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CONVERGENCE RATES OF LARGE DEVIATION PROBABILITIES
IN THE MULTIDIMENSIONAL CASE!

By JOSEF STEINEBACH
University of Diisseldorf

Let {Wa}a=1,2,... denote a sequence of k-dimensional random vectors
on a probability space (2, «; P). Using moment-generating function
techniques sufficient conditions are given for the existence of limits
p(A4) = limp_,o [P(Wy 2 kn A)]Vkn for certain subsets 4 < Rk, where
{knln=1,2,... is a divergent sequence of positive real numbers. The results
are multivariate analogs of well-known large deviation theorems on the
real line.

1. Introduction. In 1975 G. L. Sievers stated some large deviation results
for a sequence {P,},.,,... of probability measures on (R*, B¥), where R* is k-
dimensional Euclidean space and B* the system of Borel subsets. Assuming
that the limit e(4) = lim,_, n~'log P,(A4), Ae B*, exists, Sievers developed
methods for determining e(4) from e(B) for “simpler” sets B of the form
B={x=(x, ---,x) eR: x xa, ---, x, + a}, where the «’s are either = or
<, and a = (a, ---, a,)7 is a fixed vector in R*. The existence of the limits
e(B) was also assumed.

In this paper two theorems are proven which give sufficient conditions for
the existence of limits such as e(A4) or e(B) described above. These conditions
correspond to certain properties of the moment-generating functions of the
underlying probability measures and are multivariate analogs of well-known
assumptions for large deviation theorems on the real line (cf. Sievers (1969),
Plachky and Steinebach (1975)).

Theorem 3.1 is concerned with large deviation probabilities for cones in R*.
Included is the case involving Sievers’ simple sets B. Theorem 3.2 deals with
the existence of the limits e(4) for the complements of certain bounded subsets
of R*.

Both theorems can be applied directly to weighted sums of independent,
identically distributed (i.i.d.) random vectors with finite moment-generating
functions. For details see [12], Chapter 2.2, where some k-dimensional analogs
of the large deviation results of Book (1973, 1975) concerning weighted sums
of i.i.d. random variables on the real line are derived.

2. Notations. Certain facts about convex functions. Let a = (a,, - - -, a,)7,
b= (b, ---,b,)" be vectors in R*. Then we write a < b (a  b) if a; < b,
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(@, < b;) for all i =1, ---, k, and the set [a,b] = {xe R*: a < x < b} is re-
ferred to as a k-dimensional closed interval. Corresponding definitions hold for
(@, b) = {xe R¥: a < x < b} (a k-dimensional open interval), [a, b), and (a, b] (a
k-dimensional half-open interval). The inner product of a, be R* is denoted as
a, b), i.e., {a, by = 3%, a,b,. Furthermore, |a] = (a, a)}.

The closure (interior, boundary, complement) of A — R* is denoted as 4 (A4°, 94,
CA), and, forfixed 2¢ R',a e R*, let A(a + A) = {i(a + x): x e A}. Forapositive
real number ¢ the set U,(x,) = {xe R*: |x — x,| < ¢} is called an e-neighborhood
of x,. A subset C C R* is called a cone if it is closed under positive scalar multi-
plication, i.e., Axe C when xe C and 2 > 0. The origin itself may or may not
be included here. The polar cone C* is defined as the set C* = {xe R*: (x, y) =
0 for all ye C}. For the properties of C* consult, e.g., Karlin (1962), pages
397-406. A subset D C R*is called convex if 2x + (1 — 2)ye D when x, ye D,
0< i< 1.

Let f be a real-valued function on a subset D of R:. Then (df/d1,)(t,),
i=1,k, t=(t, -+, )7, ty=(ty -+, )", Will denote the partial de-
rivatives of f at t,, f'(t,) the gradient ((3f/dt,)(t,), - - -, (0f01,)(t,))", and f"'(t,)
the Hessian matrix of second partial derivatives (0%/0t,01,)(t,). A real-valued
function f on a convex subset D C R* is called convex if f(Ax + (1 — 2)y) <
Af(x) + (1 — A)f(y) for all x, ye D and 2 in the real open interval (0, 1). More-
over, f is called strictly convex if strict inequality holds.

In proving the main results of this paper we shall make frequent use of cer-
tain standard facts about convex functions and their conjugates which we collate
below.

LeEMMA 2.1. Let f be a convex function on an open convex set D, C R*. Then
(2.1) [ is continuous on D,
(2.2) [ is (Fréchet) differentiable almost everywhere in D, ,

i.e., there is a linear transformation T: R*¥ — R such that for sufficiently small
|k f(t, + h) = f(t,) + T(h) + |h|e(ty, h). Here ¢(t,, h) € R goes to zero as |h| — 0,
and tye€ D C D,, where D)\D has Lebesgue measure zero. Moreover, if t is a real

variable, D)\D is a countable set. All partial derivatives (0f[ot;)(t,), i = 1, - -, k,
exist in D, and T(h) = {f'(t,), ).

(2.3) f' is continuous on D ;

(2.4) f' s isotone on D, i.e.,

(1) — fi(s), t — s> =0  forall t+seD,

and strict inequality holds if f is strictly convex.
Let f be a real-valued function having continuous second partial derivatives on an
open convex set Dy C R¥. It holds that

(2.5) f isconvex in D,
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iff the Hessian matrix f'(t) is nonnegative definite for each t e D,. Moreover, if
the Hessian matrix is positive definite on D,, then f is strictly convex, and the set
f'(Dy) = {f'(t): te Dy} is open.

Let {f,},-1.... be a sequence of (Fréchet) differentiable convex functions on an
open convex set Dy C R* such that lim,,_,, f,(t) = f(t) exists for each te D,. It is
apparent that f is convex in D,. Moreover, the assertion

(2.6) lim,_. f,'(r) = f'(?)
holds almost everywhere in D,.

Let f*: Dy* — R denote the conjugate function of f defined as f*(t*) =
SUp, . p, [{t, t*) — f(1)] with domain Dy* = {t* e R*: f*(t*) < co}. Then
2.7 [* isconvex on Dy*.

PROOF. See, e.g., Rockafellar (1970) and Roberts and Varberg (1973), though
the proofs require slight modification to establish the results (2.4) and (2.6).

To obtain (2.6), for instance, note that for t = (1, ---, 1,)7 e D and ¢, ---, 1,
being fixed the convexity of the functions f,(-, t,, - - -, t,) yields the inequalities

fuln = bty i t) = il o) 2 O
—h, ot,

Lt bty e t) — fulty, - fk),
= i

where &, > 0 can be chosen arbitrarily small. Letting first n tend to infinity
and then A, tend to zero, we have by the differentiability of f(-, t,, - - -, 1) at 1,

. ) 3
tim, o fulty 1) = 2t s 1) -
lmn—w atlf( 1 k) atl f( 1 k)

Same arguments for the other components, too, imply the assertion (2.6).

3. Results. As already mentioned, the first theorem states a certain large
deviation property for cones C in the Euclidean space R*.

THEOREM 3.1. Let {W,},_, , ... be a sequence of k-dimensional random variables
on a probability space (2, 57, P), and D, an open, convex subset of R*. Suppose
further that

(1) @u(r) = §explt, W,>dP < oo for all te D,;

(i) lim,_ . k,7'¢,(t) = c(r)e R for all te D,; where ¢, (1) = log¢,(t) and
{ku}uz1,,... is a divergent sequence of positive real numbers, remembering here that
©,(1) is positive;

(iii) c is strictly convex in D,

Now let D be the subset of D,, where ¢’ exists, C a cone in R* with C* + @, and
{@.}az1,s,... C R* a convergent sequence with

(iv) lim, a,=aec{cd(t): te D n C*}.
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Then it follows that

(3.1)  lim, . [P(W, € k,(a, + O)“™ = inf,, , exp[e(r) — {t, a)] = p(a) ,

and the infimum equals exp [c(h) — (h, a)], where h is the unique solution of a = c'(h).
The second theorem deals with another sort of multivariate probabilities of

large deviations, which appears, for instance, when studying convergence rates
in the multidimensional version of the law of large numbers.

THEOREM 3.2. Let {W,},_, ... be a sequence of k-dimensional random variables
on a probability space (Q, 57, P) with EW, =0, n=1,2, .... Let D, C R* be
an open, bounded convex set including the origin. Suppose also that

(1) @.(t) = §exp(t, W,>dP < o for all t e D,;

(ii") lim, .. k,"'¢,(f) = c¢(t)e R for all te D,, where ¢,(1) = logo,(t) and
{ku}nz,s,... is a divergent sequence of positive real numbers;,

(iii"y ¢ is strictly convex in D,.

We now let D be the subset of D,, where ¢’ exists, and suppose that 0 ¢ D. Con-
sider a bounded set A C R* with 0 ¢ A° and

(iv") ae{c'(t): te D} for all ac 0A;
(V') Ufa*) n (CAP + @ Ve >0, where a* is a point in 0A such that the con-
Jjugate c* of c attains its infimum on 04 at a* (cf. (2.7)).

It then follows that

(3.2) lim,_, [P(W, & k, A)]*» = sup,.,, p(a) = p(a*),

where p(a) = exp[c(h) — (h, a)] and h is the unique solution of a = c'(h).
REMARK 3.1. Assumption (iv’), the strict convexity of ¢, and ¢(0) =

lim, ., k,~*log ¢,(0) = O, together yield the inequalities

n—00

0<p(@a) <1 forall aecdd.

In particular, log p(a) is well defined on 64, and even on B = {a e R*: p(a) > O}.
Accordingly, we have

—log p(a) = —log (inf, , exple(t) — <1, a)))
= SUpyep, [{1, @) — <(1)] = c*(a) .
Thus, the continuity of p on B® follows from (2.7) and (2.1). The last equality
in (3.2) then holds from the definition of a* in (v').

The proofs of both Theorems 3.1 and 3.2 are based on a certain convergence
property of the conjugate distributions P, ,, n = 1, 2, ..., of P. Here the P, ,
are defined as
(3.3) Pyo(d) = §, ZRSEHd gp,

a1
for Ae 7, and for a fixed te D,.
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LeMMA 3.1. Consider the function c in Theorems 3.1 or 3.2. Further let (a,, a,)
be an open interval in R*, and put a = c'(t), where t is a fixed vector in D. Supposing
that a € (a,, a,), it follows from the assumptions of Theorem 3.1 or 3.2 that

(3.4) lim,_, P, (W, ¢ k.(a, a)) = 1.

REeMARK 3.2. Conjugate distributions defined according to (3.3) are known
to appear in a certain guise in statistical mechanics when microcanonical meas-
ures on a space of possible configurations of a thermodynamical system are
defined (cf. Lanford (1973), page 44). The results of Theorems 3.1 and 3.2
thereby could be described as deducing the existence of the thermodynamical
limit for the microcanonical ensemble from that of the canonical ensemble (cf.
Lanford (1973), page 52, Theorem AS5.1 and Corollary A5.2, where the opposite
implication is deduced, and also Ruelle (1969), Chapter 3).

REMARK 3.3. The assumptions of Theorems 3.1 and 3.2 may be greatly sim-
plified if k, = n, and W, is the nth partial sum of a sequence {X.},_,, ... of i.i.d.
random vectors with finite moment-generating function ¢(r) = { exp(t, X,) dP
for te D,. The distribution of the X, is not concentrated on a hyperplane of
R*. It follows that ¢,(f) = [¢(?)]", and thus ¢ equals the cumulant-generating
function log ¢ of the X;. From the properties of log ¢ we know that partial
derivatives of any order exist in D,. In particular, the Hessian matrix
[log o(7)]” exists in D, and is positive definite since [log ¢(7)]” is the dis-
persion matrix of X, with respect to the conjugate distribution P, defined as
P,(A) = {, (exp{t, Xy)/o(t)) dP, Ae 57, te D,. Hence, by (2.5), log ¢ is strictly
convex in D, and {(log ¢(¢))': t€ D} is a nonempty open set, if C has a non-
empty interior. Assumption (iv) of Theorem 3.1 can thus be fulfilled. Further-
more, relation (v’) in Theorem 3.2 is valid if A4 is either a closed or convex set.

4. Proofs.

ProOF OF LEMMA 3.1. Put W, = (W,,, ---, W,,.)", a; = (ay;, - -+, a;)"s j =
1,2,a=(a, ---,a,)". Then,

(4’ 1) Pt,"(W'ﬂ e kn(al’ 02)) é Zl"‘—'l Pt,‘n(Win é knail) + Z?=1 Pt,'n(Win g knaiz) .
Now, for negative z,,, it follows that

(42)  Pou(Wiy < kyay) < § SXPKE o) & 2alWin = Kato) gp

n = 1

Pa(1)
— SD,,([ + T‘ilei) exp(—kﬂfilail) s
Pa(?)

where e; denotes the ith column of a k X k identity matrix. Remembering that
the cumulant-generating functions ¢, = log ¢, are convex and differentiable in
D,, we have

(4.3) log ¢,(t) = log (¢t + 75,€;) — (P, (t + 7,,€:)s Ti18:) -
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Relations (4.2) and (4.3) yield the upper bound
(G8)  Pu(Wo S kaao) = exp (ko[ ki 20 (1 4 2 — aa ]}

For fixed ¢;, j + i, where ¢t = (t,, -- -, t,)7, it holds that ¢, and c are strictly
convex functions of 7, i = 1, ..., k. Using (2.2), (2.3), and (2.4) and recalling
that @ = ¢'(¢) € (a;, a,), we can choose 7, such that (dc/ot,)(t + 7,,e;) both exists
and lies inside the open interval (a;,, a;,). In particular,

0 .
(4'5) ‘aTC'(t+Ti1ei)>ail’ 121’"’,]('
Finally, we may note that in view of (2.6)
(4.6) lim, o k1 995 (1 4 rne) = 26 (0 4 rpe),  i=1, e k.
ot, ot,
Using (4.4), (4.5), and (4.6) we thus have
(4‘7) limn—voo Pt,n(Win § knail) = 0 ’ 1= l’ * ’ k
By similar arguments one also obtains
(4.8) lim, P, (W, = k,a,) =0, i=1, ..., k.

Use of (4.1) renders the proof complete.
Large deviation results on the real line analogous to (3.1) or (3.2) are usually
proven by deriving upper and lower bounds for the probabilities to be studied,
and then showing that both bounds are equal. The upper bound is thereby
often easy to obtain whereas the hard work is in the lower bound (see, e.g.,
Bahadur (1971), page 5, and Landford (1973), page 40). In the same vein the
proofs of Theorems 3.1 and 3.2 are divided into two parts. The easier upper
bound is first derived and then an estimate of the lower bound is obtained.

ProoF oF THEOREM 3.1: (a) Upper bound: The relation W, e k,(a, + C) is
equivalent to k,"Y(W, — k,a,)e C. Then, from the definition of the polar cone
C+,(t, W, —k,a,> = 0forte C*. Hence, it follows that P(W, € k,(a, + C)) <
oa(1) exp(—k,(t, a,)), for te D n C* and using assumption (ii),

(4.9) lim sup,_., [P(W, € k,(a, + C))]"*» < exp[c(h) — (h, a)]
for he D n C*. Since a = c’(h) and ke D, the equality exp[c(h) — <k, a)] =
inf, ., exp[e(s) — {1, a)] is obvious.

(b) Lower bound: Assumption (iv) implies the existence of a k-dimensional
open interval (a;, a,) C U,(a) N (a + C)* with (a,, a;) N {c'(¢): te D} + @ foran
arbitrary e > 0. Let r = #(¢) be such that ¢'(¢) € (a;, a,). Then for nsufficiently large

P(W, € k,(a, + C))
(4.10) = P(W, e k,(a,, a,))
exp{t, W,
= 0.0 Sty SXP(—Cts W) SRS ap

Z ¢a(t) exp(—k.(t, a) P (Wa € ko(a), @) »
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where a, = (ay, - - -, a,)" isdefined by a;, = a;, (if t; < 0) and a,, = a,, (if t; > 0).
In view of Lemma 3.1 and assumption (i) relation (4.10) yields

liminf,_ [P(W,e k,(a, + C))]"
(4.11) = exple(t) — (¢, ap]

= infteno exp[e(t) — <t ap] = p(a,) -
Now lim,_,a, = ae {c'(t): te D n C*}°, and p(a) > 0. By the continuity of p
in a neighborhood of @ (cf. Remark 3.1) relation (4.11) then implies that
(4.12) liminf,_ [P(W, € k,(a, + C))]"*» = o(a) .
From (4.9) and (4.12) the proof is now complete.
Before the proof of Theorem 3.2 we note some useful facts:

REMARK 4.1. Using (2.4) the strict convexity of ¢ implies that the solution 4
ofa = c¢’(h) in Theorem 3.2 is unique. Hence & = h(a), and & = 0 if a + 0, be-
cause p(0) = inf,., exp[c(r)] = exp[c(0)] in view of the equalities ¢’(0) =
lim,_. k,7%¢,’(0) = lim,_, k,”EW, = 0.

REMARK 4.2. For h(a) + 0 we define the hyperplane
H(a) = {xe R*: (h(a), x — a) = 0}
with the open half-spaces
H*(a) = {xe R*: (h(a), x — a) > 0},
H-(a) = {xe R*: (h(a), x — a) < 0} .
As mentioned in Remark 3.1 it follows that
p(a) = exp[e(h(a)) — <h(a), a)] <1
for all a e 04, which in turn implies that
(4.13) (h(a), a) > c(h(a)),
and 0 € H~(a), since c(h(a)) > ¢(0) = 0, fora e 04. Moreover, from¢'(0) = 0 ¢ A°,
c’(h(a)) = ac 04, and the continuity of ¢’ on D (cf. (2.3)), it follows that the

vectors h(a) are outside a neighborhood of the origin. Hence a real number ¢,
exists such that

(4.14) c(h(a)) = ¢, >0 = ¢(0) = infte,)0 (1)
for all aec 0A.

Nn—00

REMARK 4.3. Fore > Oand ae 04 let H (a) denote the supporting hyperplane
of the e-neighborhood U,(a) which parallels H(a) and is tangential to U, (a) at
a unique point a, € H=(a). We then have

H,(a) = {xe R*: (h(a), x — a,) = 0},
and H (a) also determines the open half-spaces

H*(a) = {xe R*: (h(a), x — a.) > 0},

H(a) = {xe R*: {(h(a), x — a,) < 0}.
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Using (4.13), (4.14) and the boundedness of {#(a) : a € 94}, a positive real number
¢, can be chosen such that

(4.15) 0e H(a) forall aecdA4 andall e€(0,¢).

REMARK 4.4. For every e€ (0, ¢)) there exists a finite number of neighbor-
hoods U,(a), ac 34 (say) U(a,), - - -, U(ag), where K = K(¢) and with

(4.16) o4 c UL, Ufa) -

We now show that

(4.17) B, = N, H(a)C A.

First we note from (4.15) that B, is a convex set containing the origin. Also,
(4.18) ag¢ B, forall aeodd

from (4.16) and the definition of H,7(a;). But then a¢ By for all ae CA, as
otherwise a € By for some a e CA and 0 € B, would imply that {4a: 2¢ [0, 1]} is
a subset of B,. This would contradict (4.18).
Proor oF THEOREM 3.2: (a) Upper bound: From (4.17) we have for e € (0, ¢,)
P(W, ¢k, A) < PW, & k(i H.7(a))
P(W” € kn(UzI'{=1 (He(ai) U He+(ai))))
< XE P(W,ek,(H(a) U H(a)))
= Z{il P(<h(al)’ W'n - knai,e> g 0) N
Here a; , is the unique point in H~(a;) at which the supporting hyperplane H,(a;)
of U,(a;) that parallels H(a,) is tangential to U(a;) (cf. Remark 4.3).
The probabilities for the sum can be bounded by

P((h(as), W, — koa,) 2 0)
(4.20) < Eexp(h(a), W, — k,a,.)
= pu(h(a)) exp(—Ch(@), ko) expCh(ar), k(a — @) -

As already mentioned, the set {A(a): aec dA} is bounded, i.e., we may say
|h(a)| < h, for all ac 04. Now

(4.19)

(4.21) [<h(@:)s k(@ — ac))] < k(@) ku(a — )] = kahoe
Finally, assumption (ii") yields
(4.22) lim, ., [¢.(A(a;)) exp(—k.{h(a;), a;))]"*»

= exp[c(h(a,) — (h(a:), aip] = p(ay) -
Using relations (4.19)—(4.22) it follows that
(4.23) lim sup,,_., [P(W, ¢ k, A)]/¥» < et max,_, ... « p(a;)

é ehoe Supae&A p(a) *
Upon letting ¢ tend to zero in (4.23) the upper bound is derived, i.e.,

(4.24) lim sup,_., [P(W, ¢ k, A)]/k» < sup,.,, o(@) = p(a*).
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(b) Lower bound: For every ¢ > 0 assumptions (iv’) and (v') imply the ex-
istence of a k-dimensional open interval

(a. a,) < U (a*) n (CA) with (a, a) N {c'(f): te D} = @ .

By the same arguments as those used in part (b) of the proof of Theorem 3.1 it
then follows that

(4.25) liminf, [P(W, ¢k, A)]"* = p(a*).
This completes the proof.
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