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DUAL PAIRS OF STOPPING TIMES FOR RANDOM WALK

By PrisciLLA GREENWOOD AND MOSHE SHAKED
University of British Columbia and University of New Mexico

A definition of duality for pairs of stopping times of any random walk
is motivated by the duality relation of ascending and descending ladder
epochs N, N of random walk in R!. Dual pairs share several of the prop-
erties of the pair N, N.

I. Introduction. Sparre-Andersen [9] introduced a combinatorial method for
studying the fluctuations of a random walk. A main idea was that certain sets
of paths, viewed with the direction of time reversed, are more easily described
or counted, while a set of paths viewed in either direction has the same proba-
bility. The relation between a set of paths and the reversed set is called duality.
Lindley [7] found that the virtual waiting time in a one-server queue has the
same distribution as the maximum of a random walk because of the duality
relation. Spitzer used duality to obtain a transform formula for the maximum
of a random walk [10] and to give a probabilistic solution of the Wiener—-Hopf
integral equation on a half-line [11]. The duality relation is the key to Spitzer
and Pollaczek’s factorization formula for a distribution on R* (see, e.g., Feller
[2])- The duality relation, which was exploited in these works and in the large
literature which followed, can be stated in terms of the first ascending and first
descending ladder epochs of a random walk S, in R,

N=min(n>0:5,>0), N=min(n>0:S,<0).

A time n is an ascending ladder epoch if S, reaches a new maximum at n, which
is to say that n is obtained by some number of repetitions of N. The duality
relation is: the set of paths for which n is an ascending ladder epoch, viewed
in reverse, is the set of paths such that n < N.

In this paper a definition of duality for a pair of stopping times of any random
walk is stated, and some properties of dual pairs are explored. In another paper
[5], duality for particular pairs of stopping times for multivariate random walks
is used to begin a fluctuation theory for these processes, somewhat analogous
to the well-known theory for random walk in R'. The multivariate fluctuation
theory will have applications for certain storage and queueing systems.

II. Definitions and notations. Let S, = 37, X,, S, =0, where X,, i =
1,2,3, ... is a sequence of independent identically distributed random ele-
ments. For most of what follows the range of the X;, denoted by R, may be any
topological group. We have in mind R¢. It is convenient to use the sequence
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space R* = {(x,, x,, - - -), x; € R} as the Q of our probability space (Q, &, P).
The words “for each n” will mean for each nonnegative integer.

For each n let r, denote the map on Q defined by r () = r,(x,, -+, X,,
Xpy1s +*+) = (X =+, X3 Xpyys -+ +). The mapping r, preserves set operations
and measure, since X, - .., X, are exchangeable. Note that r, and r,~! are the
same map.

For each k we denote by 6, the map on Q defined by 6,(x,, x,, ---) =
(X41> Xp4a> -+ +). If, for instance,  is a stopping time for S,, ¢ o 6, is the same
stopping time for S,,, — S,. For clarity we sometimes write r® to denote ¢
evaluated on the sequence w ¢ Q.

Let z be a stopping time for S,, 7, = 0,7, = 7,7, = 7,+ 7' where ’w = 7 o 0., 0,
and so on. We denote by _# the random set (¢, 7, 7,, - --). The set _# is
almost surely finite if P(r < o0) < 1. By an occurrence of r at n we mean
(ne ). By #.0, we will mean the random set _#, for 6,(»), w € Q.

Let r and 7 be stopping times for S,. We say that ¢ is dual to 7 if

)] (w:ine Z )= (0:n< yr,o) for each n.

If 7, 7" are dual to », then #Z, = _#, and r = /. Also z is dual to at most
one 7. Since (1) is not symmetric in = and 7, it is not evident that if (1) holds
then 7 is also dual to . This will be proved in Theorem 1.

For each n let L(r,n) = max (i < n: ie _#). The notation =, means that
the two random variables have the same distribution. These notations when
composed have the obvious meanings.

III. Duality and related properties. J. Pitman suggested proving (2) by looking
back from n to L(z, n) as we do below. This is a considerable simplification of
our original method.

THEOREM 1. Let v and 7 be stopping times for a random walk S, = ,7_ X,.
If = is dual to ), then 7 is dual to t, and for each n

(2) L(z,n) =4n — L(7, n) and B X =0 Dilorgmn X -

Proof. We fix n and w, and show that the number n — L(z, n) is the same
as the number L(y, n) evaluated for the same sequence reversed from n. Let
g=L(z,n)o, m=n—gq. We wish to show that m = L(y, n)r,0. Since
q € A, w, relation (1) says ¢ < pr,w. The first n — m terms of the sequences
,r,o and r,_, o are the same. Replacing ¢ by n — m and then r,_,w by
0,r,0, we have n — m <90, r,0. If also me #,r,0, then m must be the
largest number in this set, i.e., m = L(y, n)r, .

To show that me _#,r,» we will prove the apparently stronger statement,
m = L(y, m)r,o. Letk = L(y, m)r,». From the definition of L(y, m) we have
k<mand m — k < 9,r,0. The first m — k terms of the sequences 6,r,»
and rmlkﬁqw are the same since n — k = ¢+ m — k. Replacing 6,7, 0 by
Tm-r0,0 gives us

m—k< g, ,0,0.
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The hypothesis, (1), with m — k in place of n and 6, in place of w, now says
that m — ke _#,0,w. Butsince k = L(», m)r,o, m — k must be 0.

Having observed that n — L(r, n)w = L(», n)r,®, we see also that r, maps
the left sum in (2) to the right sum. The distribution equalities hold, since r,
preserves measure. In particular, (0: ne #,0) = (o: L(y, n)o = n) is mapped
by r, to (w: L(r,n) = 0) = (0: n < tw), so 7 is dual to .

It is useful to know which stopping times have duals. There follows a
characterization of such stopping times r in terms of a property of the random
set _#,. Often a computation will show for a certain stopping time ¢ that _/7;
does not have this property. Some examples are given in Section V.

THEOREM 2. A stopping time t has a dual if and only if for each n and v € Q,
3) ne #w implies je #.0, 0, j=1,--,n.

ProOF. Suppose r has a dual, 7. Following Theorem 1, the duality relation
holds in both directions. Ifne #,wthenn < yr,w,andforeachj=1, ..., n,

Jj < yr,o. The definition of “z is dual to »,” applied to the sequence 4,_; o,
says j < yr,o if and only if je #Z0,_;o.

Suppose 7 satisfies (3). Define sets 4, = (w: ne _#,r,w). A stopping time
7 is specified by 4, = (w: n < yw), if the A4, are determined by X, - -, X,
and are nonincreasing in n. The first condition is clear. Now 4, =

i (w:je A0, ,r,o), since by (3) each of these sets is contained in the
last. Each set is the same if 6,_;r, w is replaced by r; o,

n—j'n
A, = Nia(w: je AZr,v).
A sequence formed by intersections is nonincreasing.
Here is a way to construct new dual pairs from known ones. It is a corol-

lary to Theorem 1 only in that we may now speak of dual pairs of stopping
times.

CoROLLARY 1. Suppose that y, 7 are dual stopping times and that 7, 7 are dual
stopping times. Then t = minne _#, N _#, is dual to ¢ = min (7, 7).
Proof. From its definition, .7, = _#, N _#,. Then
(w:ne Ar,o)=(w:n<minie Zw) N (0: n< minie #w)
=(w:n<minie Ao U #Zw)
= (0: n < min (fo, j0)) .
Some examples are constructed using Corollary 1 in Section V.
IV. A Spitzer-Pollaczek factorization and consequences. For any dual pair
of stopping times, = and 7, a factorization formula for the distribution F of X;
in terms of the distribution of S_ and S, can be obtained by a slight modification

of the argument given by Feller [2], XII.3. We prefer to give a new proof
which avoids several definitions and sums. The following lemma is similar to
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what Feller calls the “basic duality lemma” involving N and N in [2], XII.2,
and the proof is nearly the same. We use A to denote a measurable set in R,
and 0 is a unit mass at 0.

LemMa 1. Let 3, © be dual stopping times for a random walk S,. Let T be
an independent geometrically distributed random variable, P(T = n) = u™ where
O<uxgl. Let

H, (A) =PS,e4,n<T), G..(A) = 2o PS,eA,n<t,n<T).
Then
“4) G..= Lo H . If w<l, (6—-H, )*G, 6 =9.
| THEOREM 3. If » and t are dual stopping times then
O d—uF =3 —H,)+@6—H,y), O<us<l.

Here, H_,(A) = P(S.e 4,7 <T), H, (A) = P(S,€ 4,7 < T), T is independent
of the random walk, and P(T = n) = u~.

Proor. Let u < 1, and consider the distribution of S, on the w-set where
T < 7, in terms of whether T =0or 7T > 1,

P(S;e A, T<7)= (1 —u)6(A) + uP(S;e 4, T <t|T = 1)
= (1 —u)o(A) + uP(S; ,€ A, T+ 1<Z7)
= (1 — u)d(A) + uK_, x F(A),
where K_ ,(A) = P(S; € 4, T < 7). On the other hand,
P(S;e A, T <7) =K, (A) + (1 — u)H, ,(A).

Equate the two versions and rearrange terms to obtain

u

6) IKA*(a_uF)=5_H,,
— U

Notice that K_,/(1 — u) = G_, as defined in Lemma 1. Convolve both sides
of (6) with 6 — H, , to obtain (5) for # < 1. Let # go to 1 to obtain (5) with
u=1.

Relation (6), which holds for any stopping time z, is well known in the
form involving G, , and with » = 1, e.g., Arjas [1]. The above method may

be useful to obtain more easily the fundamental identity of [1] for semi-Markov
processes.

Applying transforms to (5) gives

(™ (I —ug(€)) = (1 — $(u, )1 — ¢, (1, §))

where ¢(§) = Eexp i§ - X, ¢.(u,§) = Eutexpié - S, gb”(u, §) = Ew exp i€ - S”.
A number of properties of the pair N, N-follow from identity (5) or (7). Such

properties are shared by any dual pair 7, . The following four corollaries list
some of these.
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COROLLARY 2. Let g () = Eu?, g.(u) = Eu*. Then for 0 < u < 1,

® L—u=(1-g,N1 - g.(0)) -
ProoF. Let & = 0 in (7).

COROLLARY 3. Either t, 7 are both proper and En = Et = oo, or 7 is defective
and Er = 1)(1 — P(y < o)) or t is defective and En = 1/(1 — P(r < o0)).

Proor. From (8), (1 — g.())/(1 —u) = (1 — g,(4))™*. Letu—1.

COROLLARY 4. If S, is random walk in R* and if ES., ES, are finite, then EX, = 0
and EX; = —2ES_ES,.

Proor. See Feller XVIII.4, Lemma 3.

COROLLARY 5. The following are equivalent independent decompositions of the
distribution of S;:

©) ’ Sr =4 Y(T) + Y(T})
(10) Sy =4 S(L(=, T)) + S(L(n, T)) -

In (9), T,, T, are independent, AT, 2 n) = P(r < T)*, (T, =z n) = P(p < T)",
and Y, Y, are random walks with step distributions P(S.e A|r < T),
P(S,e Aln < T).

ProoF. Relation (9) is equivalent to (5) as for N, N in Greenwood [3], equa-
tion 5.4. Relation (10) is also equivalent as in Greenwood [4].

The factorization (5) can be repeated. Consider the random walk Y, which
is S, restricted to the time set 7, i.e., Y, = S,n. The killing time for Y,
if FR)=u<1,is Ty + 1, where Ty, = maxn: 7, < T, and T is as defined
“earlier. If y,, 7, are dual stopping times for Y,, (5) is

(11) 6 —H =@—H,)*(@—H, )
where
H.  (A)=PY, eAr =Ty
= P(S(r,)e A, 7,,=T), i=1,2.
Repeated factorization is used in [5] to obtain F in terms of distributions con-
centrated on each element of a partition of R? into convex cones.

If 7 is defective, the random walk can be evaluated at the last occurrence of
7. Let L. = maxne _#,. Then

S(L.) = Dejeer STun) — S(z) -
The terms of this sum are independent and distributed like S.
The distribution of S(L.) is P(r = o) Y=, H.»* where H_ is the distribution

of S.. If 5 is dual to r, this distribution can be written in terms of 7, using
Lemma 1 and Corollary 3.
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COROLLARY 6. If v isdefective and has dual 1, the distribution of S(L.) is (En)~'G,
where G,(A) = X7, P(S,€ 4, n < 7).

Suppose now that z is proper. Recallthe notation L(z,n) = max (i <n:ie #).
It is known from renewal theory that (n — L(z, n))/n has a limiting distribution
ifand only if the distribution of r is regularly varying, thatis P(t > n) ~ n=*<4(n),
0 < a < 1, where £ (mn)/(n) — 1 as n — oo (see, e.g., Feller [2], XIV.3.).
Then the limiting distribution has arcsine density

sin ta x_a(l _ x)a—l, 0<x <1.

ga(x) =

If 7 has a dual, the same kind of statement can be made about L(z, n)/n. The
following corollary has an analogue in [5] for certain finite families of stopping
times.

CoroLLARY 7. If t and 1) are dual and the distribution of either has a regularly
varying tail, then L(z, n)/n has a limiting arcsine distribution.

Proor. If one of 7, » has a regularly varying tail with exponent a, the other
is regularly varying with exponent 1 — a. This follows from (8) and a Tauberian
theorem, e.g., Feller [2], XIII.5, Theorem 5. By the result quoted above,
(n — L(», n))/n has a limiting arcsine distribution. But n — L(», n) =, L(z, n),
according to (2).

Some properties of the pair N, N are not shared by all dual pairs of stopping
times. For instance if S, isin R?, Baxter’s equation,

log (1 — ¢.(, ) = T g7n = LI 2 o, e4F*(dx),

is true only when the supports C_, C, of S, S, lie in complementary half-spaces.

Kingman [6] observed that Baxter’s equation cannot be generalized in any
essential way. However, by allowing more than two factors in (7), hence more
than two cones, Baxter’s equation is generalized in [S5].

V. Examples. Let S, be random walk in R

1. Let 5>0. Let p=min(n: X, >b6). Let c=1if X; <b, 7 = oo if
X, >b. Then (ne #)=(X,>b), (ne #or,)=(X>b=((n<r) for
each n > 0, so  and 7 are dual.

2. Let n and r be as in Example 1. Then ¢ and 7 are dual, also N and N
are dual. By Corollary 1, y = minne #, N _#, isdualto7 = y A N. The
stopping time 7 is the first time S, is < 0 or has a step > b. Its dual is
y=min(n:n=N,X, <b,i=1,...,N), y = oo otherwise.

3. With the same 7 and 7, Corollary 1 gives the additional dual pairs
B=minne # N #;, B=7AN and a =minne #, 0 A, @ =1 AN.
The remaining possibility is not interesting.

4. Let » = N restricted to the w-set (S, =S, —b,i=0,1,...,N). Let
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N, = min (n: there exists i < nsuch that S, — S, = b) where m; = max (j < i:
S,, is minimal over (S,, - - -, S,)). Lett = N A N,. Then (ne #,r,) = (n < 7).
The verification is notationally, but not conceptually, difficult. The following
are some stopping times without duals.

5. Letp > las., e.g.,,p=min(n > 0: S, = 0) for random walk with steps
of 1 or —1. If » has a dual 7, then (y > 1) = (r = 1). But z =1 a.s., with
duality, implies n < 7 a.s. for all n, so 7 = co a.s.

6. Let N, = min (n: S, > b). It happens, with positive probability, that
ne #,, but X, < b so that N,o 6, > 1. By Theorem 2, N, does not have a
dual. Examples for random walks in R? are in [5].
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