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ON THE LOCAL LIMIT THEOREM FOR INDEPENDENT
NONLATTICE RANDOM VARIABLES

By TERENCE R. SHORE
California State College, Dominguez Hills

Let (X»: n = 1) be a sequence of independent random variables, each
having mean 0 and a finite variance. Under the Lindeberg condition and
uniformity conditions on the characteristic functions, it is shown that the
local limit theorem holds, i.e., if S, is the nth partial sum of the sequence,
then (2z Var S»)P(S» € (a, b)) » b — a.

Under the assumption that the local limit theorem holds for each tail
of (X»), and one other condition, it is then shown that the random walk
generated by (X») is recurrent if 3 (Var S»)=% = oo.

1. Introduction and notation. Let (X,: n = 1) be a sequence of independent
random variables with E(X,) = 0 and E(X,?) = ¢,’. Let (S,: n = 1) be the se-
quence of partial sums and s, = E(S,?). The aim of this note is to give conditions
under which the local limit theorem holds, i.e., (27)s,P(S, € (a, b)) —> b — a.
In the nonlattice case the first such theorem was given by Shepp (1964) for i.i.d.
variables. Stone (1965) considered local limit theorems for i.i.d. nonlattice
random vectors and Mineka and Silverman (1970) proved a local limit theorem
for nonlattice random variables in the nonidentically distributed case.

We prove a local limit theorem from which follow two corollaries. In the first
corollary we allow the individual variances, ¢,% to be unbounded from above,
by considering weighted sums of i.i.d. variables. Condition (a) of Mineka and
Silverman (1970) requires the variances to be bounded from above. In the
second corollary, s,> = O(n). This corollary is not a full generalization of
Corollaries 1 and 2 of Mineka and Silverman since the convergence is not uni-
form over as large a class of intervals. However, the conditions of our Corol-
lary 2 are weaker since (4) and (5) together are weaker than (a) of Mineka and
Silverman, and (6) here is implied both by the conditions (8,) of Corollary 1
and (B,) of Corollary 2 there. Condition (6) is a uniformity condition on the
characteristic functions which we believe will be easier to check than (8) of [3].
As an example we prove Corollary 3 where it is assumed that the random vari-
ables have densities. The conditions of Corollary 2 also allow a given fraction,
less than 1, of the variables to be distributed on the same lattice.

In Section 4 we use the lemma of Mineka and Silverman to show that if
E(X, =0, E(X,*) = 0, < oo and each tail of the sequence (X,) satisfies the
local limit theorem, then, under one other condition, (X,) generates a recurrent
random walk if 3] (Var S,)"* = co. We then show that under the conditions of
Corollaries 1 and 3 the random walk is recurrent.
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564 TERENCE R. SHORE

Let F, be the distribution function of X, and ¢, its characteristic function.
Denote by F,* the distribution function of the symmetrization of X, and by G,
the distribution function of S,. Following Shepp, the method of proof is to
show that the sequence ((27)%s,G,: n = 1) converges weakly to Lebesgue meas-
ure on (— oo, o). To do this it suffices to show that (27)ts, E(A(S,)) — {2, h(x) dx
for each function & which is integrable and the Fourier transform of a function
k which is continuous with compact support (Breiman (1968), Theorem 10.7).

2. Local limit theorem.
THEOREM 1. We assume the following conditions:
(1) The Lindeberg condition: for each t > 0.
5272 D=t Vasta, x*dF,(x) — 0.
For (2) and (3) assume that (¢,: n = 1) is a sequence of positive constants with
€,58, — 0.
(2) There is a nonnegative integrable function f(t) so that for each n, on
{ [—€nSm €a5a) »
k- leu(t/sa)l = A1) -
3) For any b >0, thereexists ac(0,1) so that for each k,
lou(D)] < @, t€[e b].
Then, for any A > 0 and nonnegative integer N,
lim, ., SUP5 4 [(27(Sy1n — 54"))1P(Sysn — Sy€(@ + %, b+ X)) — (b —a)| =0.
ProoF. We first prove:
(i) foreach integer N > 0, lim,, (27(s% ., —53"))!P(Sy+n—Sy € (@, b)) = b—a.
Leth Pe integrable on (— oo, o) andAthe Fourier transform of a continuous func-
tion 4 with compact support. Say k4 vanishes outside [—z, z]. By the remarks

before the statement of Theorem 1 and the fact that lim,, sy, /(s%., — sy*)t = 1,
it suffices to show that

(27)b5y s W E(A(Sy 10 — Sy)) — §%0 h(x) dx .
By the definition of # and Fubini’s theorem the left side is

(i) (27)rsy,, §2, (TIVER @u(0)A(t) dt.
Choose an integer p so large that

(iii) II-: lew(f)| = 3 on [—27%¢y, 27%¢,]. Set 0, =2"Pey 0 ¢n(t) = II~5T §Dk(t)
and rewrite the integral (ii) as

(27)tsy i Siusa,, Gu(h(t) dt 4 (27)tsy., $s,sit5e Gty dt = I, + J,.
We first show that lim 7, = {=,, h(x) dx. By change of variables,
I, = ()t {Pmiin g (t)sy, Yh(t]sy ) df .
But [, (t/suin)] = 2 TIRE" [@e(t/Sw4a)| = 2f() 0N [t] < 045y 10
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The first inequality follows from (iii) and the second from (2). Thus the in-
tegrand of I, is bounded above by 2f(f) max (|h(u)|: —z < u < z), an integrable
function. Since ¢,(1/Sy,,) is the characteristic function of (Sy,, — Sy)/Syins
the dominated convergence theorem, together with (1), yields

I, — (27)} |, e~?*A(0) dt = 27h(0) = =, h(x)dx .

The last equality follows from the inversion theorem for Fourier transforms.

If 6, | 6 = z, then J, = 0 and the proof is complete. Otherwise limJ, =0
must be shown. Since 4 is bounded and |p,(—7)| = |¢,(?)|, it suffices to show
that

lim, sy, §3, |¢a(1)| dt = 0.

It follows from (1) that lim,sy,,,,/Sy,, = 1. For each n, put a,=
SUDPjan Sy+ks1/Sysks SO that lim, a, = 1. Put b, = inf,,, d;,,5y,.- By the fact
that d,,, = 2-?¢y,,,, and the assumption that lim, ¢,s, = oo, lim, b, = co. Set
b = max (z, 2%,); by (3) there exists @ € (0, 1) so that for each k = 1, |¢, ()| = a
on [e,, b]. By repeated application of the formula

Re ¢,(1) < § + Re ¢;(21)/4,

valid for characteristic functions, and the fact that |p,(?)|* is a characteristic
function, we have

lp, ()] < (1 —4=2(1 — o, (Pn)f)t,  all j=1.
As 27t € [y, ] Whenever t € [d,, ey,,], it follows that
(iv) TI¥:2 lei(1)| < Br~**%, all n =k and all r€[J,, 7] where a < 8=
(1 — 421 — et < 1.
Let 7 >0 be arbitrary and choose n, so large that a,f <1 and
[2a,,0,8/(1 — ano,B)] Sbnof(t) dt < 7. We have

lim sup, Sy.. {3, |¢a(t)] dt
< lim sup,, Sy, $370 |@a(1)] df 4 lim sup, Sy, §5, |¢1,,(t)] dt .
By (iv), Sy V3, |¢ ()| dt £ 5y,n,2B*"0*1. Since sy, fSyin— 1asn— oo and

0<B<,it follows that lim SUP, Syan §5, |¢,,(t)| dt < limsup,, sy, ,zf" ™ = 0.
It remains to show that limsup, sNM §ino [Pu(r)|dt = 0. For n=n,

Sytn V5% |Qa(0)| dt = 2o%Zny Snan 3k, [P (D) dt. As Syin = Syirng ~kforn =k =
n,, it follows that
Sytn Sékﬂ |¢n(t)| dt = ay sN+k S"k+1 |¢n(t)| dt
< (anoﬁ)” ket (TINTY [oi(t/sya)]) dt
< 2(a, B~k Garark f(n) dt .

Ok+18N+k

The last inequality follows from (iii) and (2). Thus,

Swea Sono (D) dt < 2 T325 (a0, B)"7F I3, f(1) dt
< [2a,,B8/(1 — a,,8)] Sb,,of(’) < 7.
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Since » was arbitrarily chosen, (i) holds. To complete the proof it suffices to
note that if (u,: n = 1) is any sequence of positive measures on the Borel sets
of the real line which are finite on compacta and converge weakly to Lebesgue
measure, then, for any 4 > 0, lim, ., sup, <, |#.(@ + x, b 4+ x) — (b — a)| = 0.
See Problem 1, page 227 of [1]. The proof there only requires that the measures
ta(A) = (27)ts, P(S, € A) be finite on compacta.

REeMARK. If for each n, ¢, = ¢ > 0, then (3) may be weakened to

3) For any fixed 0 < a < b and integer N = 0 there exists a ¢ (0, 1)
with  [[¥17 |@;(f)] < a~ for tela, b], and n sufficiently large.

It is this version of (3) that is satisfied by the conditions of Corollary 2.

CoRrOLLARY 1. Let (X,: n = 1) be i.i.d. with mean 0, variance 1 and character-
istic function ¢ satisfying

lim sup, .. |p(7)] < 1.

Let (0,: n = 1) be positive numbers with m, = max (¢,: 1 < k < n) and assume
(a) mys,™ — 0, and (b) d = inf (g,m,*: k = 1) > 0. Then, for any positive A,
and N = 0,

lim, sup, <, |27 N1 o) P(L Nt o, X,e(@+x,b +x) —(b—a) =0.

Proor. Condition (a) implies that the Lindeberg condition, (1) of Theorem 1,
holds. Choose ¢ > 050 that |p(f)| < e~*** whenever |f| < ¢ and put ¢, = em, .
Then on |tf| < ¢,5,,

ITi-1 lea(t/sn)] = TTis l@(0kt/s,)] < et

and (2) holds since ¢,8, — oo. Finally, on [¢,, b],

REMARK. Another way to let the individual variances be unbounded would
be to assume that, for each k, |¢,| is nonincreasing and that there exists ¢ > 0
with |p,(f)] < exp(—ct’s,?) whenever |f| < ¢,. The integrable function then be-
comes f(r) = e~*". Then if inf, ¢,0, > 0, (2) and (3) hold.

For example, assume that for some 4 > 0, E|X,|* < Ao,* for each k and that
(1) holds. If we put ¢, = 3/24m,, m, = max (6;:j £ k), then ¢,5, — co by
(1), and (2) holds with ¢ = } since |, (f)] < 1 — 0,2%/2 + |t]°E|X,|*/6 whenever
|t| < (2)}/o,. Finally, since |¢,| is nonincreasing, lou(D)] < lou(er)| < 1 — 0,%,2/4
if € [¢,, b] and (3) holds if inf, a,/m, > 0.

3. 5, = O(n). Throughout this section (X, : k = 1) is a sequence of independ-
ent random variables with mean 0 and finite variances. We will assume that (1),
the Lindeberg condition, holds and

4 (Fe: k= 1) istight, i.e., given ¢ >0, thereexists 4 > 0 so that
F([—A, A]) < ¢ forall k.
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Before we state Corollary 2, we prove 3 lemmas.

LeMMA 1. Let (X,: k = 1) be as above. Then if (4) holds and there exists con-
stants M > 0 and 7 > 0 so that, for each n = 1,
827" 2k=t Veisw X dF(X) = 7,

then there exists A > 0 so that for each n = 1,

Sa7t 2ot Vaisaa X AF2(x) = .

Proor. Choose 4 = M so large that m = min, P(|X,| < 4) > (2 + 7)/(2 + 27)
and let (X’,,: k = 1) be independent of (X, : kK = 1) and have the same distribu-
tion. Then

5.7t Xk §ia1524 X2 dF2(x)
2 57 2o Surpisadgsa (X — X, ap

5,7 2k 2P(| X, < A) (o4 X dFU(X) — 5,72 2001 2(§ 10154 X dF(x))?
Z2my —1+m)>ny.

Here the Cauchy-Schwarz inequality was applied to get

S 2k (V254 X dFk(x))2 =5, 2 (S|z|>A X dFk(x))2 <l—m.

LEMMA 2. Let (F,: n = 1) be a sequence of distribution functions with charac-
teristic functions (¢,: n = 1). Suppose that (F,) is tight and for t = 0,
lim sup (1/n) 37_; |@u()] < 1. Then, if [a, b] does not contain 0O, there exists
a < 1 and n, satisfying:.

n=n, implies n= 3%  |o(t) £ « for tela,b].

Proor. Since (F,: n = 1) is tight, the sequence (¢,: n = 1), restricted to
[a, b], is relatively compact in the topology of uniform convergence on the
continuous functions on [a, b]. It follows from the Arzela-Ascoli theorem
that (¢,: n = 1) is equicontinuous on [a, b]. Hence, if we define {,(r) =
SUP,ey (1/m) 2%=1 l@u(D)]s (Ex: N = 1) is equicontinuous and since the sequence
is nonincreasing, {,(f) — limsup (1/n) 31%_, |@.(?)| uniformly on [a, b]. The
lemma follows.

LeMMA 3. There exists a universal constant ¢ > 0 so that for any random vari-
able X with distribution function F and characteristic function ¢,

lp()] < exp(—ct® § ;<1 X* dF*(x)) .
Proor.

(I — leP)/* = §2 (1 — cos (1x))/* dF(x)

= S;NSI (¥*(1 — cos (£x))/£'x") dF*(x) Z & § 55, X* dF(x)

where a = inf ((1 — cos (u))/u*: |u]| < 1). Take ¢ = a/2 and the result follows
from the fact that 1 — x < e,
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CoROLLARY 2. Let (X,: k = 1) be as above. Suppose that conditions (1), (4)
and the following hold.
&) There exist constants M >0 and 7 >0 satisfying
S 2=t Smisw X dF(x) 2 7.
(6) If t+0, then limsup (1/n) Xr_ | ()| < 1.
Then,
(27m)ts, P(S, e (a + x, b 4+ x)) —> b — a uniformly for x in bounded intervals.
ProoF. By Lemma 1, there exists a constant 4 so that
Sa7? 2ikmt Spaisa X dFA(x) 2 9.

By Lemma 3, TTi., |ou(t/sa)] < exp(—ct/s,® 3o, $iaisa, i X* dF,5(x)). But for
te[—s,47", 5,47"], the right-hand side is dominated by e~7", Thus we may
choose ¢, = A" for each n. Finally, by Lemma 2, given N, there exist n, and
a < 1satisfying T34 [eu(t)] < (n D412 lou()])" < a* for £ € [A-2, b], all n = n,e

CoROLLARY 3. Suppose that s,’ = O(n) and that (1) and (4) hold. Moreover, as-
sume that each X, has density function f, and that sup, {=,, f,%(x) dx < co. Then
the local limit theorem holds.

Proor. By the inversion theorem for Fourier transforms (Chung (1968),

Theorem 6.2.1), P(|X,’| < ¢) = (¢/n) (., (sin (te)/te)|p,(t)|* dt. It follows from
the Plancherel theorem that

@) sup, P(|X,*| < ¢) = O(e) .

By (4), for each 6 > 0 there exists a« = a(d) and a bounded sequence (a,: k = 1),
depending on 4, with the property that inf, P(|X, — a,| < ) > a«. Thus

®) foreach d >0, thereexists a = a(d) with inf, P(|X,}| <d) > «.
Combining (7) and (8) we have
%) for each 6 >0, thereexists ¢c(0,0) and a« >0 so that
inf,, P(| X’ ele, 0]) = a .

Fix 6 > 0 and choose ¢ and a as in (9). Then if € [—d-1s,, d-'s,] we have,

by Lemma 3,
IT%=1 lou(t/s0)] < exp(—ct’s,™ Tio, §iaia, e X" dF (X))

exp(—ct’s,* 2ivoy $imss X2 dF2(x))
exp(—ct’s, 'na) < exp(—cle’at?).

A TIA 1

Here we choose { so that {s5,> < n. Thus (2) is satisfied with ¢, = d-'. Fix
b > 0 and choose ¢ € (0, b7*) and « as in (9) so that

inf, P(|( X, 7| €[e, b)) = .
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Then
[9u(1)] < exp(—ct® § ;<1 X* AF (%))
< exp(—cr? {51 X* dFy(x)) < exp(—ctiea)

whenever |f| < b. Thus (3) holds. This corollary now follows from Theorem 1.
REMARK. The same proof shows that under (1), (4), (5) and
lim sup,_, 77! 215, §%, fil(x)dx < oo,
then the local limit theorem holds.

4. Recurrence. In this section we use the lemma of Mineka and Silverman
(1970) to give conditions under which a random walk with nonidentically dis-
tributed components is recurrent.

Throughout the section (X, : n = 1) will be a sequence of independent mean
0 random variables with finite variances. For a real number z and A > 0 set
A, = (2, z + A). The walk is recurrent if and only if for each z and A,

(10) P(S,ed,, i.0)=1.

A condition equivalent to (10) is

(11) for each integer k>0, A >0 and =z,
P(S,., — S,e4,, forsome n)=1,

i.e., every interval is visited atleast once with probability 1 by every tail.
As in [3] set U,(z) = P(S, — S, € A,) and, for y € [0, 4],

(1) = Lt tUn(—=1Zm=1Un(D)] -
If

(12) foreach y and &k, lim,a,(y)=1, and

(13) there exists L > 0 so that for all n sufficiently large a,(7) < L,
all k=1 andall ye[0,A];

then,

(14) 2 fi(B) = 1. Here fi(A) = P(S,el,, S;¢l,, all j<k).

This result follows from the dominated convergence theorem. We now state
the lemma of [3] which implies (11).

LemMMA 4 (Mineka and Silverman). If (X,: n = 1) is such that for all tails of

the sequence, and for all z and A > 0, (12) and (13) hold, then the random walk
generated by (X,) is recurrent.

In Lemma 6 we need the following lemma which is stated without proof.

LeEMMA 5. Let (a,: n= 1) and (y,: n = 1) be sequences of positive numbers
with lim, a,y, = tand 3,7, y, = co. Then, for fixed M,

lim, 3% , aﬂ(ZZ:y yk)_l =11,
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LEmMMA 6. Let (X,: n = 1) be as above. Moreover, suppose that 3;7_, 5,7 = oo
and that for each k = 1, (X,: n = k) satisfies the local limit theorem. Then for
each k > 1,

lim,a,,(r)=1, all rel0,A].

Proor. Fix k = 1 and adopt the following notation:
a, = (Var (S, — Sp))?, s, = (Var §,)}, x(7) = Uu(—7) and
yn == P(SneAz) N
From Theorem 1, sup,.,|(27)!a,x,(y) — A >0 as m — co. Moreover,

|(27)ts,, Y — A] > 0 as m — oco.
Let ¢ > 0 and » > 0 be given and choose M so large that m = M implies

(i) sup,sa |(27)ta,, x,(r) — A] < ¢/2,
(i) |27)is, ym — A] < ¢/2,
(i) 1 < sufan <1+ 7.

By Lemma 5 choose N > M so large that when n = N,
(iV) (Zes @G N Den Ym) ™t = 2(27)PA70
From (i) and (ii) follow
(V) —e< amxm(r) — S Ym < &
(Vi) ym — €a,7 < Xp(7) < S8y + a7t < (1 A+ D)y + a7
Summing (vi) over m = M, M + 1, ..., n and dividing by }»_, y, yields,
by (iv)
(vii) 1 —e2(2m) A~ < 305 xu ()2 ym) 7' = (1 4 7) + €2(27)*A0
Now note that for n = N,
ank(r) é g;lt xm(T)(Z ;=1 ym)_l + Z;=M xm(T)(th:M ym)_l
SM — k) (Zyn) + 14 9+ 22m)A-t.

Since ¢ and 7 were arbitrary, lim sup, .., a,,(y) = 1.
To show that lim inf,_, a,,(y) = 1, note that

au(r) Z (1 — e22m)}A7") 2 ym(ZLT ym)™  so that
liminf, . a,(r) = 1 — 2(2x)!A-*.
This completes the proof since ¢ was arbitrary.

LeMMA 7. Let (X,: n = 1) satisfy the local limit theorem. Fix z€ (—oco, )
and assume (C,): there exists M > 1 and C > 0 so that sup, s, P(S,,, — S, €
(=4, 4)) < CA, n = M. Then there exists L > 0 and integer N so that whenever
n=N, k=1andyec[0,A]

au(n) < L.

Proor. Let (e (0, (27)~t) and choose N = M so large that P(S, € A,) = (As,™?
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whenever n = N. Forn = N,
2im=k kUn(—7)
= Znak PSn — S (=4, 8)) S N+ Zhvii P(Sw — Sie (=4, 4))
S N+ Zhi CAsyl, = N + Ynh ClAs,™?
SN+ (C/H) X P(S,ed)).
Thus
aul(r) = N[(Zn=1 P(Sn € b)) + C/L < N|(Zn-1 P(Swe b)) + ClL= L.
THEOREM 2. Let (X,: n = 1) be a sequence of independent mean 0 random vari-
ables with finite variances and suppose that for each k = 1, (X, : n = k) satisfies

the local limit theorem. Moreover, suppose that for each A > 0, (X,) satisfies (C,).
Then the random walk generated by (X,) is recurrent if 3.%_ 5,”' = oo.

PrROOF. Let ze(—o0, oo)and A > 0 be arbitrary. By Lemma 7, there exist
constants N > 1 and L > 0 with a,,(y) < L whenever n > N, k > 1and y € [0, A].
By Lemma 6, a,,(y) — 1 since each tail of (X,) satisfies the local limit theorem.

Thus by (14),
P(S,el,, some n)=1.

Let K > 1 and define aX(y) = —x+k k+kUn(— 7N (D hx xUn(2))72. Since
each tail of (X,: n = K) is a tail of (X,,. n = 1), it follows that a%(y) — 1 by
Lemma 6.

Moreover, lim, (s;,x — S¢’)/s,* = 1 by (1). Thus (C,) holds for (X,: n = K)
also. We conclude that for each k = K, P(S, — S,eA,, some n > K)y=1.
Since z and A were arbitrary this completes the proof by (11).

CoROLLARY 4. Suppose that each tail of (X,) satisfies the local limit theorem, (4)
holds, s,* = O(n) and

(15) lim, ,lim,_, n7'sup,,, 272§, P(|X;7| < ¢) = 0.
Then, if 3% ,s,~' = oo, the random walk generated by (X,) is recurrent.

ProoF. By Theorem 2 it suffices to show that, for each A > 0, (C,) holds.
Fix A > 0 and define

h(x) = (2A-* — |x|)/4A-2  if |x] < 2A-
=0 otherwise.
The transform of £ is k() = sin® (¢/A)/?’A=%. On [—A, A], h(t) = B* where 8 =
inf (¢=*sin (£): 0 < ¢ < 1). Thus,
5, P(Snyr — S e (—A4, b))

= B E(h(Susr — Si))

= B2 \Un TIpth o (ts,7Yh(ts,™)dt  where & = 2A-1,
Now by Lemma 3, for |f] < ds,,

I los(t/sn)] < exp(—ct’s,™ Tiit §aiga i X* dF (%))
< exp(—cr’s, ™ LRt Sjaisan X dF 2(x) .
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Choose & = a(A/2) as in (8) and pick ¢ < A/2 so small that, for n sufficiently
large,

sup, = St (X, £ ¢) < 2.
This is possible by (15). Then the last exponential is no more than

exp(—ct’s,ne¥(@ — n=' 3t P(|X ;| < ¢))) < exp(—ctiCeal2)
where ( is chosen so that ns,~? = {. Set K = c{c’a. We have
SuE(A(Spsn — Si)) < A(0) {75, e X2 dt < h(0) §=. e~**2dt
= h(0)(27/K)t = A(x[2K)} .
This corollary now follows from Theorem 2.
From Corollary 4 we have

CoROLLARY 5. Under the conditions of Corollary 3, the random walk generated
by (X,) is recurrent if 3,7_, s,”' = oo.

COROLLARY 6. Under the conditions of Corollary 1, the random walk generated
by (X,) is recurrent if 3,%_ 5,7 = oo.

Proor. By Theorem 1, each tail of the sequence (s, X,: n = 1) satisfies the
local limit theorem. Thus, the proof will be complete, by Theorem 2, if we
show that for each A > 0, (C,) holds. The proof of this fact again uses / as de-
fined in Corollary 4. The tedious computations are similar to those of Theorem
1 and will be omitted.

RemARks. If (X,) satisfies the local limit theorem and }, 5,7 < oo, then by
the Borel-Cantelli lemma, the random walk generated by (X,) is transient. We
thus have the result that if each tail of (X, satisfies the local limit theorem, and
(C,) holds for each A, then recurrence is equivalent to the divergence of the
series ), 5,71

In Theorem 1 we had to prove the local limit theorem for each tail directly
as it is possible for (X, : n = 1) to satisfy the local limit theorem and (X,: n = 2)
not to satisfy the local limit theorem. For example, let ¢ be the constant for
which ct=*sin* (¢/4) is a density on (—oo, c0). Its Fourier transform, ¢,(?),
vanishes outside the interval [—1, 1]. Let X, be a random variable with the
above density and let X,, X;, - - - bei.i.d. and independent of X, with P(X, =1) =
P(X,= —1) = 4. The sequence (X,: n = 2) does not satisfy the local limit
theorem. However, if 4 is integrable and the Fourier transform of £ which is
continuous with compact support then

(2n)ts, E(h(S,)) = (27) %, oy(t]s) cos™~t (¢/s,)h(t/s,) dt .
On [—s,, s,] the integrand is dominated by Ce-%*!/=* where C and k are con-

stants. Thus as in Theorem 1 we conclude that (X,: n = 1) satisfies the local
limit theorem.
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