partial
orderings < and < denote: (a, b) < (¢, d) ifa < cand b < d, (a, b) < (¢, d)if
a< candb < d. ForzeR,? R, denotes the rectangle {{: (0,0) < { < z}. Let
(Q, &, &) be a complete probability space and &, { € R,* be sub-o-fields of
& . We assume that

F,c &, whenever z <7,

z
&, isright continuous (F, = N,w F ) »

z
F and & (0,29)

(27,00 are conditionally independent given &, .
Let (W,, %) be a separable two-parameter Wiener process on (Q, &, &).
Stochastic integrals of the type { ¢ dW, §§ ¢ dW dW, {§ ¢ dW d{ have been defined
under the conditions E § ¢?d{ < oo, E {§ ¢?*d{ d{’ < oo and the existence of
sample continuous versions of these stochastic integrals was demonstrated ([6],
[7], cf. also [2]).

In an attempt to extend the definitions of the stochastic integrals by replacing
E(+) < oo with (+) < oo a.s., it turned out that the standard one-parameter
stopping argument does not go over to the multiparameter case. An extension
was presented in [8], but it did not yield the sample function continuity of the
extended stochastic integral. The purpose of this note is to prove the sample
function continuity of the extended stochastic integral.

The stochastic integrals under E(.) < oo were also defined for the case where
W, is replaced by certain general continuous (or right-continuous) square in-
tegrable two-parameter martingales ([2], [7]), and so was the extension of [8].
This note deals only with integration with respect to the Wiener process. A
remark concerning the possibility of extending the approach to the case of
integration with" respect to general martingales is deferred to the end of the
note.

2. Preliminaries. Let ¢, { e R,” be & adapted, measurable and satisfy
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(ra9dl < oo as. Let y™(0) denote the rv

ye@y=1 if §p.¢rd0<n,
=0 otherwise.

Let Y denote the two-parameter martingale
Yo = E(}’“l*grc) .

Since & _ is right continuous, it follows ([5], the concluding remark to the proof
of Theorem 21) that Y,* is right continuous in probability for every {e R,%
therefore, it follows by the same arguments as those of page 61 of [4] that there
exists a separable and measurable version of E(y"| 5 ); we will denote this
version by Y. Let 4 be a constant satisfying 0 < 2 < 1, and let

1 Sr=1 if Y"=14,
=0 otherwise.
LeEMMA 1.
(2) E SR+2 Sc"¢c2 dC = —:—
and
3) lim, P {infceR+2 Sr=1}=1.

Proor. Obviously,

Efgay*¢ di <n.
Let

k=92 if ¢2<k,

=k otherwise.

Therefore, by the monotone convergence and Fubini’s theorems
y g

(4) Ef§y ¢l dl = lim,_,, § E(y"z.*) dC
= lim, , E {Y,"z/* dC
(5) =E{Y/ g2 dC.

Therefore E §, Y *¢.*dl < n, and (2) follows since S, < Y*/A. We turn
now to the proof of (3). Note that P {infS,* = 1} = P{inf Y * > 1}. Let p" =
P{y* = 1}, then p” — 1 as n — oo and also EY " = p". By the maximal inequality
for two-parameter martingales [1], the separability of Y. " and the fact that every
countable dense set is a separating set

E{supiep,2 |Y* — p*"} < csupiep 2 E(Y " — p")?
< ¢(E(y")* — (p))
=cp*(l —p")-
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Therefore, for n large enough so that p* > 2
P{inf Y* > 2} = P {inf (Y,* — p") = 1 — p"}
= P{sup [Ye" — p7 = |p" — A}
1 — Plsup Y — p| > |p* — 4}
1<t —p")
(P — 2
which proves (2) since p* — 1 as n — oo.
Write (a,b) A (¢, d) ifa < cand b = d, and let (a, b) Y (¢, d) denote (max (a, c),

max (b, d)). Let ¢(C, '), £, {’ € R,* be measurable, .5, ., adapted, such that
¢, L") = 0if L A { is not satisfied and

§Srp2xp, 2 9%(C, ) A0 AL < 00 as.

v

b

Let y" denote the rv
=1 if  ($z,20p,2 9%, C)dCd0" <,
=0 otherwise,

and let Y denote the separable and measurable version of the two-parameter
martingale E(y"| & (). S.*is as defined by (1).

LeEMMA 2.
(6) E (g axpyaStvp (6, ¢ a0 dl < %
and
™ lim,_ P {inficp 28" =1} =1.

The proof is essentially the same as that of Lemma 1 and is therefore omitted.
REMARK. S;" as defined by (1) is not a stopping time (cf. [7]). Let
' Tp=1 if inf_,S*=1,
=0 if not,
then T,* is a two-parameter stopping time and Lemmas 1 and 2 remain true with
S, replaced by T.*.

3. The sample function continuity of stochastic integrals. Let ¢, be asin the
previous section, and '’ > n’ = n. Sincen’ > nimplies infceR+3 S —-8S"=0
a.s., it follows that

P {SuPseR+2 |SR, G S AW, — SR, PSS AW | > ¢} < P{infceR+2 S+ 1}

and therefore by (2) of Lemma 1, { ¢.S.* dW  converges in probability uni-
formly to a continuous random function. Define this limit as the stochastic
integral. In view of Proposition 4 of [8] the stochastic integral as defined here
is for each z e R,* a.s. equal to the one defined in [8]. Similar arguments hold
for §§ ¢ dW dW’ and {§ ¢ dW dC'.
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REMARK. In order to apply the argument of this note to prove the continuity
(right-continuity) of § ¢ dM, §{ ¢ dM dM when M is a continuous (right-con-
tinuous) martingale ([2]), we have to justify the passage from (4) to (5) with d{
replaced by d[M],. In the one-parameter case this follows directly by considering
the dual predictable projection of § y"¢?d[M] (Theorems V.31, V.17 and V.15
of [5]). Some partial results in this direction follow directly (for example, if
d[M], = m dg, and ¢, and m_are & _-adapted), and it seems that in the general
case this extension will become straightforward after the general theory of proc-
esses is extended to n-parameter processes.
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