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CRITERIA FOR RECURRENCE AND EXISTENCE OF INVARIANT
MEASURES FOR MULTIDIMENSIONAL DIFFUSIONS!

By R. N. BHATTACHARYA
University of Arizona

Let L =} % ,_, aij(x)(82/0xi 9x;) + X%_, bi(x)(3/dxi) be an elliptic op-
erator such that a;;(«) are continuous and bi(+) are measurable and bounded
on compacts. Criteria for transience, null recurrence, and positive recur-
rence of diffusions on R* governed by L are derived in terms of the coef-
ficients of L.

1. Introduction. The main objective of this article is to obtain criteria for
transience, positive recurrence, and null recurrence of diffusions on R* governed
by elliptic operators L = § 3% ._, a,,(x)(6%/0x, dx,) + Yk, b,(x)(d/dx,) in terms
of the coefficients of L. The matrix ((a;,;(x))) is assumed to be nonsingular for
each x; the functions a;;(-) are continuous, and the functions b,(+) are Borel
measurable and bounded on compacts. For the case k = 1 complete charac-
terizations are known (see, e.g., Mandl (1968)). For k > 1 important criteria
were announced without proof by Khas’minskii (1960) in a supplement to his
paper [3], under the hypothesis that the coefficients of L are thrice continuously
differentiable. The first derivation of criteria for recurrence and transience
analogous to Khas’minskii’s is due to Friedman (1973), who assumed the coef-
ficients to be Lipschitzian on compacts and to satisfy certain growth conditions
at infinity. As far as we know there has not appeared in the literature any proof
of Khas’minskii’s criteria (or analogous ones) for positive and null recurrence.
Since positive recurrence is essentially equivalent to the existence of a (unique)
invariant probability measure determining the ergodic behavior of the diffusion
(see, e.g., Khas’minskii (1960), Maruyama and Tanaka (1959)), such criteria
are of importance. Theorem 3.5 provides a criterion for positive recurrence
which implies the corresponding criterion of Khas’minskii (1960) (Theorem III
of his Supplement). It also provides a criterion for null recurrence which is
comparable to Khas’minskii’s (when specialized to Khas’minskii’s assumptions),
although neither implies the other. We are unable to verify Khas’minskii’s
criterion for null recurrence. Theorem 3.3 is an improvement upon Friedman’s
criteria for transience and recurrence. The criteria derived in this article are
exact if L is radial near infinity. Among other results we mention Theorem 3.2
establishing a dichotomy (into transience and recurrence) in the class of all
diffusions considered here.

Throughout this article we assume k = 2.
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542 R. N. BHATTACHARYA

2. Notation and preliminaries. This section is devoted to background ma-
terial. Proofs are given only when results are not readily available in the desired
form.

Let L = § 3%, a;(x)(0%/0x; 0x;) + X3%., b,(x)(0/0x;) be an elliptic operator
on R¥. More precisely, we assume

(A) The matrix ((a;;(x))) is real symmetric and positive definite for each x
in R*, the functions a;,(+) are continuous. The functions b,(+) are real valued,
Borel measurable and bounded on compacts.

ForN=1,2,...,1<1i,j<k, define

a;; 5(X) = a;;(x)
b, w(x) = by(x) if |x| <N,

a;;,y(x) = a;;(x,)
b, y(x) = by(x,) if |x| =cx, forsome x,, |x]|=N,

and some ¢ > 1.

LetL, =1 Z{.‘Jil a;; y(x)(0*/0x; 0x,) + X%, b; y(x)(9]0x,).

For A c R*, A4 denotes the closure of A and A° denotes the complement of A.
Also, 04 denotes the boundary of A. The symbol |x| stands for the Euclidean
norm of x.

Denote the space C([0, oo): R¥) of all continuous functions on [0, o) into R*
by Q’. Endow Q’ with the topology of uniform convergence on compact subsets
of [0, o). Let .#" denote the Borel sigma field of Q'. Let X{(f) = X{(¢, +) be
the tth coordinate map: X(f, ) = o(f) for w € Q’. The sigma field generated by
{X(s): 0 < s <t} is denoted by _#Z (0 < t < o). A function z on Q' into
[0, oo] is a stopping time if {r < t} e # for all t = 0. If r is a stopping time
then the map X~ on Q' into Q' defined by

X (t)=X(z ~n) t=0

is measurable and is called the process stopped at ©. The pre-t sigma field _#
is generated by {X(z n f): t = 0}. Alsomeasurable on the restriction of (Q’, _#")
to {r < oo} is the map X_* defined by

X)) = X(r 4+ 1) t=0.

Let {P,: x € R*} be a family of probability measures on (', _#") such that
for every a.s. (P,) finite stopping time = a regular conditional distribution of X +
given _# is Py _,. We then say that X is a strong Markov process under P,.
Such a process is said to be strong Feller if for every bounded real measurable
function f on R* the function: x — E, f(X(?)) is continuous on R* for each ¢ > 0.
Here E, denotes expectation under P,. The following result due to Stroock and
Varadhan ([7]—[9]) will be frequently used in this article.

THEOREM 2.1. If, in addition to the hypothesis (A), a,;(+) and b,(+) are bounded
on R¥, then for each x in R* there exists a unique probability measure P, on (Q', _#")
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such that (i) P,(X(0) = x) = 1, (ii) for every bounded real f on R* having bounded
and continuous first and second order derivatives, the process

fX(®) — §5 Lf(X(5)) ds 120
is a martingale under P,. Further, (a) X is strong Markov and strong Feller, and
(b) support of P, is Q! = {w e Q': w(0) = x}.

Let P, , denote the probability measure in Theorem 2.1 with L = L.

The following simple result will also be needed. For any set A4, y, is the
indicator function of A.

LEMMA 2.2. Let U be a nonempty bounded open subset of R*. Let
(2.1) 7, = inf{t = 0: X(¢) ¢ U}.

Under the hypothesis of Theorem 2.1, for every bounded real Borel measurable func-
tionf on U, the function E,(,.,>, f(X(1))) is continuous on U. If ¢ is a real valued

bounded measurable function on U, then the function E (¢(X(ty))) is continuous on
.

Proof. The first assertion is proved in Dynkin (1965) (Volume II, page 30,
relation (13.4)). It is of course necessary to check Dynkin’s hypothesis that

(2.2) lim, ,sup,., P,(|X(f) — x| >¢) =0

for every compact subset D of U.

But (2.1) follows from the inequality (see Stroock and Varadhan (1969), page
355)

(2.3)  sup,.m P(X(1) — x| > ¢) < 2k exp{—(c — BO}2a1} > 0,1>0

where $? is an upper bound of 3 b,*(x) for all x, and & is an upper bound for
the largest eigenvalue of ((a,;(x))), x € R*. To prove the second assertion define
$ on U by letting ¢ = ¢ on 6U and ¢ = ¢ on U where ¢ < ¢(x) for all x in oU.
Then, according to Dynkin (1965) (Volume II, page 30, relation (13.5)), the
function k,(x) = E,$(X(z, A 1)) is continuous on U for every r > 0. Letting

t 1 oo, one has k,(x) T ¢(x). Hence ¢ is lower semicontinuous. Similarly, —¢
is lower semicontinuous. []

To construct probability measures P, under the hypothesis (A) replace the
“state space” R* by its one point compactification R* U {co}. Let Q = C([0, 0):
R¥ U {oo}) be the set of all continuous functions on [0, o) into R* U {co} and
endow Q with the topology of uniform convergence (relative to some metric
metrizing R¥ U {co}) on compact subsets of [0, co). Let _# be the Borel sigma
field of Q. We continue to denote by X(¢) the tth coordinate map (this time on
Q into R* U {oo}). Also, # will denote the sigma field generated by {X(s):
0 <5< ¢}, and _# will denote the pre-t sigma field for any stopping time ¢
(relative to _#, t = 0) on Q. Denote by P, the probability measure degenerate
at o, where w,(f) = oo for all t > 0. For x # co, one way to construct P, is
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to introduce the product probability space (E, &, p), where E is the Cartesian
product X, v Q.  (each Q, , being a copy of Q’), & is the product sigma field,
and y is the product probability X, v P, y. If x,, N, are such that |x| < N,,
define a map Y on E into Q by requiring that Y(f) = X, » (7) (here X, y(?) is the
tth coordinate map on Q; ,) for t < », = inf{s 2 0: |X, , (5)| = No}, Y(¢) =
Xy woril®) fOr 9, < < 9y, Where g —y, = inf{s = 02 Xy, v i(5)] = No+1F
let 5., = lim,,,, 7; and define Y(f) = oo for 5, < t < co. We denote by P, the
probability measure on (Q, .Z) induced by Y, i.e., P, = p o Y~'. Itissimple to
check from this construction that the coordinate process X = {X(t): 0 < t < oo}
on Q is a strong Markov process under P,, x € R* U {oo}.

On Q define the stopping times 7, for open subsets U of R* as in (2.1), and
define the explosion time { by

(2.4) (= limy 1o Tpe0.m)

where B(0: N) = {xe R*: |x| < N}. The probability measure P, (x € R¥) is said
to be conservative if P,({ = co) = 1. A Borel measurable real valued function
S on R* will be said to be L-harmonic on an open subset G of RF if it is bounded
on compacts, and for all x in G

(2.5) fx) = E, f(X(zy))
for every neighborhood U of x having compact closure U in G. It may be re-
marked at this stage that the notation P,, E, used here is consistent with that
used earlier. For it follows immediately from the construction that under the
hypothesis of Theorem 2.1 the present P, has support Q,’ and coincides with
the corresponding P, in Theorem 2.1 on Q,’. Also, if (A) holds, then for x| < N
the present measure P, agrees with the earlier P, , on Ay, (1-€., on the trace
of this sigma field on Q,’). From now on we regard all measures P,, P, , to be
defined on (Q, .#), and E,, E, , are corresponding expectations.

Part (a) of the following lemma may also be obtained from Dynkin (1965),
Volume II, Theorem 13.2, page 31.

LeEMMA 2.3. Assume (A) holds. (a) Every L-harmonic function on an open subset
G of R* is continuous in G. (b) (Maximum principle.) Let f be a nonnegative L-
harmonic function on a connected open subset G of R*. Then f is either strictly
positive or identically zero.

Proor. (a) If fis L-harmonic in G, x € G, and U is a neighborhood of x such
that the closure U of U is compact in G, then
(2.6) f(x) = E. f(X(ry)) = E, x (X(zy)) ,

provided U ¢ B(0: N). By Lemma 2.2 the last expression in (2.6) is continuous
in U.

(b) Suppose f(x,) = 0. Let B = B(x,: ¢) be the open ball with center x, and
radius ¢ such that B c G. Then

0 = f(x) = E.,f(X(z5)) = $asS(7) (%0, dy) ,
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where II(x,, dy) is the distribution of X(z;) under P, and, hence, under P,  if
N > |x,| + ¢. By Theorem 2.1 the support of II(x,, dy) is dB. Since f > 0 and
continuous it follows that f = 0 on dB. Therefore, f =0 on G. ]

LEMMA 2.4. Assume (A) holds. (a) If U is a nonempty open subset of R*,
U =+ R, then x — P, (t, < oo) is positive and continuous on U. (b) If U, U, are
two nonempty open subsets of R* such that U, n U, = ¢, Uy = R¥\U, is connected,
then x — P,(tye < ) is positive and continuous on Uy 0 Uy

Proor. It follows from the strong Markov property that both the functions
in question are L-harmonic and, therefore, continuous. To prove positivity in
(b) (which implies positivity in (a)) let x e U¢ n Uy. Take an open ball B c U,
and let B, be a bounded open set such that xe B, B C B, C {|x| < N},
B, nU,=¢. Then Prg: < 75)) 2 Py(t5e < 75) = P, y(t5. < 75). The last
expression is positive, since the support of P, , is Q,". []

LEMMA 2.5. Assume (A) holds. If P, is conservative for some x,€ R*, then P,
is conservative for all x € R* and the process {X(t): t = O} has the strong Feller
property.

Proor. Since x — P,({ < oo) is harmonic, the first assertion follows. To
prove the second let f be a real valued bounded Borel measurable function on
R*. Assume P, is conservative for all x ¢ R*. Fix x, in R*. One has

27 EAX() — E.x fXO) = I§ Xie ooy so [(XO))[Pe(dw) — P, y(do)]]

= 2”f”[1 - Px,N(TB(O:N) > t)] > 0 ’
where ||f|] = sup |f(x)|]. Choose ¢ > 0 and fix N such that the last expression in
(2.7) is less than ¢/3 if x = x,. Since x — P, y(Tgq.y) > ?) is continuous on R*
(by Lemma 2.2), and x — E, , f(X(t)) is continuous (since X is strongly Feller
under P, y, x € R¥), there exists § > 0 such that if |[x — x| < d, then

IEZf(X(t)) - Ezof(X(t))l = 2“f“[1 - Px,N(TB(O:N) > t) +1 - on,N(TB(o:N) > t)]
+ |Ez,N (X(t)) - Ezo,Nf(X(t))l <e. D
LEMMA 2.6. Assume (A) holds, U is a bounded open subset of R*. Then
sup,.p E.(ty) < oo.
Proor. Let N besuch that B0: N) D> U. Then E,t, = E, y7, for x e U. Fix
t, > 0. Since Q' = {we Q': w(0) = x} is the support of P, v, P, y(t; > 1)) <
P, v(|X(t)] < N) < 1 for all xe U. Since x — P, y(|X(t,)| < N) is continuous,
sup,.z P, v(ty > t;) < 1. Now use the inequality (see, e.g., Dynkin (1965),
Volume I, Lemma 4.3, page 111)

t
E, ,t, < ¢ .
= I — super Px,N(Tu > tO) D

Finally, a nonzero measure m on the Borel sigma-field £z* of R* is said to be
invariant for the Markov process P,, x € R¥, if for all Be &%* and all ¢t > 0,

(2.10) m(B) = § e P.({X() € BYm(dx) .
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We shall henceforth refer to P,, x € R¥, or to the coordinate process under
P,, x € R¥, as the diffusion with generator L.

3. Criteria for recurrence and transience. Assume (A) holds, and consider

the diffusion X (under P,, x € R¥) with generator L. A point x in R* is said to be
recurrent for this diffusion if given any ¢ > 0

(3.1 P,(X(t) € B(x: ¢) for a sequence of #’s increasing to infinity) = 1,

where B(x: ¢) = {y: |y — x| < ¢}. It follows that x is a recurrent point if and
only if for every ¢ > 0 and every a.s. (P,) finite random variable ¢

(3.2) P (X(f)e B(x:¢) forsome t>7)=1.
A point x is transient if
(3.3) P(X(H)) > o0 as t—>o00)=1.

If all points of a diffusion are recurrent, the diffusion itself is called recurrent.
If all points of a diffusion are transient, the diffusion is called transient. It will
be presently shown (see Theorem 3.2) that if (A) holds every diffusion is either
recurrent or transient. Since different authors often use different definitions of
recurrence and transience (see, e.g., Maruyama and Tanaka (1959), Khas’minskii

(1960), and Friedman (1973)), it is useful to show that these definitons are
equivalent.

PROPOSITION 3.1. Assume that (A) holds. The following statements are equivalent.

(a) The diffusion is recurrent.

(b) P, (X(t) e U for some t = 0) = 1 for all x € R* and all nonempty open U.

(c) There exists a compact set K of R* such that P, (X(t) € K for some t = 0) = 1
for all x € R*.

(d) P,(X(t) e U for a sequence of t’s increasing to infinity) = 1 for all x ¢ R* and
all nonempty open U.

(e) There exist a point z in R*, a pair of numbers ry, r,, 0 < r, < r,, and a point
ye€dB(z:r) ={y': |y — z| = r} such that P,(tge,.,, < c0) = 1.

Proor. The implications (b) = (c), (b) = (e), (d) = (a), are obvious. We
prove (2) = (b), (b) = (d), (¢) = (b), (¢) = (¢)-

(a) = (b). Assume (a), x € R*, U nonempty open, x¢ U. Let B be an open
ball such that B c U. Choose ¢ > 0 such that B(x:¢) N B=¢. Let U, be a
bounded open set containing B(x: ¢) U B. Define 7, = 7, 9, = inf {t > 75_,:
X(t) € 0B(x: €)}, pyyy = inf{t > 9y X(1) €U} (i = 1,2, -..). By Lemma 2.6
and recurrence of x, »;’s are a.s. (P,) finite stopping times. Consider the events
A, = {X(t) € B for some 1 € [0, 7,)}, A, = {X(f) € B for some 7€ [1y_;, 7,)} (i =

1,2, --+). Since y— P,(t5 < Tzzm) is positive and continuous on B° n B(x: ¢)’
(Lemma 2.4 (b)).

(3.4) 0= infye,-,l,1 P(t5. < Tgzme) > 0.
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Using the strong Markov property and induction on n one obtains P,([i,4,) <
(1 — 06)*. Thus

(3.5) P,(X(t)e U forno t = 0) < P,(X(f)e B for no 1 = 0)
< lim,_. P,(()le AS) = 0.

(b) = (d). Let x e R¥, U nonempty open, B an open ball and ¢ > 0 such that
BnB(x:e)=¢ and Bc U. Define 6, = inf{t > 0: X() € B(x: ¢)}, 0, =
inf{t > 6,_,: X(f)edB}, 0,,,=inf{t > 0,: X(t)edB(x:¢)} (i=1,2,...).
By (b) and the strong Markov property, 6,’s are a.s. (P,) finite. Also, 6, 1 oo
a.s. (P,) asi 1 oo; otherwise, with positive P, probability the sequences {X(0,,_,):
i=1,2,...}and {X(0,): i = 1,2, ---} converge to a common limit, which is
impossible since 9B(x: ¢) and 0B are disjoint.

() = (b). Let K be as in (c), B an arbitrary open ball, x ¢ R*. Let U be an
open ball containing B U K. Define 5’ = 7., 9}, = inf {t > n},_,: X(t) € 0U},
M = Inf{t > 930 X(f) e K} (i = 1,2, - --). By(c), the strong Markov property
and Lemma 2.6, the 7,”’s are a.s. (P,) finite. Now proceed as in the proof of
(a) = (b), i.e., define 4,’s with 7,”’s in place of 7,’s, and define 6 = inf,,, P,(4));
by Lemma 2.4 (b), 6 > 0;and P,(X(t) e Bfornot = 0) < P,(N%,4°) < (1 —d)"
for all n.

(¢) = (¢). Follows from Lemma 2.4 (a) and the maximum principle (Lemma
2.3(b)), if one takes K = B(z: r). []

The next result establishes a dichotomy in the class of all diffusions for which
(A) holds.

THEOREM 3.2. Assume (A) holds. (a) If there exists a recurrent point, then the
diffusion is recurrent. (b) If there exists no recurrent point, then the diffusion is
transient.

ProoF. (a) Suppose y is a recurrent point. Choose r,, r, (0 < r, < r;), z such
that |y — z| = r,. It has been shown in the course of the proof of Proposition
3.1 ((a) = (b), (3.5)) that P,(X(t) € 0B(z: r,) for some t > 0) = P,(X(f) e B(z: r,)
for some ¢ > 0) = 1. By Proposition 3.1 (e), the diffusion is recurrent.

(b) Suppose no point in R is recurrent. Fix x ¢ R*. Let r be an arbitrary
positive number such that r > |x|. By Proposition 3.1 (e) and the maximum
principle (Lemma 2.3 (b)), for each r, > r one has

6,.1 = Supm=rl Py(Tmc < OO) < 1.
Define 7, = inf{t = 0: X(/)€ dB(0: r,)}, 7, = inf{t > n,_;: X(f) e BO: r)},

Daier = Inf{t > 1y 0 X(£) € 0BO0: 1)} (i=1,2,...). By Lemma 2.6 and the
strong Markov property, for alli > 1

P, (X(r) € B(0: r) for some sequence of #’s increasing to infinity)

(3.6) S P(7541 < 0) = Ez(X(m_loo)PX(m_1>(T)3(TF>‘° < o))
é 5r1Pz(”2i~l < OO) é ct é 5:1 .
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Hence the left side of (3.6) is zero and
P,(liminf,__ |X(1)] >r)=1.
Since this holds for all r > 0, the proof is complete. []

The next theorem improves and extends a result of Friedman (1973). The
criteria for recurrence and transience derived in Theorem 3.3 were announced
without proof earlier by Khas’minskii (1960) (Theorem II of his Supplement)
under the additional assumption that the coefficients of L are thrice continuously
differentiable. To prove it we introduce some notation.

Let F be a real-valued twice continuously differentiable function on (0, co0).
Let z e R*. Consider the function

(3.7 f(x) = F(|x — z|) xeR¥, |x—12>0.
A straightforward differentiation yields

of(x) _ (xi — 2) F'(x — z]),

ox; |x — z|

(3.8) ofx) _ (i —z) Fr(jx — 2)) — (x; — z,)* Filx — 7)) + Pl — )

ox? |x — z|? [x — z |x — 2|
f(x) _ (e — 2)(x; — 25) F'(lx — z|) — (X = 2)(x; — 25) F'(]x — z|)
0x; 0x; |x — z|? |x — zJ?

i#j,lx—12>0.
Now fix r, > 0 and write x’ = x — z and
A() = Ty @@ + DX/ WP, B(X) = D aux + 2).

(9) € =2Thax/b(d +2, A = sup, A= SEIEEL),

az(r) = Sup!x'l=r Az(x) ’

B.(r) = inf,, _, B(x) — f:((xx))+ Cx)

a) = info AW, L0 =520, 10 =,

It is easy to check that

(10 20f) = AWF(x — 2 + EE=D 1809 — A + 0]
THEOREM 3.3. Assume (A) holds. (a) If for some r,> 0 and z

(3.11) 2 exp{—I(r}dr = oo,

then the diffusion with generator L is recurrent. (b) If for some r, > 0 and z

(3.12) mexp{—L(r)}dr < oo,

then the diffusion with generator L is transient.
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Proor. (a) Assume (3.11) holds. Define
(3.13)  F()= —\nexp(—L)du, f)=F(x—z) |x—z=r.
Let x be such that r = |x — z| > r,. Define stopping times
(3.14) p=inf{t = 0: X(¢) € 0B(z: )}, Py =0 A Tpum -

By Theorem 2.1, and optional sampling (see Nevue (1965), page 142),
S(X(r A py)) — §&° 78 LA(X(s)) ds (t = 0) is a P,-martingale, provided [x — z| < N.
Hence, forr = |x — z| > r,,

2E, F(IX(t A 7y) — ) — 2F(r)
(3.15) = E, {§' 2Lf(X(s)) ds
2 £ 5 AX(9) [ P06 — 2+ SO 80X — 2) [
-0,

by the relations

(3.16) Fy<0,  F'(u)+ 717 F(u)B.(x) = 0 Wz,

Letting 7 1 co in (3.15) and remembering that 7, < co a.s. (P,), one obtains
(3.17) —E,F(X(7) — 2) < —F(r) = {7, exp{—L(w)} du.

On evaluating the left side of (3.17) one has

(3.18) P9 > o) § exp{— L)} du < {7, exp{—L(w)} du .

Letting N 7 oo one gets

e Vs, exp{—L(w)}du _
(3.19) P.(n = o) = limy,., Yexp{—L(w)}du 0

Hence P,(7 < oo) = 1 and the diffusion is recurrent by Proposition 3.1 (e).
(b) Assume (3.12) holds. Define

G() =\, exp(—L@)du, g =G(x—z2) |x—z/=r,.

Since G'(x) > 0 and G”(u) + (1/u)G'(u)B,(¥) = O for u = r,, one obtains, as
above,

(3.20) E,G(|X(ny) — 7I) — G(|x — 2)) = 0

or,

(3:21) Py > Tauu) 1 exp{— LW} du = {7 exp{—L(w)} du .
Hence, letting N 1 oo,

(3.22) P,y = oo) = {7 exp(—L(W)} du/{5, exp{—L(w)}du > 0.

Hence the diffusion is not recurrent (by Proposition 3.1) and therefore, it is
transient (by Theorem 3.2). []
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A recurrent diffusion admits a unique (up to a constant multiple) sigma finite
invariant measure. This fact was proved by Maruyama and Tanaka (1959) in
amore abstract setting and by Khas’minskii (1960). Khas’minskii’s proof applies
immediately to the present context. The following fact, which is easily deduced
from Theorem 3.3 of Khas’minskii (1960) in conjunction with Lemma 2.6 and
Proposition 3.1, will be needed.

LEMMA 3.4. Assume (A) holds. (a) The diffusion is recurrent and admits a finite
invariant measure if there exists z in R* such that

(3‘23) SupveBB(z:rl) Ey(‘l'mc) < o0

for some r,, r, satisfying 0 < ry < r,. (b) If there exist some z in R* and positive
numbers ry, r, (0 < r, < r,) satisfying

(3.24) Ev(Tmc) = o0
for all y e 0B(z: r)), then there does not exist a finite invariant measure.

Our final result is

THEOREM 3.5. Assume (A) holds. (a) The diffusion with generator L is recurrent
and admits a finite invariant measure (unique up to a constant multiple) if there exists
z in R* and r, > 0 such that

(3.25) 7 exp{—/L(u)}du = o,
(3.26) - giu) exp{L(u)}du < oo .

(b) If there exist z in R* and r, > O such that (3.25) holds and

N T s i A
(3.27) lim[v_.eo o exp{—IZ(s)A}’(S’rn [exp {IZ(u)}/az(u)] dll) ds —
X exp{—L(u)} du
then the recurrent diffusion does not admit a finite invariant measure.

ProoF. (a) Assume (3.25), (3.26). Define

(3.28) F(r) = i, exp{—L(9)} 5z giu) expll)du)ds .
Then
(3.29) F(r) = —exp{—I,(n)} §7 }u) exp{L,(w) du < 0,
F(r) = __Bzﬁ_’) F/(r) + 2717) r=r,.
Let
f) = F(x — 7)) =z =7,

Then, using (3.29),
(3.30) 2Lf(x) = A()fe(lx — 2) = 1 =2z
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If 5, y, are as in (3.14) then, as in the proof of Theorem 3.3,
2E, [(1X(t A my) — 2]) — 2F(]x — 2|)
(3.31) 2 E, {8 2Lf(X(s)) ds
= E(t A ny) h=|x—z<N.
First letting ¢ 7 co in (3.31) and then letting N | oo, one has
(3.32) Ex(Tmc) = Ezﬂ < —2F(|X — ZI) s

since 7, 1 7 a.s. (P,) as N 1 co (due to recurrence). Now apply Lemma 3.4 (a).
(b) Assume (3.25), (3.27) hold. Define

(3.33) G(r) = 55, exp{— L)} (13, ﬁ exp{[(u)} du ) ds
9(x) = G(jx — 2 2z,

Since G'(r) = 0and G”(r) = —(1/r)B,(r)G'(r) + 1/&,(r), 2Lg(x) < 1. Therefore,
one has

(3:34) E(t N ny) 2 2E,G(IX(r A 7y) — 2]) — 2G(jx — z]) .
Letting # T oo in (3.34) one gets
(3.35) E.(ny) 2 2E,G(|X(7) — 2]) — 2G(|x — 2|)

= 2P,;(TB(2:N) < 77)G(N) -_ 2G(|X _ z|) .
Let N1 co to obtain, using (3.21),

E(7) = 2lim,__ Jro XP{—L(W)} du
¥ exp{—I(u)} du

The proof is now complete by Lemma 3.4 (b). []

- G(N) — 2G(|x — 2]) = oo .

Following the terminology used for Markov chains one may call a point x in R
positive recurrent for the diffusion with generator L if for every r,, r, (0 < r, < 1)
one has E (6(x; r,, r,)) < oo, where

0(x; rop 1) = inf{t > v, 0 |X(t) — x| = r}}.

If x is recurrent but not positive recurrent then x is called null recurrent. If all
points in R* are positive (null) recurrent, the diffusion is called positive (respec-
tively, null) recurrent. In this terminology, Theorem 3.5 provides criteria for
positive and null recurrence. The criterion for positive recurrence extends a
criterion announced by Khas’minskii (1960; Theorem III of his Supplement) to
more general coefficients. The criterion for null recurrence given here is com-
parable in strength to Khas’minskii’s (1960; Theorem III of Supplement), when
specialized to Khas’minskii’s hypothesis; however, neither implies the other.
An indication of the sensitivity of the criteria provided by Theorems 3.3, 3.5
are afforded by the fact that if for some z the functions A,(x), B(x) + C,(z), defined
by (3.10), are functions of |x'| for sufficiently large |x'|, then the criteria are exact.
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For in this case one may delete the “bars” and assert: (i) the diffusion is recurrent
if and only if S:‘; exp{—1I,(u)} du = oo for some r, > 0; (ii) a recurrent diffusion
is positive or null according as {7 [exp{/(u)}/a.(4)] du is finite or infinite.

4. Some remarks. This section is devoted to some miscellaneous comments
on the material in the preceding sections.

First, the definition of transience used in this article leaves open the possibility
that a transient diffusion may be nonconservative. In order to restrict oneself
to conservative diffusions one may use the following criterion for explosion
essentially proved by McKean (1969), pages 102-104, and earlier stated by
Khas’minskii (1960) (Theorem I of his Supplement), extending a one-dimen-
sional result of Feller: Assume that, in addition to (A), the coefficients a,;, b, are
Lipschitzian on compacts. (a) If, for some z ¢ R* and some r > 0,

- , 1
(.1 57 exp(— L)} (8 o5

z

exp{,(u)} du) ds = oo,
then the diffusion is conservative. (b) If, for some z € R* and some r > 0,

(4.2) i3 exp{—L()} (§:

exp{L,(1)) du> ds < oo,

a.(4)

z

then the diffusion is almost surely explosive, i.e., P(§ < oo) = 1 for all x e R*.

Secondly, the problem of studying diffusions (in our sense) on those open
subsets of R* which are C*-diffeomorphic to R* is easily reduced to the investiga-
tion on R* in view of Itd’s lemma (see McKean (1969)) which enables one to
compute “drift” and “diffusion” coefficients of the transformed process, at least
when the corresponding process on R* has coefficients which are Lipschitzian
on compacts.

Finally, suppose that the coefficients of L satisfy (A) and are Holder continuous
oncompacts. Usingstandard results from the theory of elliptic partial differential
equations one can show that if z is a positive recurrent point then the function
u(y) = E,(T5mmye) is continuous on B(z: r,)° for every r, > 0 (indeed, it is twice
differentiable and satisfies Lu = —1). From the uniqueness (up to a constant
multiple) of the invariant measure and Lemma 3.4 it then follows that all points
in R* are positive recurrent. There is then a complete classification of diffusions
into transient, null recurrent, and positive recurrent ones.
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