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ON THE FIELDS OF SOME BROWNIAN MARTINGALES

By DaAviD A. LANE
University of Minnesota

Suppose {Bi}¢zo is a standard 1-dimensional Brownian motion, and f
is a continuous function with nonaccumulating zero set. For z =0, let
M, = (! f(B;)dB;. When does M generate the same fields as B? When
does M generate the same fields as some Brownian motion? The answers
to these questions are obtained; they involve the behavior of f around its
zeros. Also, either M generates the same fields as some Brownian motion,
or the fields of M support discontinuous martingales.

1. Introduction. Suppose(Q, 5, P)isa probability space,and Xisa stochastic
process on (Q, %, P). Indicate by { & *},,, the family of right-continuous, P-
complete o-fields generated by X.

DEeFINITION. If X and Y are two processes defined on Q,&,P), Xand Y
are equivalent if & ¥ = 5 Y for all ¢.

Now suppose that {B,},,, is a standard 1-dimensional Brownian motion on
(Q, &, P). If {M,, &2}, is a local martingale, it is well known that M can
be represented as

Mt = Mo + Ss Csst

a.s. for each 7, where M, is a constant and C is an % “-adapted and measurable
process with (¢ C.2ds < oo for all ¢ (see, for example, Kunita and Watanabe
(1967)). In particular, this implies that every .& ®-martingale has continuous
paths, which in turn implies that every % “-stopping time is predictable, a strong
regularity property of B (see Chung and Walsh (1974) and Lemma 2 below).

The questions considered in this paper—and answered, for a special class of
integrands described later—are:

(1) What conditions on {C },,, guarantee that M is equivalent to B?

(2) More generally, when can we find some { %%}, ,-adapted Brownian mo-
tion {X,},,, such that M is equivalent to X?

(3) If no such X exists, how “bad” are the fields {&,},,—in particular, do
they support discontinuous martingales?

In the next section, we show that these questions are easily settled for two
important classes of integrands, simple functionals and nonrandom functions.
We also present some examples indicating the complications which can arise
with more complicated integrands. The remainder of the paper is devoted to

Received January 31, 1977; revised June 13, 1977.
AMS 1970 subject classification. Primary 60G45, 60HO5.
Key words and phrases. Brownian motion, martingale, stochastic integral, equivalent sigma
fields.
499

j
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% )2

o

The Annals of Probability. RIKOIN

www.jstor.org



500 DAVID A. LANE

answering the questions for integrands of the form C, = f(B,) where f is con-
tinuous with nonaccumulating zero set.

2. Some examples.

ExaMPLE 1. Suppose there is a finite time set {0 = 1, < --- < ¢, < oo} such
that Cy(w) = 37, C, (@)1, ., ,(f), where C, is & [-adapted and P(C,, < o0) = 1
for1 £i<n SetM,=\{;C,dB,.

CramM. If P(C,, = 0) =0, 1 < i < n, then M is equivalent to B; otherwise,
M is equivalent to no Brownian motion.

Proor. (a) Suppose P(C, = 0) =0, 1 <i < n. Since &7 is trivial, C, is
a nonzero constant; since M, = C,B, for t < t,, clearly & * = & 7 for t in
[0, 7,]. But then C, is & Y-adapted, and for ¢ in [t,, ], B, = (1/C)M,, +
(1/C, )M, — M, ), and so B, is & *-adapted. Thus for ¢in [0, ,], & ,° = F *.
By induction, then, B and M are equivalent.

(b) Suppose P(C,;, = 0) > 0 for some j < n. Then for any 4 e F M te
(tjst;), AN {C,j =0}e 37;’]’ If M were equivalent to a Brownian motion X,
we could choose 4 = {X, — X,; > 0} and obtain a contradiction, since plainly,
P(A N {C,, = 0}) = P(4) X P(C,, = 0) > 0 while 4 n {C,, = 0} ¢ T

Now every stochastic integral may be obtained as the limit of integrals with
simple integrands (which may be taken to satisfy P(C, = 0) =0, 1 <i < n).
Hence every local martingale on { % ?},., may be approximated arbitrarily closely
(uniformly on almost all paths in the case of L*-martingales) by martingales
equivalent to B.

. EXAMPLE 2. Suppose Cisnonrandom: that is, C,(w) = f(f) with {{ f(s) ds < o
for all t. Set M, = {}f(s)dB,, M is a Gaussian martingale. Denote Lebesgue
measure by “leb.”

Cramm. Ifleb{s: f(s) = 0} = 0, M is equivalent to B; otherwise, M is equiva-
lent to no Brownian motion.

Proor. (a) If leb{s: f(s) = 0} = 0, then B, = {{ 1/f(s) dM,, so B and M are
equivalent.

(b) Suppose M is equivalent to a Brownian motion X. By Lemma 1 below,
X may be represented as a stochastic integral of M: X, = {{ D,dM,. Then X, =
(¢ D, f(s) dB,. Since X is a Brownian motion, (X, = ¢; since B is a Brownian
motion, (X, = {§ D*(s) f*(s)ds. Taking derivatives, P(Djf*(s) =1 a.s. (leb)) = 1.
In particular, leb {s: f(s) = 0} = 0. '

LemMA 1. Suppose f is a nonrandom function with \} f*(s) ds < oo for all t and
M, = \}f(s)dB,. Then every local martingale with respect to { & M}, can be rep-
resented as a stochastic integral of M—that is, if Y is such a local martingale, then
there exists an Z ™-adapted measurable process C with {§ C?ds < oo for all t, and
constant Y, such that {Y, + (¢ C,dM },., is a version of Y.
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Proor. Trivial modification of the special case f = 1 as proved in Kallianpur
(1977).

In the preceding example, even when leb {s: f(s) = 0} > 0 and M was not
equivalent to any Brownian motion, Lemma 1 implied that the fields { 7 "},.,
were still quite regular in that they supported no discontinuous martingales.

When the integrands are random and not simple, this no longer is the case as
the following example shows.

ExaMPLE 3. Letr =inf{s: |[B|=1}. SetC,=1,,. Thenleb{s: C(w) = 0}
is just t(») and is a.s. positive. As was true in both Examples 1 and 2, this
implies that M = { C dB is equivalent to no Brownian motion. But in this case,
the fields of M are not so nice: in particular, they support a discontinuous mar-
tingale, Y(r) = E(t| % /). That Y is discontinuous follows from the obvious
fact that ¢ is an unpredictable { & *},,,-stopping time and Lemma 2.

LemMA 2. Let (Q, &, P) be a probability space and { F .}, an increasing family
of subfields of F~. Suppose t is an {F },-stopping time with E(t) < oo. If the
martingale {E(t | .5 )}z, is continuous at 7, t is predictable.

ProoF. Immediate from the proof of Proposition 4 of Chung and Walsh
(1974).

For the integrands of Examples 1 and 2, either the integrals were equivalent
to B or they were equivalent to no Brownian motion. For general integrands,
this dichotomy fails, as Example 4 shows.

ExaMpLE 4. Consider the integrand B. Then M, = {{ B,dB, = (B’ — 1)/2,
so M is not equivalent to B but to |B|. As will be shown below in Lemma 4,
however, there is a Brownian motion X which is equivalent to |B| and hence
to M.

Again, in Examples 1 and 2, the condition that the integrand not vanish a.s.
(leb) was necessary and sufficient for the integral to be equivalent to a Brownian
motion. For general integrands, this is not the case. The theorem of Section 3
shows that there exist integrands {D,},,, such that P(leb {s: D, = 0} = 0) =1
and yet {{¢ D, dB,},., is equivalent to no Brownian motion and generates fields
which support discontinuous martingales.

3. Some definitions and the statement of the theorem. Let f be a continuous
function. Define the zero set, Z,, of f and the crossing set, C;, of f as follows:

Z, = {x: f(x) = 0}
C; = {x: f(x) =0 and lim, ,sgn f(s) # lim,;, sgn f(s)},

where sgn f = 1759 — 1<0-
For x in C,, define

rAx) = inf{s = 0: f(x + 5) % —f(x — )}

Let yC, = {s: s = y(x) for some x in Cs}.
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THEOREM. Suppose that f is a continuous function, such that leb Z, = 0 and C,
has no accumulation points. Let M,/ = \}f(B,) dB,. Then:

(1) If yC, = {0}, M/ is equivalent to B;

(2) If yC, = {0} U {0}, M/ is equivalent to a Brownian motion X, which is itself
equivalent to B reflected in a ( perhaps infinite) interval,

3) If yC;, n (0, c0) = @, then M/ is equivalent to no Brownian motion, and
{F'},2, supports discontinuous martingales.

In Section 4, three basic lemmas are established; the theorem itself is proved
in Sections 5—7.

4. Three lemmas. Lemma 3 shows that if for each path the integrand van-
ishes only on a set of zero Lebesgue measure, the fields of the integral are suf-
ficiently rich to support a Brownian motion.

LeMMA 3. Suppose C is a process such that:

(a) {C.liso is {F B}ino-adapted and measurable;

(b) forallt, {§Clds < oo a.s.; and

(C) P(leb {S: Cs = 0} = 0) = 1.
Then the Brownian motion X = | sgn C dB generates fields & * such that, for all t,
Fre T T

PrROOF. Set M = §{ CdB. If as usual we denote the quadratic variation of M
as (M) - (= {5 C}ds), then, as is well known, (M) = M* — 2 { M dM and so is
& M.adapted and measurable. Since (M) is differentiable a.e. Lebesgue, we
may define

D,(w) = Tl}—nhl°<M>t —h<M>t—h :

note that D is & ¥-predictable.

Set F(w) = |D,|"}(w) (which is well defined, since P(D, = C,*a.e. Lebesgue) = 1
implies that P(leb{r: D,(w) = 0} = 0) = 1. Then we may define the & *.
adapted and measurable process X, = {}F,dM,. But X, = {{!F,C,dB, =
(5(C,/|D,|*)dB, = {§sgn C,dB, (since the stochastic integral is unaffected by alter-
ing the integrand on sets of zero Lebesgue measure). Then (X),={{[sgn C,]*ds=t¢
and so X is an &% “-adapted Brownian motion.

The next lemma is fundamental. For ze R, let M, = {}sgn (B, — z)dB,, and
let z, = inf{¢t: B, = z}. Clearly, M, = B,on {r, >1t}. On {r, <1}, M, =z +
|B, — z| — [ (1), where [(t, o) = lim, ,1/2¢leb{s < t: |B,(w) — z| < ¢}, the local
time of B at z (this is Tanaka’s formula—see McKean (1969)).

Since [, is adapted to & '#7%, so is M. Lemma 4 shows that the converse is
also true—so that M is equivalent to |B — z|. (This lemma was proved inde-
pendently by M. Yor (1977, Proposition 14).)

LEMMA 4, Let ze R, M, = {{sgn (B, — z) dB,, then M is equivalent to |B — z|.
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Proor. Clearly, it suffices to prove the lemma for z = 0, where it must be
shown that M = { sgn B,dB, = |B| — I, is equivalent to |B|. As stated in the
preceding paragraph, M is & 'Fl-adapted; the lemma will be proved once it is
shown that | B|, may be recovered from {M,},.,. Here is a recipe for this recovery
for almost all w:

Fix t. Let s’ = max {s < t: B(w) = 0}. Then r > s’ implies that [(r, ) =
li(s’, ), since [(+, w) is an increasing function and the measure dl(., ) is con-
centrated on Z, (). Since |B,(w)| = 0, M, (0) < M (). If r < s' then [(r, w) <
ly(s', w), and so M (0) = M,(»). Hences’ = max{s <t: M(0)=min,c, M,(w)}.
Since |B,|(w) = M,(w) — M, (w), |B,|(w) has been recovered from {M,(»)},<,.

The next lemma allows the proof of the equivalence between B and M asserted
in the theorem to be carried out “locally.” It will be stated in a more general
setup. Suppose {X,},,, is a stochastic process on (Q, {£},5,, P), and 7, < 7, are
{Z}iz-stopping times. Foreacht,let Y, = X,, ., sothat{Y,},,,isalso a stochastic
process on (Q, {&};5, P). Set F X Vizo F -

Tt
LEMMA 5. Suppose X and M are processes on (Q, {Z,},50, P), the fields {Z}},2,
are right continuous, %, is trivial and X has continuous paths. Suppose also that
{talnzo is a sequence of {F M}, ,-stopping times, r, = 0 and 7,1 co. If for all
n=>0ands <t, & F M then & X c F M.

X c
rnAs,r”+lAs) (rnAs,rﬂ+1As)’

ProoF. Since X has continuous paths and ¢, — oo, for s < ¢, Xeone— X5

hence it suffices to show that X, rois FM-measurable. X, ,, = Xy + (Xopne —
X))+ +(X., ..— X, _ .), and by definition, (Xepigne— X ) I8 F & o norm

measurable—and thus, by assumption, is F Enec s nn-easurable also. Since
each ¢, is an { & *},_ -stopping time, y”(f;'km,fkﬂm cHFrcFM Thusx, ,,

is & M-measurable, and so &, ¥ — & M.

5. Proof of theorem. yC, = {0}. For simplicity, we divide the argument into
two cases.

Case 1. 7,740} = 0. Set X, = {¢sgnf(B,)dB,. By Lemma I, X, is & /-
measurable.  Since sgn f(B,) = (lim, ,sgnf(x))sgn B,, X is equivalent to
{ sgn B, dB,, and hence, by Lemma 2, to |B|. Thus |B|, is . ,*/-measurable for
each .

Since (M”), = {§ f%(B,) ds and f is continuous, (M”’»,’ = f%B,) for all ¢ and
so |f(B,)| is & Ms-measurable for all ¢.

Fix t. Let s"(w) = max {s < ¢: |B(s)| = 0}. Then s’is & s-measurable. For
s in (s'(w), t), either (A): B, = +|B,| or (B): B, = —|B,|.

Since 7(0) = 0 and |B,,,,| = 0, for almost all  we can find 3(w) in (s'(w), ?)
such that

f(B{@))) % —f(—|Bdw)])—that is,
F(B@))| # |f(—|Bi@)))] -

Comparing |B;(w)| with | f(B;(w))| will therefore allow us to determine which of
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A or B is true and hence we may determine B,(w). So %2 c # */, and M’
is equivalent to B.

Cask 2. General 7,7{0}. Lett,=0,7,,, = inf{t > 7,: B,e {C, — B, }} for
n:0,1,2,

CLAM. Forallnandt, 3. ., C Zﬁ{f““. Once the claim is established,
an easy modification of Lemma 3 shows that, if z, is an { & *},,-stopping time,
FE=FM,

PROOF OF CLAIM.
(1) Let z; = max(ze C; N (—o0,0)) and z, = min (ze C,; N (0, o)),

9(x) = f(x) for x in [z,z,),
>0 and continuous for x notin [z, z],

and X, = {{g(B,)dB,. Then M,, = X, for all s. If 0¢ C;, we may apply
Lemma 1 to conclude that X is equivalent to B. If 0 e C,, Case 1 above implies
that X is equivalent to B. In either case, & \,, = F .10 = F (.00

(2) Assume for all 1, & ., = F§. ., LetY,= {isgnf(B,)dB,. By

Lemma 1, for eachs, Y, is & *s-measurable, and so the process {Z, = Y, , ., —

Y, re = §31" sgn f(B,) dB,}og,s is F 0%, ,-Measurable. Note thatf(B, ) =0
and for r in (z,, 7,,,),
sgnf(B,) = C(B,)) if B,>B8,

= —C(B,) if B <B,

where C is a function from C, — {—1, +1}.
< Let B, = B, ., — B, . Then {B,},5, is Brownian motion, and by Lemma 2,
§ sgn BdB is equivalent to |B| = |B, ,. — B, |. SetZ, = Z_,,-1¢, ., Then
Zs - lzaiz‘n.(.l—z‘n) S‘{’) Sgnf(Bz‘ﬂ+‘r) dBr,n+'r == 153?2‘,”4_1—7%) * C(Br,n) 85 Sgn (Br) dBr‘ Hence
{1B.,, s — Bepndl} is F UL, -measurable.

Since y (B, ) = 0 and by assumption B_,, is ﬂiﬁ{ﬁnm-measurable, the argu-
ment of Case 1 shows that {sgn (B, , )}z IS & 47, ,,-measurable, and we
may conclude that &8 ., C f{fﬂﬂm for all 7, and hence that 7, is an

{F"'},5,-stopping time for each n. Thus &/ = & ,* for all 1.
6. Proof of theorem. yC, = {0} U {0}.

Case 1. z = y;Y{oo}. Define the Brownian motion X = { sgn (B, — z) dB,.
As Lemma 4 shows, X is equivalent to |B — z|.

CrLamM. M/ is equivdlent to X.
1)y M c Fx
(a) First, suppose f is continuously differentiable. Let
F(x) = {2 f(y)dy for x>z
= F(2z — x) for x<z.
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Then F'(x) = f(x) for x > z, and F'(z + y) = —F'(z — y) for all y = 0. Since
7A2) = o0, f(z + y) = —f(z — y) forall y = Oalso. Thus, F'(x) = f(x) forall x.

From the definition of F, it is clear that there exist continuous functions G
and g defined on R* such that F(x) = G|x — z| and F”'(x) = g|x — z|. By Itd’s
formula,

M/ = G|B, — z| — G|z| — } §;9|B, — z| ds,
S0
M/ is F)PH (= & ,*) measurable.

(b) If fis nor continuously differentiable, select a sequence {f,} such that,

for each n, ,

(i) f. is continuously differentiable;

(ii) fu(z + x) = —f,(z — x) for all x > 0;

(i) SUPs - m |/o(*) — f(2)] < 1/n; and

(iv) §6f.%(B,)ds < oo a.s.
Then |§;f,X(B,)ds — §f%B,)ds| < t/n on {sup,., B, < k} for n > k. Since
P{sup,g, B, > k} — 0 as k — oo, {{f,B,)ds — §¢f*(B,)ds in probability, and so
§¢f.(B,) dB, — % f(B,) dB, in probability also. Thus & * c U,.& /" and by
the previous paragraph, for each n & */» ¢ 7 %,

(2) FF .

(a) First, suppose C,={z}and 7 (z)=oc. Thensgnf(B,)=[lim, ,sgnf(z+x)] X
sgn (B, — z), so { sgn f(B,) dB, is equivalent to X. By Lemma 3, { sgn f(B,) dB,
is adapted to { & *'},.,. Hence .7, * < & forallt > 0.

(b) Next, suppose C, = {z} U7,/40}, and 7 (z) = oo. Setr, = inf(¢: B, = z).
Let x, =min{x >0:z+ xeC;}. For k =1,2, ..., set 7, = inf{t > 7,
|B, — z| = x} and 7, = inf{r > 7,,: B, = z}. The proof is concluded by an
appeal to Lemma 5:

Define bounded continuous g with
(i) g=fon(z — x,z+ x,);
(i) g9(z + s) = -g(z — s) for all s; and
(iii) C, = {z}.
By (a) above, M is equivalent to |B, — z|. Since Z{’{ﬁzm = ﬂ'{};‘)ﬁzm,
'—g-(lol?r_zf\I;) = *—g'(f)[,{z/\t)' .
Now set h(x) = f(x) for x = zand = —f(x) for x < z. Then C, = C; — {z}
and yC, = {0}, so M* is equivalent to B. Since f“,’z’;mam = ZIE:M,%M, =
F B it follows that:

(Tgnt,T3At)?
(i) 7, is an {F*'},.,-stopping time; and
(ii) f(g;:,l‘ra/\t) c '—gz_({‘[;/‘\t,r?’/\i)‘
Similar arguments yield: for all n, r, is an {5 s}, -stopping time, and
T CF . an By Lemma 5, then, &7 C F M for all
t = 0. Thus the claim is established for this case: if y~*{oo} consists of just one
point z, then M’ is equivalent to { sgn (B, — z) dB,.
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Casg 2. Cardy Yoo} > 1. Letz; =sup{z: ze(—o0, 0] N y~Yoo}} and z, =
inf{z: ze (0, c0) N y~}{oo}}, and set d = z, — z,. Then z, and z, are finite, f is
periodic with period 2d, and y~{co} = {z, + kd, k = 0, £1, £2, ...}

If z =z, + 2kd + r, k an integer, r € [0, d], say zmod f = r. Letr, = inf(s:
B, = z, or B, = z,) and define, for r = 0, X, = B,1.,, + (Bmodf) 1 .

(1) &M < & forallt= 0. Suppose h is continuously differentiable and
7w oo} =y, oo}, Let H(x) = §; h(y)dy for x e[z, z, + 2d], and extend H
by periodicity. There exist functions G and g defined on [0, d] such that for all
H(z) = G(zmod k) and H"(z) = g(z mod k). Applying It6’s formula, M} =
G(B, mod h) — G(0 mod ) — % {t g(B, mod h)ds. Thus #* c & ,X. As in
Case 1, we may approximate continuous f with continuously differentiable 4
satisfying 7,7 {o0} = 7,70}, and so F ' < .F,* for all t > 0.

(2) FFc 7 M foralls. Letr,,, = inf{t >7,: Be{r*{oo} — B, }},n =
1,2,.-.. Then Y], =F & andforalln, &2 =P8l  —
F & atieysnn DY Case 1 above. Since the only discontinuity of X occurs at ,,
we may apply Lemma 3 to conclude that 5%, * ¢ 5 s for all ¢.

3) &=, forallt = 0, where Y, = {} g(B,) dB,,

g(x) =1 on (-Zv Zz)
=—1 on (z,,z,+d),

and g is periodic with period 2d. Since {Y'), = ¢, Y is a Brownian motion. To
show that Y is equivalent to X, apply Lemma 3 with the stopping times r, as in
(2) above.

Thus M/ is equivalent to the Brownian motion Y, which is itself equivalent
to B reflected in the period interval (z,, z,).

7. Proof of theorem. y.7'(0, ) # . The structure of C, clutters up the
argument in this case, but the basic idea is quite simple. If 7,7(0, oo) is not
empty, it is possible to construct a square-integrable {5 *’},. -stopping time
which is not predictable. Hence {5/}, cannot be generated by any Brownian
motion, and—as Lemma 2shows—these fields support discontinuous martingales.

The argument is given in detail in the simplest possible case (Case 1), while

_ the extension to more complicated crossing and zero sets (Cases 2 and 3) is merely
sketched.

Casel. C,={0}and 0 < 74(0) < o0. Setr, = inf(z: |B,| = 740)), and 7, =
T gy o + 0 1(Br1=—rf(on' Set
9(x) = f(x) x in [—740), r,(0)]
= f(r9)) x in [y40), oo]
= —f(rA0))  x in (oo, —74(0)).
Then M7 is equivalent to |B|, and f{{fl, =78, =F %, Thusr is an

{F M'),.,-stopping time. By Lemma 3, forall¢ > 0, |f(B,)| is & ,*/-measurable,
and by Lemmas 3 and 4, |B,| is Z M .measurable also. Hence by the argument

=
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in Section 5, forallt, 4 = {w: 7,(w) < tand B(z,) = 7(0)} = {r, < t}isin F M,
By the right continuity of &/, {r, < f} e "/, and so t, is an {7 "'},
stopping time.

Suppose g is an { & *’}-stopping time and o < 7,a.s. Let S, = {w: o(w) > 7,(»)}
and S, = {w: for all#, B(w) = — B,(w*) for some w* in S,}. Then P(S,) = P(S)).
Suppose w € S,, o* € S, as in the definition of S,. Since r, isan { &}, ;-stopping

time, 7,(0) = 7,(w*). Since w* €S, B, (0*) = —r/(0)andso B, (») = r«0) and
therefore 7,(w) = 7,(»). So (1)o(w) < 7,(w). Butsisan{.5 '}, -stopping time,
and F YL, = F B ,; thus (1) implies that 6(w) = g(w*). But then o(0*) <

7(w) = t(0*), a contradiction since w* € S;. So we must have P(S,) = 0; that
is, ¢ < 7, a.s. Since we can find C > 0 such that P(r, — 7, > C) > 0, for any
{ﬁ"t"f}tzo-stopping time o < r,a.s., P(t,— ¢ > C) > 0. Hence 7, is not {7 )iz
predictable. Neither is ¢ = 7, A (r; 4+ 1), and ¢ is square integrable.

Caske 2. General C;, with C, = z,. Define z, and z, as follows:

(i) If (—o0,0]1Nn 7,7%0, ) = @, z; = —oo. Otherwise z,€(—o0,0] N
7,7%0, o) and if z € (— o0, 0] N 7,740, ), then z; — y(2,) > z — 7 (2)-

(ii) If (0, o0) N 7,70, 00) = @, z, = oo. Otherwise z, € (0, o) N 7,710, o),
and if ze (0, o0) N 7,70, c0), z, + rA{2,) < z + 742)-

For finite z;, let I, = (z; — r(z,), 2z, + r{(2y)) i = 1, 2.

Now we define the appropriate stopping times: let ¢ = inf{r: B, =z, or B, = z,}
andr, = inf{t > o: |B, — B,| > r{B,)}and z, = inf{t > g: B, = B, 4+ r«B,)}.
Set

t=1,A(t; + 1) if z and 2z, are finite;
=100 A7y, A (7 + 1) if either z, or 2z, are infinite.

It can easily (if tediously) be checked using all the results and techniques above,
that r, and 7, are {57, "/},.,-stopping times and that r, is not predictable; again,
{E(r| & *7)}iso is a discontinuous martingale.

Caske 3. General C;, leb(z;) = 0. Basically, the only new problem is the
following: suppose there exist ¢ < x, < oo, such that F(x) = f(—x) for |x| < x,,
and forall0 < r < ¢, f(—x, — r) = —f(—x, + r) while f(x, — r) = f(x, + r).
In this situation y,(0) = x,, but |f] is locally symmetric around both —x, and
x,. However, it is still the case that B_is . _*/-measurable, where v = inf {z:
|B|, = x,}, and this is exactly the condition needed to construct a discontinuous
martingale on {.%*’},.,. The proof is similar in spirit to the proof given above,

but rather tedious, and so will be omitted.
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