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LIMIT THEOREMS FOR NONERGODIC SET-VALUED
MARKOV PROCESSES

BY DAvID GRIFFEATH
University of Wisconsin

Certain Markov processes on the state space of subsets of the integers
have @ as a trap, but have an equilibrium v # dg. In this paper we prove
weak convergence to a mixture of s and v from any initial state for some
of these processes. In particular, we prove that the basic symmetric
one-dimensional contact process of Harris has only d» and v as extreme
equilibria when the infection rate is large enough in comparison to the
recovery rate.

1. Introduction. Let E be the set of all subsets of the d-dimensional integer lat-
tice Z,. In this paper we study certain E-valued continuous time Feller processes
(§,); namely, the associate and additive lattice interactions formulated by Harris
in [1], [2] and [3]. The reader is assumed to be familiar with [1]—[3], from
which much of the notation and terminology as well as numerous results will
be drawn. Denote by &, the set of all finite subsets of Z,. Recall from [2] that
two E-valued Feller processes (§,) and (€,) are associate if

(1) PENE=p)=P@E neé=p) forall &§EcE.

(The Feller property extends (1) to the situation where one of £ and £ is infinite.)
Let _# comprise all probability measures on E, _/ the subclass of measures
which are invariant with respect to translation in Z,. Write uP* = P (§, € +),
for any initial distribution ye _#. Set J, = the delta measure at &, and abbre-
viate £P* = §,P'. Finally, let — denote weak convergence as ¢t — co. Then
whenever associate processes (£,) and (€,) exist, one can draw the following
conclusions (cf. [2]):

(a) @ isa trap for (£,) and (,);
(b) Z,P' = v for some equilibrium v;
(c) with # = the hitting time of @ for (ét),

Pt < 0)=1 forall £cB,
iff
y = 0,
iff
pPt =0, forall pe #.
(€,) is called ergodic if any of the conditions in (c) holds, and nonergodic other-
wise. In the latter case, y({@}) = 0. Harris proved (Theorem (9.2) of [2]) that
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for many processes with associates,

) P = p(DP3o + (L — p(@Y)y  forall pe .

A natural question arises: for which (§,) and individual initial configurations &
is there a limit theorem

(3) SPt':’a'aQ)‘l“(l —a’))J

for some constant a? This is the central problem of the present paper. As in
[3], say that § is R-dense, R > 0, if ¢ intersects every ball of radius R, and that
& is dense if it is R-dense for some R. In Section 2 we show how Harris’ theo-
rem (2) can be modified to yield

(4) EP' =y for all dense £c &,

when applied to many interactions. In particular, (4) holds for a wide variety
of contact processes [1]. Section 3 contains the main results of the paper. For
some one-dimensional additive processes (§,), it is proved that if z is the hitting
time of ¢, then

%) pPt = P,(tr < ), + P, (v = oo)y forall pe. .

Evidently (5) implies that all equilibria for (§,) are mixtures of d, and v.
Our methods apply to the following four representative interactions on Z:

ExampLE 1. Basic contact process [1]. The “flip rates” at each site x when
the system is in state § are

at x with rate
1-0 1
01 Afx — 1, x4+ 1}nél (A=0).

(|6]) denotes the cardinality of §.)

ExaMPLE 2. One-sided contact process [2]. The rates are

at x with rate
1—-0 1
0-1 Afx =1} n g (A=0).
ExampPLE 3. Biased voter model [8]. The rates are
at x 'with rate
1-0 fx —1,x 4 1} n &
0—1 Afx = Lx4+ 1} né§l (A>1).

ExaMpLE 4. Simple exclusion with births [8]. (&,) is a simple exclusion pro-
cess with p(x, x + 1) = p, p(x, x — 1) = g, p(x, y) = 0 otherwise, but modified
so that a particle is created at x 4 1 with rate r and at x — 1 with rate s when-
ever x ¢ £. Here p, ¢, rand s are strictly positive parameters. See [8] for details,
and more general versions of this process.
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Harris proved (2) for Examples 1 and 2 in [2]. For Example 3 and certain
cases of Example 4 (e.g., p = g or r = 5), Schwartz showed that 6, and §, are
the only extreme equilibria. For a generalization of Example 3 she also proved
(2), and results of type (3) starting from certain £&. Unbiased voter models which
generalize Example 3 with 2 = 1 have been treated in some detail by Holley and
Liggett [4].

In Examples 1 and 2, monotonicity arguments establish the existence of critical
constants, call them A* and A,* respectively, below which ergodicity takes place,
and above which it does not. Simple comparisons show 1* > 1 ([1]), 4,* = 2.
A powerful new method of Holley and Liggett [5] yields 2* < 2, A,* < 4.

The limit laws which will be derived below have the following implications
for the four examples.

ExaMmpLE 1. For all 4, (4) holds. If 2 > 2%, then (5) holds. In particular,
the basic contact process has only d, and v as extreme invariant measures when
A > A,

ExaMpLE 2. (4) holds for any 1. Also, £P* = 3, whenever & ¢ E,. However
&P! need not converge if |§] = oo, £ is not dense, and 1 > 2*.

ExaMpLE 3. For any 1 > 1,
(6) pPt = P (t < 00)0, + P,(T = 00)d, forall pe .

ExaMpLE 4. For any p, ¢, r and s such that p + r > g and ¢ + 5 > P, (6)
holds, with P.(r < o) = u({@})-

Results such as these are to be expected, based on the work of Vasershtein and
Leontovich [9], Vasil’ev[10] and Vasil’ev, et al. [11] with closely related discrete
time processes. Some of the key ideas in this paper are derived from [9]—[11].
But certain of their techniques, especially those based on “contour” estimates,
cannot be translated to the continuous setting. Consequently the arguments
have to be altered. We rely heavily on the ‘“graphical representations” for
additive processes [3], which are especially simple in Examples 1 through 4.

2. Convergence to v from dense initial states. By modifying slightly the
argument leading to Theorem 9.2 in [2], it is possible to obtain convergence to
v from dense £ for various processes (£,) which have associates. We illustrate
this with a result for contact processes, as formulated on page 185 of [2]. A E-
valued process is local homogeneous if its semigroup is in the class .9 defined in
(9.1) of [2]. Also, with S,({0}) as in (9.8) of [2], let § = Uz, S,({0}).

PROPOSITION. Let (§,) be a local homogeneous contact process with an associate,
such that p > 0 and A(§) > O whenever & %= @. If Z, has no proper subgroup con-
taining S, then & P' = v for any dense initial state &,.

ProoF. Let §, be R-dense. Inspection of the proof of Harris’ theorem shows
that one need only derive (9.15) of [2] for y = 0;,- In other words, it suffices
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to check that for any fixed ¢ > 0,
(7 sup,.,, Pe(x2€) =p < 1.
By the aperiodicity, there isani > 1 and a ye Z, such that B, 4 y c S,({0}).
(By is the ball of radius R centered at the origin.) Then &, N Sy({x}) # @ for each
x. Hence
Peo(x Z&:) = SUPecas, a0 P(xgé,)
= SUP¢:ens,on=0 P(0¢&,)
= MaXy,ecs,0 Pe(0€ &) = p < 1.

The last inequality holds because (§,) is monotone, in the sense of [3], and p < 1
because A(£) > 0 for & = @. So (7) is established, completing the proof.

REMARK. Proposition 1 applies to Examples 1 and 2, and also handles contact
processes, “‘one-sided” or not, in higher dimensions. In much the same manner
one can prove an extension of Harris’ theorem (9.2) in [2]. Namely, retain his
condition (a), but replace (b) by the assumption:

(b’) There are finite sets A, c Z,, R=1,2, .-+, such that P,(0eé,) >0
whenever + > 0 and @ # ¢ — A, for some R.

Then conclusion (iii) of the theorem may be changed to

(iii") If v # 6, then y({@}) = 0, and if ¢ is any measure such that

(8)  limp.sup.p, [u(E: € 0 (A + %) = @) — u({@D] =0,
then

pPt = p({@h)o, + (1 — e({DD)v -
To obtain the original Theorem (9.2), set A, = Bj and note that (8) is automatic
when g is translation invariant. The extension gives an alternate proof of Theo-
rem (9.17), and also applies to one-sided examples in higher dimensions. A
similar result for a certain class of discrete-time processes was mentioned by
Vasershtein and Leontovich in [9].

Consider now Example 2 starting from more general initial states §. If & e B,
then §P* = i, for any 4 because the “infected” set &, wanders off to the right
unless it dies out. Also, if £ is dense on any half line (— oo, x] then §P! = v.
This follows from the additive nature of (£,) and the fact that each individual
process (£,%) (cf. [3]) either dies out or tends to 4-co. Finally, by taking £ to
be a union of disjoint “intervals,” § = U, [x;, y:], where 0 = y, > x, >y, > - -,
so that y, — x; — oo and x; — y;,; — oo quite rapidly, one can show that £P*
does not converge as ¢ — oo, but rather converges to v along one subsequence
and to d, along another. This phenomenon was noted by Vasil’ev [10] for an
analogous discrete time process. Holley and Stroock [6] have given an interest-
ing example of a “one-sided” contact process in Z, which has a nontranslation
invariant extreme equilibrium measure in addition to d, and v. An obvious
extension of the proposition applies to their example; so does the extended version
of Harris’ theorem with A, = B,.
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3. Main results. Let (£,) and (é,) be local homogeneous associate processes
on E. Then Z,P* — v and Z, Pt — 9 for some translation invariant equilibria v
and 5. In this section we identify some one-dimensional situations where (5)
holds. Assume from now on that v = d,, ¥ + ., and that

) Pg(xe&)>0 forany xeZ,, t>0.

This rules out “one-sided” processes, but we have already seen that (5) does not
hold in the simplest such case, i.e., in Example 2. Note that Examples 1, 3 and
4 do satisfy (9).

To begin, we give a general necessary and sufficient condition for (5), valid
in any dimension. Unfortunately this criterion seems quite difficult to check
directly. Inthe lemma which follows, let (§,, ét) be the process on & x E com-
prised of independent copies of (£,) and (£,), and let P,; govern this product process
started at (&, £).

LEMMA. The limit laws (5) hold if and only if
(10) lim,_, P&, Né = @|r=oc0 and t = c0) =0
forall &, Ee g —{o}.
(The conditional probabilities in (10) are elementary, since v # d, and © # d,.)
Proor. It suffices to show the equivalence«of (5) and the condition:
(1)  lim_. Py né =@, c>tt>1)=0 forall §EcE —(@}.
Given &, £ ¢ g, — {®} and ¢ = 0, manipulate (1) to get
Py né=0p)=P¢.nE=Q)
= Zyeiopg(ft =nP(5, NE = @)
= 2yes, (& =)PE N = )
=P = )+ Zmea: P&, =1)
X [P(6:= @)+ P60 n =0, &+ Q)]

(A) = P& = @)
(B) + P&, # @)p?(ét = Q)
©) + Z',]*@pg(ét,: NP Nn=0,§& + D) -

As t— o0, (A) tends to Pt < co)d,{n:n N &= @} and (B) tends to
Pt = oo)n: p N & = @}. The term (C) is precisely the P-probability in
(11). The prescriptions of a measure on the cylinders ({n: 7 N & = @}; £e &)
uniquely determine that measure. Thus (5) holds whenever 1 = 4., § € E, if
and only if (11) holds. To obtain (5) for arbitrary & € E, we use the fact that
P(r < 00) — 0 as [§| — co. This follows from Lemma (9.14) of [2] applied to
¢ = 9 and the process (§,). A simple monotone approximation argument now
shows that {P* — v whenever |§| = co. Finally, integrate to deduce (5) for
arbitrary p.
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ReMARK. Under our assumptions, the symmetries of association imply that
(5) holds for (£,) if and only if

%) pPt — P (¢ < 00)d, + P2 = 00)p  forall pe. 7.
The conditions (5), (5) and (10) are equivalent because of the identity
Byt = @)+ Pl #+ @)P(6 = @) = Pu6. = @) + P& # D)Pié. = @),

which was used in the proof of the lemma.

Let us now specialize to d = 1, and prove (5) for a class of interactions which
includes Example 1 when 1 > 2,*, and Examples 3 and 4 over the parameter
ranges mentioned above. We assume that (§,) is additive, in order to exploit
the graphical representation formulated by Harris in [3]. In this setting (£,) can
be viewed as a certain reverse time process, and for 0 < ¢ < 27, T any fixed
time, (§,) and (ét) can be constructed simultaneously from the same Poisson
flows. In the space-time diagram, time runs “up” from 0 to 2T for (§,) and
“down” from 2T to O for (£,). See [3] for details. In using a closely related
space-time scheme for certain discrete time processes, Vasil’ev [10] observed that
the forward process (£,) and the backward process (§,) are independent until
time 7. From T to 2T, however, there is a complicated dependence induced
by the common Poisson flows. By exploiting this coupling B of the associate
processes, (10) can be checked in some simple cases. For additional applications
of the graphical representation, see [3]. Say that an additive process (§,) on Z
is nearest neighbor if %7, as given by (8.2) of [3], lives on {—1, 0, 1}.

THEOREM. Let (£,) be a nearest neighbor additive process on Z, with associate
(). Assume that v # 8, D # 8,. For £, e By — (@), write M, = max {xe Z:
xeét}, m,=min{xe Z: xe&,}. If, forevery§,5e&E, — {¢},0 < K < oo,

(12) lim,_, P,(é, C [—K, K]|7 = o0) = 0
and

(13)  lim, . P(M, < K|? = o) = lim,_,, Py, > —K|# = 0) =0,
then (5) holds.

Proof. Fixe >0, &,&e8 — {@). Select K > 0so that é U & C [—K, K].
By the hypotheses we can choose 7|, so that for any T > T,

(14) P(T<t<2T)<e, P(T<tg2l)<e,
and

(15) Py C[—K, K], >2T) < ¢,

and

(16) Pyt >2T, My <K)<e, Pc>2T,1yp>—K)<e.

Let PZ be the joint probability law constructed in Section 9 of [3], which
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governs (&,),s¢<sr Started at & and (&,),<.<qr started at £&. Noting that under P::
the two processes are independent up to time ¢, and using (14)—(16), we have

Pyérnér=@,c>T,¢>T)
=P Nt =0, 6+ 0,6+ Q)
<PYENEr =0 6w+ B En @ My >K,
My, < —K, {My, > K or my < —K}) + 5e,

where M, = max{xe Z: xe&,}, m, = min {xe Z: xe &,}. Now there are active
paths (cf.[3]) “up” in the space-time diagram from & X {0} to (M,;, 2T) and
(myy, 2T), and active paths “down” from & x {0} to (M,,, 2T) and (i, 2T).
If M,, > K, rii,, < —K and either M,, > K or m,, < —K, then an up and a
down path intersect, and so there is a path connecting some point in & at the
bottom to a point in £ at the top. In particular there are active paths from &
and £ to some common point (x, T'), so that &, N €, + @. We conclude that
the last probability above is 0. Since &, & e 8, — {®} and ¢ > 0 are arbitrary,
(10) holds. The lemma yields (5), completing the proof.

To apply the theorem to Examples 1, 3 and 4, we need to check v = 4,
D # 04, (12) and (13). Let us do this now in each case.

ExaMpLE 1. The basic contact process is self-associate (cf. [2]), sov = 0. For
A > 2*, v + 0, and (12) holds as a consequence of Lemma (9.3) in [2]. By self-
association and symmetry, it remains only to show

(17) lim,_ ., P (M, < K|t = o0) =0 forany ¢e& —{@}, K< .
Unfortunately, we have only succeeded in proving (17) when 2 > 2*. Let
oy =min{t = 0: || = N} (N=1). Then oy < oo P.a.s. on {r = co} when
N = |§| by Lemma (9.3) of [2] again. For such N,
P(liminf, ,, M, < o0, T = o0)
= $se00) Lpiigi=n Pe(0y €ds, &, = n)P,(liminf,_, M, < oo, 7 = o0).
Condition (17) is therefore implied by
limy_, sup,., -y P,(liminf, ., M, < 00,7 = 0) = 0.

Now the basic contact process with parameter 2 dominates the one-sided process
with the same 2, in the sense of [3]. Moreover, in the one-sided process M, — co
a.s. on {r = oo}. Hence it suffices to prove for the one-sided process that

lim,_, sup,. ., -y Py(zr < 00) =0.

For 2 > A,* this is precisely the content of Lemma (9.14) of [2] when applied
to the measure v of Example 2. (Harris’ condition 9.2(b) must be avoided by
means of the argument in the proof of Theorem (9.17) of [2], or by using the
extension described in Section 2 above.) For additional applications of the
one-sided process to the study of additive processes, the reader is referred to [3].
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ExaMPLE 2. The hypotheses of the theorem hold for any 2 > 1. v = 4, and
D+ 0, because P (r = c0) = (2 — 1)/2 > 0. In fact, starting from &, = {0},
|§:| is a random walk with absorption at 0 and positive mean. To verify (12),
apply Lemma (9.3) of [2] to (§,). Now, (&,) consists of simple symmetric random
walks with interference, but modified so that a “birth” can occur at sites which
neighbor an occupied one. If a walk is situated at x, it displaces to x + 1 with
rate 1, to x — 1 with rate 1, and in addition a new walk is born at x + 1 or
x — 1, each with rate 2 — 1. Walks which try to occupy the same site coalesce.
Note that £y(# = co) = 1 forall§ # @, that M, is a random walk with positive
mean, and that 7, is a random walk with negative mean. Thus (13) holds and
(5) is proved. By the remark after the lemma, we also obtain (§) for the random
walks with interference and births.

ExampLE 3. (&) is also a simple exclusion with births. Thusy = 5 = §,, and
P(r < o) =Pyt <co)=1forall &€+ @. If p+r>gq and qg+s>p,
then (&,) and (£,) both contain a random walk with positive mean and a random
walk with negative mean. (12) and (13) follow, so the theorem applies. It is
interesting to note that Schwartz [8] used the recurrence of certain random walks
embedded in processes which generalize Examples 2 and 3 as a means to study
their ergodic properties.

4. Open problems. We conclude the discussion by mentioning some un-
resolved questions connected with our results.

ProBLEM 1. Does (5) hold whenever the basic contact process of Example 1
is nonergodic? We conjecture that the answer is yes. Perhaps the easiest way
to prove this would be to establish (17). Routine considerations yield

P.({liminf,_, M, = + oo}
U {liminf, , M, = — oo, limsup,_,, M, = 4+ oo}t =00)=1,
but we have been unable to rule out the second possibility.
ProsLEM 2. For Example 2, are d, and v the only extreme equilibria, or is

there a nontranslation invariant equilibrium? We conjecture that the first alter-
native holds.

PrROBLEM 3. Is (5) satisfied by the d-dimensional versions of Examples 1, 3
and 4, d > 1?7 For this problem we have no compelling intuition one way or
the other.

Added in Proof. T. Liggett has solved some of the open problems. Namely,
he has confirmed the conjecture in Problem 2, and obtained the same result for
the basic contact process. See [7].
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