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EXTREMES OF MOVING AVERAGES OF STABLE
PROCESSES

By HoLGER ROOTZEN!
University of Lund and University of North Carolina at Chapel Hill

In this paper we study extremes of non-normal stable moving average
processes, i.e., of stochastic processes of the form X(¢) = 3 a(2 — #)Z(2) or
X(0) = [a(2 — t)dZ(2), where Z(2) is stable with index a < 2. The extremes
are described as a marked point process, consisting of the point process of
(separated) exceedances of a level together with marks associated with the
points, a mark being the normalized sample path of X{(s) around an ex-
ceedance. Itis proved that this marked point process converges in distribu-
tion as the level increases to infinity. The limiting distribution is that of
a Poisson process with independent marks which have random heights but
otherwise are deterministic. As a byproduct of the proof for the con-
tinuous-time case, a result on sample path continuity of stable processes
is obtained.

1. Introduction. A distribution is stable (7, @, B) if it has the characteristic
function

(1.1) ¢(u) = exp{—y=(ul*(1 — ifh(u, a)u/lu])},

with0 < 7,0 < a <2, (8| < 1 and with A(u, a) = tan (ra/2) for a + 1, h(u, 1) =
2n~'log |u|. Here y is a scale parameter, a is the index, and 8 is the symmetry
parameter of the stable distribution. If 8 = 0, then the distribution is symmetric,
while the distribution is said to be completely asymmetric if |8| = 1 and a < 2.

A stochastic process {X(t); t € T} is stable with index a if forn = 1,2, ... and
for arbitrary real numbers a,, ---, a, and ¢, ..., ¢, e T, the random variable
a X(t) + --- + a,X(t,) is stable with index a. In particular, as can be seen

from (1.1), a collection of independent stable random variables with index «a is
a stable process.

In this paper, further use of the linear structure is made by restricting attention
to the subclass consisting of moving averages, i.e., to stationary processes of the
form X(t) = X, a(2 — t)Z(4), where {Z()}7._.. is an independent, stationary
stable sequence, or of the form X(f) = § a(4 — ) dZ(2) where {Z(2); —o0 <
4 < oo} has independent, stationary stable increments. If a = 2 the process is
normal, and it can be represented as a moving average iff its spectral distribution
is absolutely continuous. Presently no simple characterization of the class of
moving averages of stable processes is known for a < 2. Of course normal
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processes are extensively analyzed but, partly because of the common linear
structure, also stable processes with @ < 2 constitute a class of probability mod-
els that is amenable to analysis.

The subject of the present study is the asymptotic distribution of extremes
of moving averages of stable processes with @ < 2. As can be seen from, e.g.,
Leadbetter et al. (1976), a suitable framework for dealing with extremes of
stationary processes is the theory of point processes as given in, e.g., Kallenberg
(1975) used to study the process of exceedances of a high level. Here we will
go one step further and adjoin a mark to each point in the process of exceedances,
the mark being the entire sample path of the process, normalized and centered
at (a point close to) the upcrossing. The main results are that both when X{(r)
has discrete parameter (or “time”) and when X(f) has continuous parameter,
the marked point process converges in distribution. The limiting distribution
is that of a Poisson process (possibly with multiple points) with independent
marks that are distributed as a(—¢) multiplied by a certain random variable.

One of the main differences between the normal distribution (stable with a = 2)
and stable distributions with « < 2 is that the tails of the latter decrease much
slower. This leads to a radically different behavior of extremes. For the normal
distribution the tails are of the order e"“/“/x, while for stable distributions with
a < 2 the tails decrease as x~%. This affects extremes of moving averages in
two different ‘'ways. To fix ideas, consider, e.g., maxima of a process X(¢) =
2% a(4A — t)Z(2) with discrete parameter. First, extremes increase much slower
when @ = 2 than when a < 2, viz. as (log n)* compared with n”*. Secondly,
when the independent sequence {Z(4)} is normal, many of the Z(2)’s, 0 < 2 < n,
will be almost as large as the largest one, and X(¢) will be large when many
rather large Z(4)’s are added. This entails that the limiting distribution of M, =
max,,., X(f) only depends on 3] a(4)’ and that it is the same as if {X(7)} were
an independent sequence with the same marginal distributions. On the other
hand, when a < 2 the maximum of Z(4) will be much larger than the typical
values, and X(r) will be large when one very large Z(2) is multiplied by a large
a(4). In this case the limiting distribution of M, depends on max_,,,.., a(4) and
On min_,, ;<. @(4) and is in general not the same as if X(¢) were an independent
sequence with the same marginals.

In an earlier paper (Rootzén (1974)), the limiting distribution of maxima of
moving averages of symmetric stable sequences with @ < 2 was obtained, but
apart from that there do not seem to be any results published on extremes of
stationary stable processes with a < 2.

The plan of this paper is as follows. Section 2 deals with convergence in
distribution of marked point processes. In Section 3 rather complete asymptotic
results on extremes of moving averages of stable sequences are obtained. Section
4 contains preliminaries concerning moving averages of continuous parameter
stable processes. In particular some conditions that ensure sample path con-
tinuity are found, which may be of independent interest. Finally, in Section 5
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results for continuous parameter processes corresponding to those of Section 3
are established for @ # 1, under some restrictions on a(4).

2. Convergence in distribution of marked point processes. We are interested
in the times 0 < ¢, < 1, < - .- of occurrence of extreme values of a stochastic
process {X(#)} and in the behavior of the sample paths of {X(f)} near the t’s,
and will describe them as a marked point process. In this section we introduce
some notation and develop techniques needed in the remaining sections to prove
convergence in distribution of marked point processes. Unfortunately the nota-
tion is somewhat cumbersome, but nevertheless we think it is well warranted,
considering the completeness of results it makes possible.

Write .4 for the space of integer-valued and locally finite Borel measures on
R* and define a metric on .#"in the following way: let & = {f;}:2, be a se-
quence of functionsin C, = {f : R* — R*; fis continuous with compact support}
such that any fe C, can be uniformly approximated by functions in .. For
frv e A7 put p(pe, v) = N2, 270y(t, v), where py(z, v) = min (1, |§ fidpe — § fidv]).
Then p is a metric on ./ that generates the topology of vague convergence
(¢, € .4 converges vaguely to pe S if § fdu, — § fdp forall fe C,); see, e.g.,
Bauer (1972), page241. A point process in R* is defined to be a (Borel measurable)
random variable with values in (_#7, p). Assoon as we have (Borel measurable)
random variables in a metric space we may of course consider convergence in
distribution, using the theory of convergence in distribution in metric spaces
as given in, e.g., Billingsley (1968). For further information on convergence in
distribution of point processes see [7]. We regard the times 0 < ¢, < £, < - -
of occurrence of extremes of { X(7)} as a point process N by putting N(B) = #{t, € B}
for any Borel set B C R*.

With each of the ¢,’s we associate a mark Y;, where Y, is the entire sample
path of {X(r)}, normalized and centered to show the behavior close to ;. If
{X(?)} is a discrete parameter process, Y; is a random variable in a space R* =
{(---,x_;, X, Xy, -+ 2 );x;€R, i =0, +1,...}. Weconsider R~ as a metric space
with the metric d(x, y) = Y o _.. 27'%9,(x, y) that generates the product topology,
where d,(x, y) = min (3, |x; — y|). If X(¢) has continuous parameter we will
impose conditions that make Y, a random variable in D(— oo, o), the space of
functions on (— oo, oo) which are right continuous and have left-hand limits.
On D(— o0, oo) we use a slight modification of the metric given by Lindvall
(1973). Since there is no risk of confusion we will use the same notation as for
the metric on R*. Thus for x, y e D(— o0, o0) we let d(x, y) = 252 _. 2"d,(x, y)
where d,(x, y) = min (3, k(c; x, ¢; y)) and A(c;x, ¢, y) is the quantity given on pages
113-115 of Lindvall’s paper, modified to D(— oo, oo) instead of D(0, co) in the
way proposed on page 121. Thus h(c;x, ¢, y) = d/(g;x o $, g; y o $), where ¢(7) =
log #(1 — t)~*, where g, is the function which is one on [—i, i], zeroon [ —i — 1,
i 4+ 1]* and linear in between, and where d; is the metric defined on page 110
of the cited reference.
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The marked point process is the vector » = (N, Y}, Y,, --.) with values in
S=.J"XR>XR*>X -..(orinS = _4"X D(—o0,0) X D(—o00,0) X ---)
which we again consider as a metric space given a product metric d(x, y) =
2o 27'd(x, y), where for x = (v, x,x,, ---) and y = (v, y;, 5, ---) We put
dy(x, y) = p(v, p) and dy(x, y) = 6(x;, y,), i = 1. Our aim is to prove convergence
in distribution of marked point processes, and to this end we need the following
simple criteria, which we state as lemmas for easy reference.

LemMma 2.1.2 Letp, = (N,, Y., Yo, ---)and = (N, Y, Y,, ---) be random
variables in the product space (S, d). Suppose that N,, Y,,, Y,,, - - - are independent
for each n and that N, Y,, Y,, - - . are independent. Then v, —, 7 if (and only if)
N,—;Nand Y,,—, Y, i = 1.

PRrooF. Since S is a product of separable spaces this follows as on page 21 of

(31 O

Lemma 2.2, Let 3, = (N5 YE,YE, ...), n =1, k = 1, be random variables
in (S, d). Suppose that fork = 1, 5,* —, n* as n — oo and that p* —,nas k — oo.
Suppose further that

(2.1) lim,_,, lim sup,_... P(di(n.*, 7,) >¢) =0, Ve>0,i=0,1,....
Then 3, —, 7 as n — oo.

Proof. For given ¢ > 0 choose i to make 27* < ¢/2 and thus 3 7_,,,27%d,(»,",
7.) < €/2. Then

P(d(n.*, 1) > ) = 2ij-0 P(di(na, 1) > €/(2( + 1))
and by (2.1) we thus have
lim,_,, lim sup,_., P(d(7,*, 5,) >¢) =0, Ve>0,
which by Theorem 4.2 of [3] proves the lemma. []

For i = 1, d(%,*, n,) = 6(Y%,;,Y,;) and repeating the above argument once

ni?

more we see that (2.1) holds for i = 1 if
(2.2) lim,_,, limsup, .. P(0;,(Y%, Y,)) >¢) =0, Ve>0,j=1.
In the discrete-parameter case (2.2) is easy to check, but when the parameter
is continuous further simplification is needed.
LEMMA 2.3. Suppose that for each i = 1 there are random variables {e,*} with
lim,_,, limsup,_., P(le,*| > x) = 0, ¥ x > 0, and such that
(2.3) lim,_, limsup,_., P(SUp_,<,<; | Y,i(t) — YE(t + ¢,5)| > x) =0,
Vx>0,/>0,
2 The results of this section are formulated in terms of a discrete parameter, n, which tends to

infinity. They of course remain valid if the parameter tends to infinity in a continuous manner,
and they will be used accordingly in Section 5.
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and that furthermore lim,_ limsup, .. P(sup_,c,<; |Y,(8)] > u) = 0,VI> 0. Then
(2.2) holds and thus (2.1), fori = 1.

PrROOF. Let ¢ be a real number with |¢|] < 1 and define a time transformation
At)y={1 — e+ e¢/t}*, te[0, 1]. Then 2(0) =0, A(1) = 1 and 2 is strictly
increasing, so

0,(y,2) =4dy)(9;y°0,9;20 ¢)
< SUPugess [9,(N((1) — (AN 2(BAN)] + 5(2)
where s(4) = sup,.,, |log {((f) — A(s))/(t — s)}|. Straightforward computations
show that s(4) < |¢|]. Further ¢(A(¢(s))) = 5 + ¢, so
SUPosesn |95(B(NN((1)) — 9,(S(A(1))=(S(A())]
= SUP_wcsce |95(SV(8) — 9,(5 + €)2(s + ¢)]
= SUP_; 1gesih1 [¥(s) — z(s + ¢)| + SUP_;_2gsgj+2 ley(s)]
by the definition of g,. Hence

0;(y> 2) < SUP_j_agasia {IV(1) — 2(s + €)l + |ey(9)]} + [e]

and the lemma follows by routine calculations. []

LEMMA 2.4, Let O <tk < tk, < - .- be the atoms (repeated according to their

multiplicities) of N,* and similarly let 0 < t,, < t,, < --- be the atoms of N,.
Suppose that

(2.4) lim,_. limsup, . P(|tt, — 1, >¢) =0, Ve>0,i=12, .-

and that in addition N,* —, N* as n — oo and that N* —, Nasn — oco. Then (2.1)
holds for i = 0.

PROOF. As above, it is enough to prove
(2.5) P = lim,__ limsup,_., P(o;(N,*, N,) > ¢) = 0,
Ve>0,j=1,2,...
where p,(N,*, N,) < |{ f;dN,* — § f,dN,| with f; ¢ C,. Suppose that the support
of f, is contained in [0, T]. For d > O there isa K with P(N([0, T + 1]) > K) < ¢
and thus lim sup,_., P(N¥([0, T]) > K) < ¢ and lim sup,_,, lim sup,,_., P(N,k([O,
T)]) > K) < 6. Furthermore take a step function g(¢f) = ;™' a l(7, < t < Tiyy)s
with0 < 7, < - -+ <7, < Tthatapproximates f; uniformly, with sup,, | f;(7) —
9(1)] < ¢/(2K). Letting0 < 1, < 1, £ - - - be the atoms of N, we assume without
loss of generality that
(2.6) P(ti:Tj)ZO, j:l,--~,m,i21.
On the set {N,*([0, T]) < K, N,([0, T]) < K} we have

1§ £, dN- — § f;dN,] < |§ gdN,* — § g dN,| + 2Ke[(2K) .
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Hence

P < limsup,_,, limsup,_., {P(N,%([0, T]) > K) + P(N,([0,T]) > K)
+ P(|{ gdN,* — { gdN,| > 0)} < 25,

since P(|{ g dN,* — { gdN,| > 0) — 0 by (2.6) and the hypothesis of the lemma
However, 6 > 0 is arbitrary, so (2.5) follows. []

Finally, it should perhaps be stressed that the convergence 7, —, 7 that is to
be proved in the following sections only says something about the sample paths
near extremes: namely, Ym. —, Y; where Y,;, Y, are random variables in (R>, 9)
if and only if (Y, (—k), - - -, Y,(k)) =4 (Y(—k), - - -, Yy(k))as n — oo, for each
k = 1. Similarly, since the limits of Y,; € D(— o0, co) which we obtain are
continuous, the convergence in D(—oo, oo) is equivalent to convergence in
D(—T,T) for each T > 0.

3. Extremes in discrete time. Let {Z(4)}7._., be a sequence of independent
stable (1, a, §) random variables. It is immediate that }3>_ a(4)Z(2) converges
in distribution if and only if

(3.1) 1% —w]a(A)]|* < oo and in addition, for a=1, B8=%£0,
|25- - a(2) log |a(2)]] < oo .

Moreover, if (3.1) is satisfied then, since the Z(4)’s are independent, 3> a(1)Z(2)
converges with probability one also. The limiting distribution is stable with
index a, scale parameter (%, |a(4)|*)/* and with symmetry parameter
B 2% {at(A)* — a (4)*}/ 2% |a(4)|*, where a*(1) = max (0, a(4)) and a=(2) =
max (0, —a(2)). Further, if a« = 1 the distribution is translated by an amount
— B2zt 31, a(4) log |a(2)|.

Given {a(2)};._. satisfying (3.1) a moving average process {X(7)}=_,, is ob-
tained by putting X(7) = Y 5. _. a(2 — 1)Z(4). Let x > 0 be fixed, take a sequence
{A(n)}z_, with A(n) 1 co and A(n)/n — 0 but otherwise arbitrary, and define the sep-
arated exceedances of xn'/* recursively by putting ¢,, = inf {r = h(n); X(1) > xn'/*}
and t,, = inf{t > ¢, ,_, + h(n); X(t) > xn**}, for i = 2. When using separated
exceedances we count several exceedances which are ““a fixed distance apart” as
one event only. The reason for this is that for large n the exceedances of the
level xn* will come in small clusters. Each cluster is caused by one very large
variable Z(1). Therefore extremes belonging to the same cluster will be strong-
ly dependent, whereas extremes belonging to different clusters will be almost
independent. Furthermore, the distance between different clusters is of the
magnitude n, and the number of exceedances in each cluster is asymptotically
independent of n. By considering separated exceedances we will asymptotically
get precisely one representative from each cluster.

At the end of the section, also ordinary exceedances will be considered. The
time-normalized point process N,, of separated exceedances is defined by N, (B)
#{t.:i/n € B} for Borel sets B — R*. Further, for a given sequence {r,}7, the
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mark Y,, at exceedance no. i is defined as
Y,(t) = X(t + 7,;)/nV*, t=0,+1, ...,

and we then have a marked point process », = (N,, Y,;, Y3, - - ).

In order to find the limiting distribution of 7, it is convenient to consider
completely asymmetric processes first. Let ¢, = z~'['(a)sin (az/2) and put
A = max_, ;.. a*(2). Further let Y, have the distribution of the vector
(---,a(1)Z, a(0)Z, a(—1)Z, ---) in R=, where Z is a random variable with
distribution function F(z) = 1 — x*4=°z7%, z = xA~'. Then the limiting dis-
tribution is that of

(N, Y, Y,, ---) where the components are independent, N
(3.2) is a Poisson process with intensity x = 2c,4*x~* and where
the Y,’s have the distribution given above.

LeMMA 3.1. Suppose that {Z(2)}*., are independent and stable (1, a, 1), that
{a(2)}=.. satisfies (3.1) with A = max__ ;... a(4) > 0, and that X(t) = Y=, a(4 —
t)Z(A). Then there are time points {t,;;n = 1,i = 1} with {t,, — 7}z, tight for
each i = 1 (i.e., lim,_, limsup,_, P(|t,, — 7, > k) = 0,i = 1) such that if 3,
is the marked point process of separated exceedances of xn'* defined above, then
N —q¢ 7 With the distribution of 7 given by (3.2).

REMARK. It would seem more natural to center the marks at the z,,’s instead
of at some 7,;’s which are not explicitly defined in terms of X(¢), but unfortunately
the limiting distribution then becomes much more complicated. However, using
the entire observed structure of the sample path near extremes it is possible to
find the centering. For instance, if the maximum of {a(2)} is unique then we
may take r,; as the time point when {X(¢); t € [¢,,, t,; + h(n)]} first assumes its
maximum. (The validity of this claim is verified at the end of the proof of the
lemma.)

Proor. The essential facts we will use are that X is a moving average and
the following simple estimates of the tails of F,,, the stable (1, a, §) distribution
(see Bergstrom (1953)):

(3.3) 1 — Fo(2) ~ 2,27 as z— oo
F,(z) = o(]z|™) as z— —oo
(where f ~ g means f = g(1 + o(1))) and
(3:4) Fu®) + (1 = Ful2)) < ko2~ s 2>0

for some constant k,,.

Define 0 < 7, < 7,5, < .- - as the times when Z(2) > xA~'n"*, put N,/(B) =
#{,./n € B} for Borel sets B C R*, and let Y (t) = Z(z,;)/nV* for t = 0 and
Y,(t) = 0 for ¢t 3= 0. Further, let { have the distribution obtained from (3.2)
by putting a(0) = A4, a(4) = 0, 2 0 in the definition of Y;. The first step is
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to prove that for {, = (N,/,Y.,, Y/, --.) we have
(3.5) Cn—a € as n-—oo.

Obviously {, has independent components, so according to Lemma 2.1 it is
sufficient to prove that each of the components converges. From (3.3) we have
P(Z(0) > xA7'n"*) ~ 2¢, A*x*n~?
which by Theorem 3.2 of Leadbetter (1976) proves that N,” —, N. Furthermore,

for z > x4,
P(Y(0) < 2) = 1 — P(Y},(0) > 2)
= 1 — P(Z(0) > n'*z| Z(0) > n"*xA™?)
nx*A-*
nz®

and it follows that Y/, —, Y;’ and thus that (3.5) holds.
The next step is to prove that {r,, — =, }>_ is tight for i > 1, i.e.,

=1— xeg-ozc

~1—

(3.6) lim,_, limsup, .., P(|t,; — 7,;] > k) =0, i=1,2,....

Now, putting 4,; = {|t,; — 7,,| > k}, wehave P(A4,,) < P(A},_,A,;) + P(A, )
(defining A} = Q), and by recursion (3.6) follows if we prove
(3.7) lim,_, limsup, ., P(4%, 4,)=0, i=12,....
Let N be a positive integer, put B, = {r,; > nN} and put C, = {Z(f)e
n'*A=Y(x — 2e, x]for some t € (0, nN)}. Taking x/3 > ¢ > 0 we have, for nsuch
that h(n) > 2k, that
A i aftn < Ths — k}
C {X(t,5) > nVox, Z(t) < nV*xA™* for |t — ¢t | < k,t,, < nN— k}U B,
C {X(t,:) > n'/*x, Z(t) < n*A~Y(x — 2¢) for |t — t,| < k, t,, < nN — k}
uB,uC,.
Let D, be the event that Z(r) < —n"*¢(2k + 1)~(max; a=(4))~* for some ¢
(0, nN), and let E, be the event that there are time points ¢/, 1" (0 <, < nN)
with |t — ¢""| < 2k + land Z(¢'), Z(¢"") > n¥*e(2k + 1)7*4-'. Further introduce
X(1) = Xhtt,,, a(2 — 1)Z(4) and write F, for the event that sup {| X(r) — X, (7)];

A=—k+t

0 < t < nN} exceeds n*®c. Then
{X(t,:) > ntox, Z(t) < n*A™Y(x — 2¢) for |t — 1,,| < k,t,, < nN — k}
C {Xi(ta:) > nV*(x — ¢€), Z(t) = nv“A™Y(x — 2¢) for |t — 1,5 <k,
t,, < nN—k}UF,
cD,VUE,UF,,
where the last inclusion follows from the fact that if D, * occurs, if X(z,;) =
bk a(A)Z(A 4+ t,) > nt¥(x —e),and if Z(2 + t,;) < n*“A~Y(x — 2¢)for |4] < &,
then for at least two values of 2 with |2] < k the summands a*(2)Z(2 + 1)),
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which are not larger than 4Z(1 + t,;), have to exceed n'/*¢(2k + 1)='. It follows
that
(3.8) Ax, f{t. <t,—klcB,UC,UD, UE, UF,.

We proceed to estimate the probabilities of the events in the right-hand side

of (3.8). From (3.5)

P(B,) = P(N,(O,N) < i — 1) — g;},(/‘_;y")i'e-w

as n — oo and, using Boole’s inequality and (3.3),
P(C,) < nNP(Z(0) e n"*A(x — 2, x])
—>N-2.c, A((x — 2¢)™ — x7%)
as n — oo, and similarly
P(D,) < nNP(Z(0) < —nY*¢(2k + 1)"}(max, a=(4))"})—0.
Again by Boole’s inequality and by independence and (3.3) we have
P(E,) < ([nN]2k + )]+ P31, "0 S ¢ <t < 4k + 2,

Z(t") = n¥*e(2k + 1)72A7Y, Z(1") > nV*e(2k + 1)71471})
< ([nNj(2k + 1)] + 1)(2k + 1)(4k + 3){P(Z(0) > n¥'=e(2k + 1)71 A1)
~ ([nN|(2k + 1)] + 1)(2k + 1)(4k + 3){2c,e~*(2k + 1)*A*n~1}
—0

as n — oo. Finally, X(r) — X,(r) is stable with index a and scale parameter
{Zia>w la(2)|°} s0 (3.4) gives
P(F,) < nNP(|X(0) — X,(0)| > ni=e)
nNk, =% 32 5 la(A)|*n~?
ko Ne=® 2 a5 a(A)]"

IA

Il

'Hence, by (3.8),
limsup, .., P(A4F,_{t. < 7, — k})
< Dy U eonw 2, AnN((x — 20)7 — x0) o K, Ne K ()"
soO !
lim,_,, limsup, . P(A},_{t.. < T.. — k})

< min ) jY)j et 4 2, AN((x — 267 — x~°)

and since ¢ > 0 and N are arbitrary (subject to x/3 > ¢ > 0) we get
lim, ., limsup,_, P(A},_{t,. < .. — k})=0.
Similarly, we can show

lim,_ limsup, ., P(A}¥; fr,. < t,—k}) =0,
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the main change of the proof being that in the definition of E, we have to consider
t', t" satisfying |[¢' — ¢'| < h(n) + 2k (instead of |’ — ¢”| < k) and thus have
to use k(n)/n — 0 to prove P(E,) — 0. Now (3.7) and thus (3.6) follows.

To prove the remainder of the theorem, introduce Y#,=(. - ., 0, a(k)Z(z,,), - - -,
a(—k)Z(z,;), 0, --.), put N ) = N,’, and let »,* = (N,*, Y%, Yk, ...). Since the
function that maps {, into 7,* is continuous, (3.5) implies that 7,* —; *, where
7* has the distribution that is obtained from (3.2) by putting a(1) = 0 for |4| > k.
Furthermore it is immediate from Lemma 2.1 that »* —, 7. Thus, by Lemma
2.2, 5, —4 1 follows if we prove that (2.1) holds. The atoms of N,* are ¢, /n,
T/, - -+ and the atoms of N, are t,,/n, t,,/n, - - - and thus, since it follows from
(3.6) that P(|z,;/n — t,;/n| > ¢) >0, as n — oo ¥ ¢ > 0, the hypothesis of Lem-
ma 2.4 is satisfied so (2.1) holds for i = 0. Next, by definition 6,(Y,,, Y%,) <
1Y) = YD) = 1X( + 7)== 2| < X470 = Xl aln ™+
X (j + 70) — a(—J)Z(z,;)|n~V* if j < k. Hence

{0,(Yair Yai) > 2¢} C{IXN(J + 7ai) — a(—j)Z(7ai)l > 0¥/, 7,y < 0N — j — k}
U{tw=nN—j—k}UF,

clt,u=nN—j—k}UE UF,,
and as in the proof of (3.7) we obtain
lim,_, limsup, ., P(6,(Y,; Y%) > 2) =0, Ve>0,j=1,

i.e., that (2.2) holds for i = 1. Since this implies that also (2.1) holds for i > 1,
it completes the proof that 5, —, 7.

Finally, let 7, be the first time when {X(¢); t € [t,;, t,; + A(n)]} assumes its
maximum and suppose that for , satisfying a(4,) = 4 we have min,,; (a(4,) —
a(2)) = 2¢ > 0. To verify the claim of the remark we show that it is then pos-
sible to replace {z,;} by {z}, — 4,} in the statement of the lemma. To do this,
it is sufficient to prove

(3.9) P(t,; — 4 # 7,;) >0 as n— oo.

Let %, be defined from X, () = 3%, ., a(4 — t)Z(4) in the same way as 7}, is
defined from X(r). Now {r}, — 4, # 7.} C {th # th,, vk, — 2, = 7.} U {7k, —
A, # t,;} and for k = |4 we have {z, = ¢k, %, — 4, =7, ) D, UE UF,U
{tni > nN — k — 4, — h(n)} where E,’ is defined in the same way as E, except
that |t — | < 2k 4+ 1 is replaced by |t' — t"| < h(n) + 2k. Furthermore
{ek, — Ay # T} C E,) U {r,, >nN — k — 2, — h(n)} and thus (3.9) follows as
in the proof of (3.8). []

The general result follows rather easily from Lemma 3.1. Recall the nota-
tion 4 = max; a*(4), put a = max, a~(4) and set p' = ¢, A%(1 + B)x=, p' =
c,a*(1 — B)x~=. Further let Z’and Z" be independent with distribution functions
F(z)=1—x*A"(148)"z7*, z =2 x'"A(1+ B)¥*and F(z) = 1 — x*a~*(1 — B)~'z7¢,
7= x7'a(1— B)"* respectivelyand let Y, =(- - -, a(1)Z’, a(0)Z’, a(—1)Z’, - - - ) with
probability p'/(#' + p") and Y, = (..., —a(1)Z", —a(0)Z", —a(—1)Z", - --)
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otherwise. Then the limiting distribution is that of the marked point process

(N, Y, Y,-..) where the components are independent, N
(3.10) is a Poisson process with intensity x = z’ + #” and where
the Y;’s have the distribution given above.

THEOREM 3.2. Let{a(A)}>,, satisfy (3.1) and let { Z(2)}>,, be an independent, stable
(1, a, B) sequence. Suppose that the moving average sequence {X(t)}>,, is given by
X(t) = 2= a(d — t)Z(R). Then there exist {r,} with {t,, — 7}z, tight for each
i = 1, such that 5, —, 7, where 1, is the marked point process of separated exceed-
ances of n**x by {X(t); t = O} and where the distribution of 7 is given by (3.10).

Proor. It is immediate from (1.1) that if X and Y are independent and stable
(1, a, 1) with @ # 1, then ((1 4+ B)/2)V*X — ((1 — B)/2)*Y is stable (1, a, B).
If @ = 1 a constant has to be added to this representation, but since this in-
troduces only trivial complications we assume « + 1 for the remainder of the
proof. Let {Z'(2)}>,, and {Z"(2)}>., be independent stable (1, a, 1) sequences and
pUt X'(1) = X a(A— 1)((1 + B)/2)/*Z'(D) and X"(1) = X a(Z —1)((1 —B)/2)*Z"(3).
Then the stochastic process {X'(f) — X"(1)};Z_.. has the same distribution as
{X(t)}-_.. and since we are interested only in distributional properties, we may
thus consider X’(r) — X"'(¢) instead of X{(r).

Let0 < 7, < 75, < - -+ be the times when {Z'(¢); t = 0} exceeds n*/*4-Y((1 +
B)/2)"V*x and let 0 < 7, < 7)), < .- be the times when {Z''(¢t); t = 0} exceeds
n*qa7((1 — B)/2)~**x. Using {7,,} and {})}, define marked point processes of
separated exceedances of the level n'*x, ,” = (N,/, Y,;, Y, ---) from {X'(¢)}
and 3, = (N,”, Y, Y, --+) from {X"(¢)}. Further let 7/ and " be inde-
pendent and with the distributions obtained from (3.2) by replacing a(4) with
a(A)((1 + B)/2)Y*and with —a(2)((1— B)/2)"~ respectively. From Lemma 3.1 we
have »,’ —, 7 and »,” —, %", and since ,” and 7, are independent, (7,’, 1,”") —,
(7', 7"") (using the product metric on § X §). Let N,=N,” + N,”, let 0 <
Ty < Thy < - -+ be the atoms of N,°, and if 7, = 7}, for some k putY?, =Y/,
otherwise put Y9, = Y, for the k that satisfies z,; = 7;,. Then the function
that maps (,’, 5,”’) into 7,° is continuous except on the set where N,’ and N,”
have common atoms. Since this set has (7, ') probability zero it follows that
7.' —4 7, Where the distribution of 7 is given by (3.10). Finally, using the in-
dependence of {X,’(¢)} and {X,”(¢)} and similar (but easier) arguments as in the
proof of Lemma 3.1, it follows that P(d(y,, 5,’) > ¢) — 0 as n — oo, for all
¢ > 0, and the theorem is proven. []

Theorem 3.2 gives a rather complete description of the asymptotic behaviour
of extremes of linear stable processes, but it is somewhat complicated, and we
will spend the rest of this section on some (simpler) corollaries to it.

The point process N, gives the separated exceedances of xn'/*, but also ordi-
nary exceedances are interesting. For Borel sets B C R* put E (B) = #{t/nc B;
X(1) > xnV=}, let v¥(z) = #{4; za(2) > x} and v=(z) = {4; —za(4) > x}, and let
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the point process E have the following distribution: atoms occur according to
a Poisson process with intensity p = ¢’ + #”, the multiplicities of different
atoms are independent and with the distribution of v, where v = v*(Z’) with
probability p//(¢/ + ¢/')and v = v=(Z") otherwise. (', ¢’ and the distributions
of Z" and Z" are given on page 856.)

CoRrOLLARY 3.3. Suppose that {X(t)}i_., satisfies the assumptions of Theorem
3.2. Then E, —, E, where E, is the point process of exceedances of xn'* and where
the distribution of E is given above.

PrROOF. We only sketch the proof. Let £ * have the same atoms as N, but
with the multiplicity of the atom at r,; equal to #{t € [t,,, t,; + k]; X(¢) > xn'*}.
According to the theorem 7, —, 7 and with probability one 7 is of the form
(¥ Y15 Ya» - - -) where v is a locally finite measure and where y; € R= is of the form
yit) = z;a(—1t),t = 0, 1, . ... However, for vectors of this form, the function
that maps 7, into E * is continuous except if z;,a(—t) = x for some i = 1. As
the set of such vectors has 5 probability zero, it follows that E * converges in
distribution to some point process, say E*. It is easily seen that E* —, E as
k — oo, and the proof can be finished, using similar methods as in the proof of
Lemma 3.1, by approximating E, by E *. []

CoOROLLARY 3.4. Suppose that {X(t)}>,, satisfies the hypothesis of Theorem 3.2
and that the Borel set B C R* has boundary with Lebesgue measure zero (|0B| = 0).
Then

i=

P(E,(B) = k) — S1%_, (#|j1!3|)" e~ Pr (11, vi = k)

as n — oo, where the v;’s are independent and with the same distributions as v. Simi-

larly, if B,, - -+, B, C R* are disjoint and have boundaries with Lebesgue measure
zero, then P(E,(B,) = k,, - -+, E,(B,) = k)) tends to the product of the corresponding
- probabilities.

Also the joint limiting distribution of heights and locations of the exceedances
can be obtained from Theorem 3.2, but since the limiting distributions are com-
plicated we only give the simplest result.

CoROLLARY 3.5. Suppose that {X(t)}*., satisfies the hypothesis of Theorem 3.2
and let M, = max,,., X(t). Then
P(M,[n"* < x) — exp{—c(4%(1 + B) + a*(1 — B))x~*}
asnh— oo.
Proor. Obviously P(M,/n"* < x) = P(E,([0, 1]) = 0), and the latter prob-
ability converges to exp{—c,(4%(1 + B) + a*(1 — B))x~=} by Corollary 3.4. []

There is a loose end left from Theorem 3.2. Namely, if a(2) = 0 and 8 =
—1(or a(4) < 0 and 8 = 1) then p, = p, = 0 and the theorem only says that
M, /nV* —, 0. However, there may still be some other normalization which
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gives a nondegenerate limit. If0 < a < 1then X(r) < Oforalltand0 > M, —,0
as n— oco. Ifinstead 1 < a < 2 then, as can be seen from Skorokhod (1961),
1 — F, _(x) ~ A,x~*/%@=1 exp{ —(B,x)¥“~V}, as x — oo, where the constants
A, and B, are given in the same reference. It is hence straightforward that if
the sequence {X(#)} is independent, with scale parameter one, (i.e., a(0) = 1
and a(2) = 0 for 2 # 0) then

(3.11) P(a (M, — b,) < x) — e="*

as n — oo, for a, = B,a(a — 1)7Y(log n)V* and b, = B, Y(log n)*"¥* 4 B,"(1 —
1/a)2-(log n)V*{2 log A, + a(a — 1)~'log B, — log log n}. Moreover it can be
checked that if only finitely many of the a(2)’s are nonzero then the conditions
of Theorem 3.1 of Leadbetter (1976) are satisfied, so (3.11) holds also in this
case (still supposing that the scale parameter Y a(1)* = 1). It also follows that
the point process of (ordinary) exceedances of the level x/a, + b, tends in dis-
tribution to a Poisson process with intensity e-*. Thus extremes behave in the
same way for the dependent sequence and for the independent sequence. Of
course the same results hold in the case of infinitely many nonzero a(4)’s, provided
a(2) decreases to zero quickly enough when 2 — +oco.

In the boundary case, a = 1, we have 1 — F, _(x) ~ m~lexp{} — n47'x —
2(7re)—‘e"2“’} as x — oo, and the extremes behave in the same way as above,
except that the normalizing constants now should be a, = 2-'z logn and b, =
2r~Y{log log n + log me/2 — (27" log log n. + log (n?/2))/log n}.

It is interesting to note that this behaviour is quite different from that described
in Theorem 3.2 and that it instead is similar to the behaviour of extremes of
normal sequences. It seems to be a quite general phenomenon that extremes of
moving averages ), a(4)Z(t — 1) behave like those of an independent sequence
with the same marginal distribution if the tails of the distribution of the Z’s
decrease exponentially or faster, while behaviour like that described in Theorem
3.2 occurs if the tails decrease polynomially or slower. One aspect of this was
noted in connection with Lemma 3.1, namely that the essential property of the
stable distribution used in the proof is that the tails decrease as x~%. Thus results
similar to those of Theorem 3.2 hold for moving averages as soon as the tails
of the distribution of the independent variables decrease as powers of x, e.g., if
the independent variables belong to the domain of normal attraction of a stable
law with exponent a < 2.

4. Moving averages of stable processes in continuous time. Consider a sto-
chastic process {Z(2); 1€ R} that has stationary independent increments with
Z(0) = 0 and Z(1) stable (1, @, 8). In the sequel we will assume that a + 1.
The usual way of obtaining an integral § a(1) dZ(2) is to first define it for step
functions of the form a(2) = ¥, 4,1, . () With —co < b < ¢, £ b, < -+ <
¢, < oo by putting { a(2)dZ(2) = 3k a(Z(c;) — Z(b;)). Then, as is easily seen
from (1.1), § a(2) dZ(2) is stable with index a, scale parameter {{ |a(2)|* A}V,
and symmetry parameter {{ (a*(1)* — a~(2)*)da}/§ |a(2)|*dA. Next, if a(2) is



860 HOLGER ROOTZEN

(Lebesgue) measurable and satisfies
(4.1) {la(A)]|*dl < oo O<a<lor I<a<x?2,

we can find a sequence {a,(4)};_, of step functions with § |a(1) — a,(2)|*dA — 0
as n— oo. Then, for I, = { a,(4)dZ(4), the scale parameter of I, — I, is
{{ la.(2) — a,(2)|* dA}* which tends to zero as min (m, n) — co. Hence {I }7_,
is a Cauchy sequence in the sense of convergence in probability and there is a
random variable / with I, —, I. The integral is then defined (uniquely a.s.) by
§a(A)dZ(2) = I.

The object of study is moving averages, i.e., processes of the form X(r) =
§ a(2 — t)dZ(2) with a(2) satisfying (4.1). We always assume that a separable
version has been chosen. Our approach is to approximate a(4) by step functions
a(2) = 2 al(i27* < 2 < (i + 1)27*) and thus to approximate X(r) by X, (¢) =
2oafZ((i + 1)27% 4 1) — Z(i2* + t)}. The necessary estimates are given by
the following two lemmas.

LemMMaA 4.1, Suppose X(t) = 3 a{Z((i + 1)27% 4 1) — Z(i27* 4 1)}, where
2 la|* < co and where {Z(2); A€ R} has stationary independent increments with
Z(0) = O and Z(1) stable (1, a, 1), and put X; = sup,g,, | X((I + 1)27%) — X(127%)|.
If0 < a < 1 then, for some constant K,,,

(4.2) P(max,g, ey X, > x) < K, 37 ASNx—=
where A; = maX,g; g |@pe, ;|- If 1 < a < 2 then
(4.3) P(max, ey, X; > x) < K, 32 |a|*Nx—=.
Proor. We have
X((I 4 1)27%) — X(127%)
(4.4) =xafZ((i+ 1+ 14 27%) — Z((i + 1 4 1)27%)}
' — DafZ((i + 1+ 127%) — Z((i + )27}
= % (@ — a){Z((0 + 1+ 027%) — Z((i + )27} .
Suppose 0 < a < 1. Then {Z(2)} has nondecreasing sample paths and hence for
0,
| X((1 + 1)27%) — X(127%)|
= | D5 (Gt — Qe NZ( 4 (J + L+ 127 — Z(i+ (f + 1)27H))]
S2TE W ATEAZG+ (G + 1+ 0275 = Z(i + ( + )279)
S2OR e A TLAZG + (A T+ D274 = Z(i+ (F + D27H)
=23 A{Z(G0 + 1 + (I + 1)27%) — Z(i + 127%)}.
It follows that
maXyg ok, X; < 2 2 A{Z(i + 2) — Z(i)}
20 (A 4+ A 0230+ 1) — Z(i)} .
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The sequence {Z(i + 1) — Z(i)};~_.. is independent and stable (1, a. 1) and thus,
by (3.4),
P(maxeg, oy X; > x) < 2%k, 25 (A; + Ainy)"x™"
<2-2%, 3 AT
Hence

P(maX,g;gyok—y X; > x) < NP(max,g, g6y X; > X)

<2-2%, 3 ACNx™™
and (4.2) holds with K, = 2 - 2%,,.
Next suppose that 1 < a < 2. Put Y(¢) = X(#2-*) — X(0) and set b, = a, — a,_,.
It follows from (4.4) that {¥(¢); 0 < ¢ < 1} hasstationary independent increments
with Y(0) = 0 and Y(1) stable with index a and scale parameter (2-% 37 |,|*)"*.
Thus, according to Fristedt (1974, page 353), there is a constant c, such that

P(supyg,<, [Y(1)] > x) < €,27% X0 [b|"x~=.
Using Boole’s inequality, stationarity and that b; = a;_, — a, we have
P(MmaX,g;<pey—; X; > x) < 25NP(X, > x)
2ENc, 2% 37 |by|ox—=
c,2* 3. |la]*Nx~=,

{ANAN

and, taking K, = ¢,2%, (4.3) follows. (This argument works also for0 < a < 1,
but the inequality (4.2) is better.) []

In order to apply Lemma 4.1 to X(¢) = { a(4 — t)dZ(2) some conditions are
needed. Assume a(2) = 0, let By, = SUPs. i 1417 4(4), by = infyge. ;54 a(4) and
put a,; = a(i27*). One possibility is to require

(4.5) a(4) is uniformly continuous, ® o Bf < oo and
O<akl.

The second part of this condition is of course equivalent to Y32 _, B}, < oo,
for all kK = 1. Another possibility is to require

a(2) is uniformly continuous, > _. |a;|* < co, there exist
(4.6) 6 >0 and K such that 2¥ 3 g, —a,_;;x*< K, and
Il<ag?2.

Obviously, this condition implies that }] |a,,|* < oo for all k = 1. The latter
part of the condition perhaps needs some motivation. Suppose that a(4) is con-
tinuously differentiable, except possibly at the points {i2-**'}> __, and put f,, =
SUPygke i-1,67|@'(4)]. Then |ay; — @, (| < fui27* and hence 37 |a,; — @y (o[ =
2-ke-b 5% fad-k  Thus the latter part of (4.6) holds with 6 = « — 11if, e.g.,
¥ f&2-* converges as k — co, and to require that this holds is rather close to

requiring § |@’(4)|*d4 < oo.
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LeEMMA 4.2. Suppose that X(t) = § a(A — t)dZ(), where a(R) is nonnegative
and satisfies (4.1) and {Z(2); A€ R} is as in Lemma 4.1. Furthermore put X,(t) =
T a {Z((i + 1)27% + 1) — Z(i27% + t)} (the sum converges, by (4.5) or by (4.6)).
If a(R) satisfies (4.5) then, for some constant K’

i==—00

(4.7) P(supyg,<n | X(1) — Xu(0)] > x) = K, X5 A5 Nx~

where Ay, = maXog ook |By igky; — by ok ;|- (Note that Ay = Ay = - - - forifixed.)
If a(4) satisfies (4.6) then

(4.8) P(SUPog,zy [X(1) — Xi(0)] > x) < K/27HNxe .

ProoF. Suppose 0 < a <1 and let X, (1) = X B, {Z((i + 1)27% + 1) —
Z(i27% + 1)}, X(t) = X b{Z((i + 1)27% + 1) — Z(i27* + t)}. Since Z(4) has
nondecreasing sample paths, D(t) = X (1) — X,(¢) = |X(¢) — X,(¢)]. Using the
same methods as in the first part of Lemma 4.1 it is easily seen that
P(supyg,<n Di(t) > x) < K, 2152 _, Aii Nx~* and thus (4.7) follows with K,/ = K,,.

Now consider 1 < a < 2. In this case let D, (1) = X,(t) — X,_,(¢) and put
dy = @y — @y gy, making Dy(1) = 5 du{Z((i + D)2 + 1) — Z(2* + 1)).
Further let D, = sup,.,g, |Di((! + 1)27%) — D,(I127%)| and use (3.4) and Lemma
4.1 to obtain

P(supyg,<y Di(f) > x) < P(MaXyg camy—y |Du(127%)] > x/2)
+ P(max,g,comy_, D, > x/2)
< kN Y ldylox—= + K,N 3 |d|“x .
Hence by (4.6)
(4.9) P(supy<,<y Di(t) > x) < KN{(k, + K,)27%x~°} .

Let X, = 2—(1’—1)6;(2&)(1 - 2—6,r(2a))x, so that Z;;l X; = X and Z?’:l 2-(k+i)6xi—-a é
constant X 2-*x==. Since X,(t) —, X(t) we have

(4.10) P(supog,<y |X(1) — Xu(D)] > x) < 2171 P(SUPosisy Diril(t) > %) 5
and (4.8) follows from (4.9) and (4.10). []

The conditions used above imply that X{(7) has continuous sample paths, and
although we do not need this result for the sequel, it is interesting in its own
right.

THEOREM 4.3, Let {Z(2); A€ R} have stationary independent increments, which
are stable with index a. Further suppose that a(A) satisfies (4.1) and that both
a*(2) and a=(R) satisfy either (4.5) or (4.6). Then the moving average X(t) =
§ a(2 — t)dZ(2) has continuous sample paths.

REMARK 4.4. There is of course no claim of necessity of the conditions for
path continuity. For 0 < a < 1 it seems probable that the necessary and suf-
ficient condition is that a(2) is continuous and § |a(2)]*d2 < oo, which is not
too far from Condition (4.5).
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Proor. Obviously it is no restriction to assume that Z(0) = 0 and Z(1) is
stable (1, a, 8), and since § a(4 — t)dZ(A) = {a* (A — 1)dZ(A) + §a~(2 — 1)dZ(2),
it is enough to show that each of the terms is continuous, i.e., we may also
assume a(4) = 0.

Let {Z'(4); A€ R} and {Z"'(4); A€ R} be independent and have stationary in-
dependent increments with Z’(0) = Z”(0) = 0 and Z’(1), Z"’(1) stable (1, , 1).
Then § a(2 — t)dZ(2) has the same distribution as ((1 4 8)/2)V* { a(A — 1)dZ’(2) —
((1 — B)/2)=§{ a(2 — t)dZ"(2), and thus we may further assume g = I.

The proof proceeds by approximating X(¢) by V,(t) = § a,(4 — t) dZ(2), where
a,(t) is defined by the requirement that g,(#) = 0, |f| = k', for kK’ = k’(k) to be
specified later, that a,(127%) = a(I127*%),1 = 0, £1, - - -, £k’2* — 1, and that a,(¢)
is linear between these points. Using the definition of the integral as a limit of
sums and Abelian summation, it is seen that (“partial integration”)

§ay(d — 1)dZ(3) = § a(2) dZ(A + 1)
= —{a/()ZQA + t)dA

— oy { a((i + 1)22‘2 - a(i2"‘)} VT Z(4 + 1y da,

(here a(k') = a(—k') = 0)

where the integrals are defined as limits in probability of sums. However, Z(2) €
D(— o0, o) (see, e.g., Breiman (1968), page 306), and is thus locally Riemann
integrable and hence 191077 Z(2 4 1)dA is a.s. a Rieman integral and is thus

a.s. continuous in ¢, and it follows that also V,(t) = { a,(4 — t)dZ(4)is continuous

in ¢t a.s.
Hence, if we prove, e.g.,
(4.11) SUPys.<; | X(1) — V()] —, 0,

then the desired result follows, since there is then a sequence {k,} of integers
with P(supyg,<, [X(f) — V. ()] = 0 as n — o0) = 1, i.e., X(r) is a.s. a uniform
(in [0, 1]) limit of continuous functions and is thus continuous in [0, 1] and
hence, by stationarity, in all of R. Now, let X,(¢) be as in Lemma 4.2 and put

X)) = Takew G Z((F 4+ 1)27F + 1) — Z(i27* 4+ 1)}. We have
P(sUPyg,<; [X(1) — V()] > x)

(4.12) < P(supyg,s: [ X(1) — Xu(1)] > x/3)

+ P(suposs: [ Xi(1) — X ()] > x/3)

+ P(supyg,<: [ X' (1) — V()] > x/3) .
Thus, if 0 < « < 1, Lemmas 4.1 and 4.2 give that
(4.13)  P(supygs, |[X(1) — Vi(1)] > X)

S KA o AR + Dz B + D ARP30x

Choosing, e.g., k’(k) = k it follows from (4.5) and the dominated convergence
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theorem that the right-hand side of (4.13) tends to zero as k — co, and thus
(4.11) holds for 0 < a < 1.

It is no loss of generality to assume 6 < a in (4.6), and then it can be seen
that, regardless of the value of k’, a,(2) satisfies (4.6) with K not depending on
k and with the same 6 as a(2), and thus if 1 < a < 2 it follows from Lemma
4.2 that the first and the third terms of (4.12) are bounded by K,27%?3x~“.
Furthermore, by (3.4) the second term is bounded by K, 37 -k [@4:*3°x7%
and since Y |a,,|* < oo by (4.6), k' can be chosen large enough to make
2 a—ks e |@4i|*— 0 as k — oo, and it follows that (4.11) holds also for I <a <2. []

5. Extremes in continuous time. Let {X(); € R} be a moving average, and
in analogy with Section 3 define recursively t,, = inf{r = A(T); X(r) > xTV"},
try = inf{t = t; ., + K(T); X(t) > xTV*} fori = 2. For a givensequence {7},
put Y, () = X(t + t4,)/TV*, let Ny(B) = #{t,,/T € B} for Borel sets B — R* and
consider the marked point process 5, = (N, Ypy, Yp,, - - -) of separated exceed-
ances of xTV*. Furthermore, put 4 = sup,.,a*(4), let # and Z be as defined
on page 856, and let Y, have the distribution of the random variable {Za(—1);
te R}in D(—oo, oo). If Z(2) is completely asymmetric the limiting distribution
will be that of

(N, Y, Y,, --+) where the components are independent, N
(5.1) is a Poisson process with intensity x, and where the Y’s

have the distribution given above.

LEMMA 5.1. Suppose that {Z(2); A€ R} has stationary independent increments,
with Z(0) = 0 and Z(1) stable (1, a, 1). Further suppose that a(2) satisfies (4.1),
that both a*(2) and a~(2) satisfy either (4.5) or (4.6), and that A > 0. Then there
exists {ty;} such that {t,, — 7,;; T = 1} is tight for each i = 0 and such that the
marked point process 7, of separated exceedances of xT"* by X(t) = { a(2 — t)dZ(4)
converges in distribution to 7, where the distribution of v is given by (5.1).

Proor. Without loss of generality we assume that a(0) = 4. First suppose
that 0 < @ < 1. Recall the definitions of X,(r) and a,, from Lemma 4.2 and
put X, (1) = X (27*[2*1]) so that X,(i27*) = X,(i27*) and X,(r) is constant for
te[i27*, (i + 1)27%). We have

P(suposisr |X(1) — Xy(1)] > TV7x)
< P(sUPoeyer [X(1) — X(1)] > TV*x/2)
(5:2) + P(suPys,sr [Xi(1) — X(1)] > TV*x/2)
< 2K Yp . Ai(T + 1)T'x—e2e

T K, N AG(T + 1)T-1x-a2¢

by Lemma (4.2) applied to both a*(2) and a~(4) and by Lemma (4.1). From
(4.5) it follows that Y} A%, — 0 when k — oo and hence

i=—o00

(5.3) lim, ., lim sup,_.. P(sUp,<.r |X(1) — Xy(1)] > T¥x) = 0.
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Now, let {;* = (N.*, Y%, Y%, ...) be the marked point process of A(T)-
separated upcrossings of xTV« by the discrete process {X,(i27*%)}=_,,, where
Yh(f) = X (12°% + 7k,), t = 0, +1, . .., with 7%, the time of the ith exceedance
of xTV*/ A by the sequence {Z(i2"‘) — Z((i — 1)27%)}=,. According to Lemma
3.1 {,;* converges in distribution, to {* say, as T — co. Furthermore, if 7,* is
the marked point process of upcrossings of X7/ by the continuous-time process
{X\(1); t e R}, with the marks centered at the z£,’s, then the function f: .47 X
R*X R*X +++ - I X D(—oo, o) X D(——-oo, o0) X --- that maps {,* into
n;* is continuous and hence 5% —,; f({*) = 7*, say. It is easily seen that the
distribution of 7* is obtained from (5. 1) by replacing a(Z) with a, (1) =

kbt a, I(i27* < AL (i + 1)27%). Thus p* = (N*, Y}, Y,*, .. .) has independ-
ent components, and if = (N, Y}, Y,, - - -) has the distribution given by (5.1) then
N* has the same distribution as N and Y}* -»d Y,, since sup, . |a(2) — a,(2)| — 0
by (4.5). By Lemma 2.1 it follows that »* —, » as n — co.

The appropriate centering for the ith mark, 7, of 7, is the time of the ith
jump larger than T/*x/A in the process {Z(t); t = 0}. To show this we first prove
(5.4) limy_, P(|tp; — k| >27%)=0.

To do this, let ¢ e (0, x/(24)) and write Z(t) = Z(t) + Z¥(t) + Z¥t) + ZXt),
where Z'(t) is the sum of jumps by Z(¢) in [0, 7] of size larger than TV%(x/4 + ¢),
where Z*(r) is the sum of jumps of size belonging to TV*(x/4 — ¢, x/4 + ¢], and
where Z%(t) is the sum of jumps of size belonging to T"%(¢/n, x4 — €], (n > 0).
Further, for / = 1, 2, 3, let E' be the point process which has its atoms at the
times of jumps of ZY(r). We recall that, putting Z, = Z(j2*) — Z((j — 1)27%),
4, is equal to 27* times the location of the ith exceedance of T%“x/4 by the
sequence {Z)7.,. Put Z}! = Z!(j2°%) — ZY((j — 1)27*) so that Z, = }i_, Z},
let N be a positive number and denote the event that E¥([0, TN]) < i by 4
the event that E*([0, TN]) > 0 by B, the event that E*(27%(j — 1, j]) > 1, for
some je[1,2¥NT], by C,, and the event that E¥2-%j — 1, j]) > 1, for some
jel[l,2¢NT], by D,. If |ty — 74| > 27% and 4,* n B,* occurs, then at least
one of the following three events must happen: either Z, > T"*x/4 and
EY2°Kj — 1, j]) = 0, for some je[l,2*NT], or Z, < TV*x/A and E(27%(j — 1,
j1) > 0, for some je [1, 2*NT], or else C, occurs. Moreover, if B;* N C,* N Dp*
occurs, then the first two events both imply that E, = {|Z* > T"*, some je
[1, 2*NT1]} happens. Thus we have proved

{legs — 78| > 2%} c 4, UB, UC, UD, U E;.
Let p, = c,a ' (x/A + &)™, p, = c,a™(x/A — e)™* — (x/A + €)™} and p, =
c,aY(e/n)"* — (x/A — €)~°}. Then, for [ = 1, 2, 3, E'is a Poisson process with
intensity g, /T (see, e.g., Breiman (1968)) and thus

P(A) = P(EX[0, TN)) < i) = %izh e-vm (M)
and a

P(B;) = P(E*[0, TN]) = 1) = 1 — e"¥r,
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Furthermore,
P(C;) < 2ENTP(EX[0, 27%]) > 1)

= 2NT(1 — e Fm?™ _ 2-ky T-1e=27Fmr™h)

-0,
as T — oo, and similarly P(D;) — 0. Further, by differentiating the Lévy rep-
resentation of the characteristic function of Z* (cf. the proof of Lemma 4.1)
it is seen that E((Z})) < K2-¥(¢/n)*~*T*=-!, for some constant K, and then
Chebychev’s inequality gives

P(E;) < 2*NTP(|2,4| > T%)

2¥NTE(|z4")T %2
KNe—on*-=,

IA A

as T — oo. Hence
lim SUP7r_e P(lfn - T’;il > 2-k)

< Yithe (N__;l'ly 4+ 1 — e ¥t 4 KNe~*n*~*,

and inserting the values of g, and g, and letting first n — co, then ¢ — 0, and
then N — oo, this proves (5.4).

Now we are in a position to show that {t,; — 7,,; T = 1} is tight, or equiva-
lently to prove

(5.5) © lim,_, limsupy_,, P(|t;; — 70l > y)=0.

Let {r%,} be the 4(T)-separated upcrossings of TV%(x — Ae) by X,(r) and let {#}}
be the A(T)-separated upcrossings of 7V%(x 4 Ae) by X,(r). Further, let 7%, be
the location of the ith exceedance of TV%(x/A — ¢) and #%, the location of the ith
exceedance of TV%(x/A + ¢) by the discrete process {Z(j27%) — Z((j — 1)27*)}51s
write F, for the event that sup,.,<yr |X(?) — X (7)] > T"*4¢ and, changing the
notation slightly, let A, = {#, < NT — y}. On the event 4;* N F,* we have
!I;'i St S i;"i and thus {itn - TTii > }’} C {iI;'i — Ty > )’} U {{.Ti - t,;'i > )’} U
Ay U F,. Let G, be the event that z,e TV%(x/4 — ¢, x/|A + ¢] for some je
[1, 2*NT]. If A.* n G,* n {|th, — #,,] < y} occurs, then 74, = ¢4, = 7}, and
thus

{ItTi - 7Ti| > }’}
cfth,—th, >y =2 u{ch, —th >y — 27} U [ty — 75| > 27%)
U A, U Fy
Clirg— >y —2"ufeh, —thi >y — 2% U {|rp, — 5| > 274}
UA, UF,UGj.

Here P(A;) — Y izhe ¥m((Np)i/j!), P(|tr; — th| > 27%)— 0 as T — co, and
P(G;) < 2*NTP(Z, e TV(x|A — €, x|A + s]) ~ 2Nc,f(x]A — )™ — (x[A + ¢)~°}.
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Hence
lim,_ limsup,_., P(|tr; — 775 > ¥)
< lim,_ lim sup,_, (P(#, — 5, > y — 27%) + P(th, — 15, >y — 27%)}

+ it eV @’%Qf + lim, . lim sup,_... P(Fy)

+ 2Nc {(x]A — €)= — (x/A + )},
and the first term is zero by Lemma 4.1, the third term tends to zero as k — co
by (5.3) and the remaining two terms tend to zero as first ¢ — 0 and then N — co,
and thus (5.5) follows.

To complete the proof that 7, —, 7 it is enough to show that the conditions of
Lemmas 2.3 and 2.4 are satisfied. However, the atoms of N, are t,,/T, t;,/T, - - -
and the atoms of N;* are t§,/T, t5,/T, - .., and (1, — 1%))/T —, 0 follows from
(5.4) and the facts that {t;; — 7,,; T = 1} and {r, — ck,; T > 1} are tight, so
the hypothesis of Lemma 2.4 is satisfied. Further, let ¢,* = ¢,; — k.. Then,
by (5.4), lim,_, limsup,_, P(le;*| > x) = 0 for x > 0. Since Y%(1) = X,(t +
T )TV wehave {sup_ ¢, | Yri(t) — Yt 4 er*)| > x} = {SUP_ g0y [ X(1 + 77,) —
Xt + 7ro)l > TVx} C {SUP_igpswrst [ X(1) — Xi(1)] > TV*x} U A, and from (5.3)
it then follows that

lim,_, limsup;_, P(Sup_,¢,<; |Yri(t) — YE(t + e7)] > X)
< lim,__ limsup,_, P(A;)

= Yizle=Nm (N/."1)j ,

= i=

and since N is arbitrary it follows that (2.3) holds. Further,
lim, ., limsup;_, P(SUp_,<,<; | Yai(?)] > u) =0
follows easily from Lemma 4.2, and thus the hypothesis of Lemma 2.3 is satisfied.
This concludes the proof of the lemma for the case 0 < a < 1.
If instead 1 < @ < 2 we have to use the second parts of Lemmas 4.1 and 4.2

instead of the first ones to prove (5.3), but apart from that, the lemma follows
in precisely the same way as above also in this case. []

Since the restriction that Z(4) is completely asymmetric can be removed in
precisely the same way as Theorem 3.2 is obtained from Lemma 3.1, we omit
the details of this proof and only state the result.

Recall the notation A4 = sup,.,a(4), put a =sup,.pa (1), let p' =
c, A1 + B)x==, p'" = c,a"(1 — B)x==, let Z' and Z” have the distributions
given on page 856 and let Y,(r) = Z’a(—1), t € R, with probability x//(¢' + p)
and Y(t) = —Z"a(—t), t e R, otherwise. Then the limiting distribution of 7,
is that of the marked point process

(N, Y, Y,, ---) where the components are independent, N
(5.6) is a Poisson process with intensity px = g, 4 g, and the

Y;s have the distribution given above.
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THEOREM 5.2. Let a(R) satisfy (4.1) and let both a*(2) and a=(2) satisfy either
(4.5) or else (4.6). Further let {Z(4); A € R} have stationary independent increments
with Z(0) = 0 and Z(1) stable (1, a, p) and let X(t) = § a(A — t)dZ(2). Then there
exist {tp;5i= 1,2, ..., T = 1} with {t;; — t,;; T = 1} tight for each i = 1 such
that y; —,n as T — oo, where n; is the marked point process of separated exceedances
of TV*x by {X(t); t = 0} and where the distribution of » is given by (5.6).

Similarly as for the discrete time case, various corollaries concerning the
behavior of extremes can be deduced from Theorem 5.2. Here we only give
the very simplest result, concerning M, = sup,.,., X(?).

CoROLLARY 5.3. Suppose that X(t) satisfies the hypothesis of Theorem 5.2. Then
P(M [TV < x) — exp{e(4°(1 + B) + a*(1 — F))x~7}

as T — oo.

We have not treated the case « = 1 above. However, using methods rather
similar to those for 1 < @ < 2, conditions for the result of Theorem 5.2 to hold
can be obtained also for a« = 1.

Finally we note that it is easy to see that all of the limit theorems of this
paper are mixing in the sense of Rényi (the first result in this direction is proved
in [12]). Hence they can be extended to cases where the level is random, and
possibly depending on the process X{(t).
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