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WEAK CONVERGENCE RESULTS FOR EXTREMAL
PROCESSES GENERATED BY DEPENDENT
RANDOM VARIABLES*

By ROBERT J. ADLER?
University of Tel-Aviv

In this paper we consider a stationary sequence {Xx, n = 1} satisfying
weak dependence restrictions similar to those recently introduced by
Leadbetter. Suppose a. and b, > 0 are norming constants for which
max {Xa1, « -, Xna} converges in distribution, where Xnr = (X — bx)/an.
Define a sequence of planar processes In(B) = #{j: (j/n, Xnj)€ B, j=1,2,---,
n}, where B is a Borel subset of (0, ) X (—o0, o). Then the I, converge
weakly to a nonhomogeneous two-dimensional Poisson process possessing
the same distribution as for independent X;. Applying the continuous
mapping theorem to this result generates a variety of further results, in-
cluding, for example, weak convergence of the order statistics of the X,
sequence. The dependence conditions are weak enough to include the
Gaussian sequences considered by Berman.

1. Introduction. The extreme value theory of sequences of independent and
identically distributed (i.i.d.) random variables has often been generalised to
include the situation when the variables are no longer independent. These
generalisations have been aimed in essentially two directions. Watson (1954),
Loynes (1965) and Welsch (1971) consider sequences of “m-dependent” or “strong
mixing” random variables, while Berman (1964, 1971) and others consider sta-
tionary Gaussian sequences in which the correlation between distant points of
the sequence tends to zero as the distance between them tends to infinity. In
two recent papers, Leadbetter, (1974b, 1976), these directions have been merged,
and a new type of “asymptotic independence” condition introduced which is
significantly weaker than those used previously, and also wide enough to include
the Gaussian case. Leadbetter’s main results include the distribution of the
(normalised) maximum of the sequence, as well as a Poisson weak convergence
result for the exceedances by the sequence of increasingly high levels.

In this paper we shall slightly strengthen Leadbetter’s condition to obtain
much fuller results. These include convergence of the joint finite-dimensional
(fidi) laws of the kth sample extremal processes (defined below), as well as weak
convergence and Poisson results. The form of the main result, given in Section
4, is such as to permit us to immediately apply known results for corresponding
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sequences of independent random variables to the dependent case. This is dis-
cussed in Section 5.

We obtain our results by applying an idea due to Weissman (1975) of getting
all the limit processes we require in terms of a certain two-dimensional non-
homogeneous Poisson process. Section 2 sets up the necessary notation, and
considers some implications of our new dependence condition, which are further
explored for the Gaussian case in Section 3.

2. Notation and the structure of dependence. Let {X;,j=1,2,...} be a
stationary sequence of random variables. Throughout the remainder of this
paper we shall assume that there exist fixed sequences of normalising constants a,,
and b, (b, > 0), and a distribution function G(x), (which in all the cases we shall
consider will necessarily be one of three classical extreme value distributions)
such that

(2.1 - Plmax,g;., (X; — b,)/a, < x} — G(x) as n-—oo.

We write X,; = (X; — b,)/a,, and define a sequence of two-dimensional processes
I, by
22) I(B) = #{j: (j/n, X, ;)€ B,j=1,2, -, n},
where B is any Borel subset of (0, 1] X (—o0, o), and #A4 is the number of
elements in the set 4. These processes may be regarded as random elements in
the space 9t of integer-valued Borel measures on (0, 1] X (—oq, oo). This space
is metric under the “vague topology” (e.g., generated in & by the functions
#— § f dp for continuous f with bounded support (cf. Jagers (1974), Kallenberg
(1973)) and thus it makes sense to talk about convergence in distribution, denoted
by =, of the I, to some limit process /, which we now define.

Write G, for the left end (possibly —oo) of the support of G, and let 7 — R?
denote the set (0, 1] x (G, ). Let 1 be the Lebesgue-Stieltjes measure on
(G, oo) corresponding to log G(x); i.e., for x < y

(23) (x> y] = log [G(y)/G(x)] -
Then we define /(-) to be the two-dimensional Poisson process on T with intensity

(parameter) measure simply the product of Lebesgue measure and . Thus, if
4 is the measure determined by

A(A) = (t, — t)p(x, y]
for rectangles 4 = (t,, t;] X (x, y] C T, then for any Borel B,, B, ¢ T we have
(2.4) I(B;) is a Poisson variable with parameter (B;),
(2.5) B, N B, = @ implies I(B)) and I(B,) are independent.

We shall establish that 7, — I, but first we need some conditions on the X o
Let M be finite, and {4,} be a sequence of subsets of the real line, where each
A; is the union of at most M (possibly infinite) intervals. Furthermore, sup-
pose that there are only a finite number, N, of different types of 4,. Write
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Fi¥) i (A, -+, 4,) to denote the probability P{X,; € 4,, ---, X,; € 4,}. Then
we shall say that the stationary sequence {X,} satisfies condition D if for any
integers

1§i1<i2<"‘<ip<j1<"'<jq§n’ hi— i, >m

and any sets 4, ---, 4,, B,, - - -, B, of the above form there exists a (double)
sequence a,,, (perhaps dependent on M, N, as well as the 4, and B;) for which
(2.6) |F§f-)-~ip51~~a'.,(‘41 .-+ A,B, ---B)

— F®., (Ay - AYFP (B -+ B)| < Wy s

t iy S1edg
where a,,, is nonincreasing in m and lim,,__, @, ., = 0 for some sequence g, — oo
for which ¢,/n — 0.

Given such a sequence g, it is easy to show, using methods such as those used
to establish Theorem 1.3 of Ibragimov (1962), that there exist further sequences
p.and k,, with ¢, = [(n — k, p,)/k,], for which p, — o, k, — oo, k,p,/n — 1,
andk,a,, —0. (Note that we have just diverged from the notation of Leadbetter
(1976), in favour of the longer-standing notation of Ibragimov (1962) and Welsch
(1971)). Then, if condition D is satisfied, we shall say that the sequence {X,}
also satisfies condition D' if for any sequences {p.}, {9,}, and {k,} satisfying the
above conditions we have

2.7) lim, . ky 212577 (Pa — P(X = X, Koy Z 3} = 0
for all x such that 0 < G(x) < 1.

Before we proceed to our main results, it will be worthwhile to take time off
to discuss D and D’. Condition D’ is the same in spirit as the corresponding
condition D’(u,) of Leadbetter (1974b), except that it holds for arbitrary rather
than fixed x. Condition D, however, is somewhat stronger than the corresponding
condition of Leadbetter, in which the sets 4, and B, are all (— oo, x], for some
fixed x. It is, however, significantly weaker than a strong mixing assumption,
in that it is only a condition on the tails of the joint distribution functions of
the X;. The real demonstration of the weakness of D and D', however, lies in
the fact that in the case when the X, are Gaussian these conditions can be trans-
lated into a covariance condition, which is known to be rather tight for the type
of results we are considering.

3. The Gaussian case.

THEOREM 3.1. Suppose {X} is a stationary Gaussian sequence with zero means
and unit variances, and put r,, = E{X,X,,,}. Let{a,}and {b,} be the “‘usual” norming
sequences for the Gaussian case, i.e.,

a, = (2logn)~t, b, = (2logn)t — }(2logn)~#(loglogn + log4nr) .
Then conditions D and D' hold for the {X,} with these norming sequences if either
r.logn—0or 3 r,? < co. Furthermore, the bound a,, in (2.6) can be chosen in

such a way that lim,__ a,,, = 0 for each m, so that the sequence g, can be chosen
with complete freedom.
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We shall prove the theorem in a reasonably standard fashion, via two lemmas.
The following lemma is proved in Berman (1964).

LemMaA 3.1. Suppose that either r,logn — 0 or 3%, r,* < co. Then for any
fixed x

n i |r;l exp{—(a,x + b,)*/(1 + |r;[)} — O as n—oco.

For the following lemma let M, N < oo be fixed, and let 4,, 4,, - - - be a
sequence of subsets of R with the properties given before (2.6). Furthermore,
let {x,} be the sequence of numbers comprising the various finite endpoints of

the intervals that make up the 4,. There are at most 2NM such x,’s. Then we
have

LemMA 3.2. Let {X;} be as in the statement of Theorem 3.1, and let 1 <, <
l, < --. £ 1,. Then with the {A,} as described above

P (A s Ay) — TT5es FI(AL))
S K Yisicise 2 ou| exp{—(aaxi + 6,)°/(1 + |035])}
where p,; = r, _,. and the second summation is over the (no more than 2NM) x,’s.

Proor. This result is well known for the case in which all the A4, are of the
form (— oo, x], (see, for example, Berman (1964, 1971) and Leadbetter (1974 a))
and since the proof for the current situation is virtually the same we leave it
to the reader.

It is now a simple matter to combine the above two lemmas to establish the
theorem (cf. Lemma 4.3 of Leadbetter (1974b)). As a referee of an earlier
version of this paper intimated, Theorem 3.1 is true only because in defining
the condition D we are careful to insist on the bounds N and M, and allow the
sequence a,,, to depend on the sets we are considering.

In fact, the result of this theorem cannot be proven in the usual fashion, and
indeed may not be true, if we insist that the bound «,,, in (2.6) be uniform over
all choices of N, M and the sets 4, and B,. Such uniformity would in fact bring
us very close to the assumption of strong mixing.

4. The main convergence theorem.

THEOREM 4.1. Let {X,} be a stationary sequence of random variables, and assume
two sequences of real numbers, {a,}, {b,}, b, > 0, exist for which

4.1) PMX, < a,x + b} — G(x) .
Then, if conditions D and D' are satisfied, I, = I, where the I, are defined by (2.2)
and [ is defined by (2.4) and (2.5).

ReMARKS. From (4.1) it is clear that G must be one of the three classical
extreme value distributions of Gnedenko. What we are actually doing through
(4.1) is choosing a, and b, sequences that are appropriate, in terms of deriving
extremal results, for the independent sequence “associated” with {X}; i.e., a
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sequence of i.i.d. variables with the same marginal distribution as X,. Under
(4.1) that this is no restriction is a consequence of Theorem 3.2 of Leadbetter
(1974b), which states that the normalising sequences and the limit distribution
are the same for the X; and the associated sequence of i.i.d. variables. However,
without (4.1), it may be possible that a limit may exist in the dependent case,
when no limit exists for the associated independent sequence.

Before we commence the proof of Theorem 4.1 we require the following
result, which, like Theorem 3.1 of Leadbetter (1976), is a special case of Theorem
2.3 of Kallenberg (1973), modified according to a remark of Kurtz (1974), and
then specialised to the Poisson case. The sets B in (4.2) are finite unions of
disjoint, bounded, rectangles of the form (x, y] X (s, ?].

THEOREM 4.2. Let I, 1,, - - - be point processes on [0, 1] X (—co, o) and I a
Poisson process with parameter measure A(+). Then I, = I if for any sets B of the
form described above the following two conditions hold:

(4.2) P{I,(B) = 0} — exp{—A(B)} ,
(4.3) lim,_, sup E{I(B)} < A(B) .
PROOF OF THEOREM 4.1. We shall show that (4.2) and (4.3) are satisfied. Fix

a set B C T of the above form, and for each n > 1 define a sequence of indicator
random variables {Y,;,j=1,2, ---,n} by Y,; = 1if(j/n, X,;)e Band Y, = 0

otherwise. Clearly I, (B) = >;%_,Y,;. Then it is a simple consequence of (4.1)
and the definition of y that if we set 4,; = {x: (j/n, x) € B} we have
(4.4) E{Y,;} = P{(j/n, X,;) € B} ~ p(A;)[n .

It now follows simply from (4.4), the fact that /,(B) = }; Y,;, and the form of
2, that (4.3) is satisfied. It remains to establish (4.2).

Let E,(F,) be an event defined in terms of the values of {Y,,, ---, Y}
({Ys.msrs * - *» Yas}). Then by (2.6) there exists a double sequence a,,, such that

(4‘5) |P(EnFn) - P(En)P(Fn)l é [2 Ry

and a sequence ¢, with ¢,/n —0 and a,, — 0. Now choose sequences {p,}
and [k,} as described in Section 2, so that (2.7) implies (by choosing x =
inf{r: (s,1)e B,Vse]0, 1]})

(4.6) lim, ., k, D527 (P — PP{Yu = 1, Yoy = 1} = 0.

We now follow a simplified version of the proof of the theorem of Meyer (1973),
which in turn is closely related to one of Loynes (1965).

Write P,, = P{I(B) = k} = P{}7., Y,; = k}. Wewilleventually be interested
only in P,,. For each n, partition the integers 1, 2, - .., n into 2k, consecutive
blocks of size p, and ¢, alternately beginning with the initial block {1, 2, - - -, p,}.
(The last such block may, of course, be incomplete.)

Let P,(Q,) denote those positive integers falling into size p,(q,) blocks. Define
events B, (C,,) by “for exactly k valuesof i, i =1,2,..-,n, Y,, = 1, and all
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(some) such i’s are in P,(Q,).” Then P,, = P{B,,} + P{C,,}. However, by (4.4)
P(C,) £ X, P(Yu = 1} ~ (n7'%k,q,) X sup; p(A,;). Since for a given BeT
this supremum is bounded, it follows that P(C,,) — 0. Thus, if either P,, or
P{B,,} has a limit as n — oo, both have and the two are equal.

But this implies that |P,, — P(G,, --- G, }| — 0, where G,;, i =1, ---, k,,
is the event Y, = O for every m in the ith P, block.” Via (4.5) and a standard
induction argument we have |P{G,, - - - G, } — [[!z, P{G,}] < k,a,, — 0. Thus
we need only estimate the product [] P{G,;} to complete the proof. By the
Bonferroni inequalities and (4.6) P(G,;} = 1 — n~' 3 p(A,;) + o(k,!), where
the summation is over all j in the ith P, block. Hence [[[!z, P(G,]} —
exp{—n~' X ;cp, #(Aa;)}] — 0, and since the exponent in this difference con-
verges to A(B) (4.2), and thus the theorem, are established.

5. Some applications of Theorem 4.1. In this section we shall show that the
way in which Theorem 4.1 has been set up enables us to obtain a variety of
useful results about extreme values in dependent sequences. The main idea is
that since Theorem 4.1 is effectively an invariance principle, and the limit process
is the same as arises for independent sequences {X;}, many results that were
hitherto known in the independence situation can now be automatically carried
over to the dependent case. We consider only two examples related to order
statistics and record values. Firstly, however, we need to change topologies.

So far, we have been working with the vague topology on 9, so that Theorem
4.1 holds for weak convergence relevant to this topology. There is, however,
another ‘“‘natural” topology for 9, this being the extension to the plane of the
Skorohod J;-topology, as developed by Straf (1972) and Bickel and Wichura
(1971). Weak convergence in this topology, which we shall denote by —,,
implies weak convergence in the vague topology, although in general the converse
is not true. However, since vague convergence implies the convergence of all
the fidi distributions, it follows from a remark of Straf (1972, page 212) that in
certain special cases, which include the case of the limit process being Poisson,
the converse does hold. Thus Theorem 4.1 holds with Skorohod convergence.
We can exploit this fact to easily obtain further results.

Retaining our previous notation, for each pair of integers k, n define a stochas-
tic process m,k(t), 0 < t < 1, by

m,k(t) = kth largest among {X,,, - - -, Xy}

if 1 <k < [nt], and mX(t) = —oo if k > [nt]. Now write I,(1, x) to denote
1,((0, f] X (x, 00)), with a similar definition for /(¢, x). Then, as Weissman (1975)
points out, m,* is simply related to the process I,, since m,*(r) = min {x: I(t, x) <
k — 1} and {m*(t) £ x} = {I(t, x) £ k — 1}. Thus we should be able to obtain
the limit of m,* in terms of 7. To this end, let us define the kth extremal process
m*(1), 0<r<, by m¥(t) = min {x: I(t, x) < k — 1}, and the k-dimensional ex-
tremal process by Z* = (m*, ..., m¥). Similarly, write Z,* = (m,}, - .., m,F).
Then a brief check of the proof of Theorem 1.1 of Weissman (1976) shows that
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since he makes no use of the independence properties assumed in his paper that
proof can be used verbatim in our current circumstances to prove the following
result.

THEOREM 5.1. Under the assumptions of Theorem 4.1, Z ¥ converges weakly to
Z* in terms of the Skorohod J-topology on D*[a, 1] for each fixed k, and0 < a < 1.
(Here, as usual, D[a, b] denotes the space of finite right-continuous functions on
[a, b] with left-hand limits.)

Theorem 5.1 represents a generalisation of the main result of Welsch (1971)
in two directions. Firstly, his requirement of strong mixing is relaxed to require
only the satisfaction of condition D, and secondly, Theorem 4.1 contains an
explicit representation of the distribution of Z* for all k, not merely k = 2. As
is noted in Weissman (1975), the properties of m* and Z* are easily derived from
the properties of /. For example,

P{m*(1) < x} = GY(x) L% (—1log G(x))'/it,
P(mi(t) < x, m(1) < y} = G(x) x<y
= Gyl — rlog (GG}  x>y-
Similarly, it is a simple matter to write down transitional probabilities for the m*
and Z* processes, and even such abstruse probabilities as P{m¥(r) < x, m'(f) < y}
become trivial to compute. See Weissman (1975) for details.

We conclude with one more area of application of Theorem 4.1. To simplify
notation, write Y, for m,! and Y for m'. Let x(r) be nondecreasing and Nx(I)
be the number of times x jumps in the time interval I. Suppose that the condi-
tions of Theorem 4.1 are in force. Then, as in the independence case, reasonably
straightforward applications of the continuous mapping theorem yield Y, —, Y,
on D[4, 1], Y,”' =,Y "' on D(0, o) or D(— oo, o), (depending on the support
of G) and NY,, —, NY on D[, 1] for any é > 0. We refer the reader to Resnick
(1975) for a discussion of these results, as well as applications of them to limit
results for record values, record value times, and inter-record times.
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