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THE LAW OF THE ITERATED LOGARITHM AND UPPER-LOWER
CLASS TESTS FOR PARTIAL SUMS OF STATIONARY
GAUSSIAN SEQUENCES

By Tze LEUNG LAI' AND WILLIAM STOUT?

Columbia University and University of Illinois

Herein, laws of the iterated logarithm and various upper-lower class
refinements are established for partial sums of stationary Gaussian random
variables. These stationary Gaussian random variables are not necessarily
in any sense weakly dependent. For example, if the random variables are
nonnegatively correlated, then the upper half of the law of the iterated
logarithm holds. Under more restrictive, but still quite general hypotheses,
an upper-lower class test which classifies all monotone sequences {¢(n)} is
established.

1. Introduction and summary. Let {X,, n > 1} be a stationary sequence of
zero-mean random variables with finite variances and let S, = >7_, X;, n = 1.
Most of the laws of the iterated logarithm and related strong limit theorems for
{S.} in the literature apply only to the case where the sequence {X,} is weakly
dependent (see Philipp and Stout (1975)). By weak dependence, we mean that

(1.1) E|E(X, 4| X, -+, X)) >0 as k— oo foreach n=1,2,...,
and
(1.2) ES}~0n as n— oo for some o > 0.

This includes independent, mixing, lacunary trigonometric and martingale differ-
ence sequences. It is known (cf. Philipp and Stout (1975)) that for a large class
of weakly dependent random variables, the almost sure invariance principle
holds, i.e., for some 1 > 0,

(1.3) IS, — aW(n)| € nt=* a.s.

Here {W(r), t = 0} is a standard Wiener process and we use Vinogradov’s symbol
« instead of Landau’s 0 notation. From (1.3) and the law of the iterated log-
arithm for Brownian motion it follows immediately that

1.4 lim sup, .., (20°n log, n)~%S, = 1 a.s.
P g

(Throughout this paper, we denote log log n by log, n, and more generally, we
let log, n = log (log,_, n) for k = 2.) Furthermore, in view of (1.3) and the
Kolmogorov-Petrovski-Erdos test for Brownian motion, if ¢(f) is a positive
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nondecreasing function then
(1.5) P[S, > oni¢(n) i.0.] =0 or 1 according as
(Pt o(r) exp(—44%(1))dt < 0 or = oo.

When {X,} is not weakly dependent, the asymptotic fluctuation behavior of
the sequence {S,} may be very different from that of Brownian motion. In the
first place, (1.2) may no longer be true. Set V(n) = Var S,. It is natural to ask
under what conditions (other than weak dependence) (1.4) can be modified as

(1.6) lim sup, .., (2¥(n) log, ¥(n))~1S, = 1 a.s.

A natural first step in such an inquiry is to assume that the sequence {X,} is
stationary Gaussian since iterated logarithm behavior in (1.4) is closely related
to the tail probabilities of the normal distribution and stationarity at least guar-
antees the ergodic theorem. In this case, Taqqu (1977) has recently shown that
(1.6) indeed holds if for some 0 < a < 2,

(L.7) V(n) = n*L(n),
where the function L is slowly varying and for some positive constants C and 4,
(1.8) |L(m + n)/L(n) — 1] < Cm/n if onzm=C.

Throughout the rest of this paper, we shall assume that {X,} is a zero-mean
stationary Gaussian sequence. In Section 4 below, we study the problem of
sharpening the law of the iterated logarithm (1.6) into an integral test like
(1.5). We shall show that if V(n) satisfies a condition similar to (1.7) and if
#(t) is a positive nondecreasing function, then

(1.9) P[S, > Vi(n)p(n) i.0.] =0 or 1 according as
T (e(n) ¥ texp(—40%(f))dt < 0 or = co.

The case « = 1 in (1.9) corresponds to the classical integral test (1.5) and so
(1.9) can be regarded as a generalization of (1.5).

The proof of the upper-lower class test (1.9) will be presented in Section 4.
It involves two main steps. The first is an estimate of the first exit probability

(1.10) P[S, = Vi(n)d(n) for some c¢* < n < k'] = P(E,), say,

where ¢ is a positive integer > 1. To do this, we make use of the Gaussian
structure of the sequence {X,} together with Slepian’s lemma which enables us
to compare P(E,) with known results on certain first exit probabilities for station-
ary Gaussian processes. The second step is an adaptation of the Borel-Cantelli
lemma so that the probability in (1.9) is 0 or 1 according as the series }; P(E,)
converges or diverges. The key reason why this can be done lies in the fact
that our choice of the geometric subsequence {c*} in (1.10) yields the asymptotic
independence of the events E,. One may recall that in most standard proofs of
the classical upper-lower class test (1.5) for the i.i.d. case (and therefore @ = 1),
the subsequence chosen is {n,} instead of {c*}, where n, = [exp(k/log k)] (see
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Feller (1943), for example). As will be indicated in Section 4, it turns out that
to estimate P(E,) closely, we need to introduce smaller blocks into the large
blocks [c¥, c¥*'] by using finer subsequences like {n,}. However, the geometric
subsequence {c*} turns out to be the “right” subsequence to give asymptotic
independence and an easy adaptation of the Borel-Cantelli lemma, as we shall
show in Section 4.

Since V(n) = nEX® + 2 Y72} (n — i)EX, X;,,, the condition (1.7) on the
growth of V(n) is actually a condition on the autocorrelations of the stationary
Gaussian sequence {X,}. The condition (1.7) covers a wide spectrum of de-
pendence situations: the independent and weakly dependent case (with a« = 1),
the highly positively correlated case (with «a close to 2) and the highly negatively
correlated case (with a near 0). We shall discuss more about this in the corol-
laries of the upper-lower class test (1.9) in Section 4.

In our proof of the upper-lower class test (1.9), we need to use the fact that
S, at least satisfies the upper half of the law of the iterated logarithm (1.6), i-e.,

(1.11) lim sup,_., (2V(n) log,n)"tS, < 1 a.s.

Since stationarity implies that ¥V(n) < n’EX,’, we can replace log, ¥(n) in (1.6)
by log, n. It is interesting to find weak sufficient conditions under which {S,}
satisfies (1.11). In Section 2 we shall show that (1.11) holds under very weak
restrictions (much weaker than (1.7)) on the growth rate of ¥'(n). These results
are proved via a mixture of the classical approach involving subsequences, the
manipulation of the maximal inequalities of Marcus and Shepp for Gaussian
sequences, and the reduction to known results of stationary Gaussian sequences
by means of Slepian’s lemma. Somewhat similar in spirit to these results is the
law of the iterated logarithm established by Orey (1971) for continuous-par-
ameter Gaussian processes with stationary increments and Hdlder continuous
covariance kernels.

Throughout the rest of this paper, in order to avoid “fussy” details, we shall
redefine the function log x (and therefore log, x as well) for 0 < x < e° by setting
log x = e in this interval.

2. Upper half of the law of the iterated logarithm. As the following theo-
rem shows, the upper half of the law of the iterated logarithm can be established
under quite unrestrictive hypotheses, hypotheses which in no way imply that
the X,’s are weakly dependent.

THEOREM 1. Suppose that
(2.1) liminf,_, V(Kn)/V(n) = A > 1 for some integer K =2
and that for each ¢ > 0, there exists p = p(¢) < 1 such that
(2.2) lim sup,_., {max <<, V(@)/V(n)} <1 4 ¢.
Then
(2.3) lim sup,_., |S,}/(2V(n) log,n)t < 1 a.s.
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REMARK. Note that if either V(n) is nondecreasing or max,., V(i) ~ V(n),
then (2.2) holds. It will be shown in Section 4 that if ¥(n) satisfies the assump-
tions of Theorem 4 for the integral test (1.9), then (2.1} and (2.2) hold.

Before proving Theorem 1, we state and prove two corollaries.

COROLLARY 1. Suppose that for all i, j,
(2:4) Cov (X;, X;) = 0.
Then (2.3) holds.

Proor. Clearly V(n) is increasing and hence, by the remark above, (2.2) holds.
Trivially, ¥(2n) = 2¥(n) and hence (2.1) holds. []

REMARK. Note that in the particular case of total dependence given by X; =
X,a.s. fori =1,

|S,]/(2V(n) log, n)t = |X||/(2(EX*) log,n)t - 0 a.s.

This helps explain the apparently surprising fact that assumption (2.4) in
Corollary 1 places no restriction on the amount of dependence between the X’s.

COROLLARY 2. Suppose that for some slowly varying function L(+) and some
0<acxg,
V(n) ~ n*L(n) .
Then (2.3) holds.

Proor. According to the uniform convergence theorem for slowly varying
functions (see Seneta (1976), page 2), L(tx)/L(t) — 1 as t — oo, uniformly for x
in any specified finite interval. Thus (2.1) and (2.2) follow trivially. []

The proof of Theorem 1 depends on the following lemmas.
Lemma 1. (i) If (2.1) and (2.2) hold, then
(2.5) Vi(n) = max,, V(i) € V(n).
(ii) If (2.1) and (2.5) hold, then lim,_, V(n) = oo and
(2.6) V(n + 1)/V(n) - 1 as n—oo.
ProOF. Assume (2.1). Then there exist n, and B > 1 such that
(2.7) V(Kn) > BV(n) forall n>=n,.
Therefore V(n) — oo as n — co along the sequence {n,K’} and so
(2.8) max;, V(i) —» o as n— oo,
Choose 0 < ¢ < K-'. By (2.7), we have for n > n,
(2.9) max, <<, V(i) = max,, <, V(i) .

Suppose (2.1) and (2.5) both hold. Then lim, ., ¥(n) = co by (2.5)and (2.8).
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Moreover, since
[V(n + k) — V(n)| £ ES,* + 2(V(n)ES, )},

it is easy to see that (2.6) holds. Therefore we have proved (ii).
To prove (i), suppose (2.1) and (2.2) both hold. Take ¢ > 0. By (2.2) there
exists 0 < p < 1 such that forallh =1, 2, ...

(2.10) maXx i, cic, V(i) < (1 4 &)*(1 4 o(1))¥(n).
From (2.9) and (2.10) (with & sufficiently large), (2.5) follows. []

LEMMA 2. Assume (2.1) and (2.5). Define V(1) for real t = 0 by linear interpo-
lation of {V(n), n = 0} (setting V(0) = 0). Ler 0 < y < (log A)/log K, where A
and K are defined in (2.1). Then there exist C > 0 and t, > 0 such that for all
s>Litzu,

(2.11) V(st)/V(t) = Cs
and so
(2.12) Viry» rr.

Proor. By Lemma 1, (2.1) and (2.5) imply (2.6). Now, note that
V([Kt])/V(K[t]) — 1. This follows from (2.6) and the fact that |[K{] — K[¢]| <
|[Kf] — K#| + |Kt — K[f]] £ 1 + K. Second, note that min {V([?]), V([¢] +
D} < V(1) < max (V({]), V([1] + 1)} and max (V([Kr]), V(K1] + 1)} = V(K1) =
min {V([K?]), V([K¢] 4+ 1)}. Combining, it follows by (2.1) and (2.6) that for
each ¢ sufficiently large
(2.13) V(KD [V(r) ~ V(LKD) ~ VIKLD/V([e]) > B

where 4 > B > 1.
Let B = K7 define y. By (2.13), for ¢ sufficiently large and j > 1

(2.14) V(Kit)|V(t) =z B = K77 .

For K’ < s < K%, j > 0, 1 large (say r = 1,), we have
(2.15) V(st)[V(Kit) = V(st)[V,(st) = 0

for some positive constant ¢ in view of (2.5) and so

(2.16) V(st)/V(t) = oV(Kt)[V(t) = K776 = (0/KT)s"
by (2.15) and (2.14).

REeMARK. It should be noted that (2.1) and Lemma 2 are closely related to
the concept of dominated variation (Feller (1969)).

LEMMA 3 (Marcus and Shepp (1971)). Let {Y,, i = 1} be a sequence of jointly
Gaussian random variables with P[sup;., |Y,| < oo] = 1. Then, letting o* =
sup;,, Var (Y;), for p > 0 and all sufficiently large t, we have

(2.17) Plsupss, |Yi| > 1] < exp(—(1 — p)12/(20%) .
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Proor orF THEOREM 1. We first assert that for each ¢ > 0,
(2.18) lim sup, ... |S,|/{V}(n)(log n)} < oo a.s.

Before proving this assertion, we now show how (2.18) allows us to apply the
Marcus-Shepp inequality (2.17) to produce the desired result (2.3). Let

(2.19) n, = [exp(k*)],
where 0 < a < 1 is to be chosen below. Fix § > 0. Then by (2.19),
(2.20) P[|Snk| > (1 4 0){2V(n,) log, n,}}] € exp{—(1 + d)*(1 — o) log k} .

But choosing § close to 0 and « close to 1 makes the above expression a term
of a convergent series. Hence

(2.21) P[|S,,| > (1 + 6)(2¥(n,) log,n,)t i.0.]=0.

Now, for n, < n < n,, letting M, = max, cugn,,, [Sa — Suls

(2.22) 1S, < 1S, + M,
Let V, = V,(n,,, — n,) and ¢, = (2¥(n,) log, n,)}. Fixing ¢ > 0 and using the
stationarity of {X;} and Lemma 1, we have for all k sufficiently large
PIM, > dc,] < P[sup,., IS, — S, |/(V¥(n — n,) log: (n — n,)}
(2.23) > oc,[{V Hlogt (neyy — M)}
= Plsupaz |S.]/{V}(n)(log n)}
> e/ {ViH(Mesr — mi) 10g" (nesy — mi)}]

for some ¢ > 0. By (2.18), we can apply Lemma 3 to obtain that for some
& > 0 and all k sufficiently large,

(2.24)  P[M, > dc,] = exp{—{V(n)(logy n)/(V(Miyy — 1) 108% (Miyy — 1))} -

By Lemma 2 and the mean value theorem,

(2.25) V) Ve, — mi) > ko=
Moreover,

(2.26) log® (n,., — M) K k™.

Thus, applying (2.25) and (2.26) to (2.24), we obtain that for all large k
(2.27) P[M, > dc,] < exp{—ku-or-ie}

Noting that a < 1, we choose ¢ small enough so that the right-hand side of
(2.27) is a term of a convergent series. Hence

(2.28) P[M, > ¢, i.0.]=0

for each ¢ > 0. Combining this with (2.21) and (2.22) yields for each 6 > 0
with probability one that for all large k

(2.29) max IS, < (1 + 20){2V(n,) log, n,}} .

PSSRy
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But, noting that n,,/n, — 1, it follows from (2.2) that for n, < n < n,,,,
(2.30) V(ne)/V(n) < max, ., V(i)/V(n) —1.

Thus the desired conclusion (2.3) follows from (2.29) and (2.30).

To complete the proof of Theorem 1, we now show that (2.18) indeed holds
for every ¢ > 0. First an easy application of the Borel-Cantelli lemma shows
that (2.18) holds for ¢ = 3. Now fix 0 < ¢ < 4- We shall apply the Marcus-
Shepp inequality as before to show that (2.18) holds for the fixed ¢. Define n,
by (2.19) where 0 < a < 1 is chosen below, and set

(2.31) b, = Vi(n,)(logn,) .
In place of (2.20), we now have
(2.32) P[IS,,] > bi] < exp(—zk=).
Defining M, as before, we now replace (2.23) by
(2.33)  P[M, > b] < P[sup,., |S.//{V(n) log n}t
> 06, /{V(nysy — m)log (meyy — m)1],
where 6 is a positive constant. Using the Marcus-Shepp inequality (which is

applicable since (2.18) holds for ¢ = }) and arguing as in (2.24)—(2.26) with
the obvious modifications, we obtain in place of (2.27) that

(234) P[Mk > bk] < exp{_k(l—a)r—a}

for all large k. Choose a close to 0 so that the right-hand side of (2.34) is a
term of a convergent series. Therefore (2.18) follows from (2.30), (2.32), (2.34)
and the Borel-Cantelli lemma. []

The preceding proof therefore consists of two stages, the first of which is to
check (2.18) involving the cruder boundary Vi(n)(log n)* so that the Marcus-
Shepp inequality can be applied with this boundary. Now that we have estab-
lished the upper half (2.3) of the law of the iterated logarithm, it is natural to
ask whether we can apply the Marcus-Shepp inequality to the boundary
(2V(n) log, n)* instead to obtain a sharper result than (2.3). Such manipulation
of the Marcus-Shepp inequality gives the following refinement of Theorem 1 in
the case where V(n) is nondecreasing.

THEOREM 2. Suppose that V(n) is nondecreasing and (2.1) holds. Let 0 < y <
(log A)/(log K), where A and K are as in (2.1). Let ¢(r) be a positive nondecreasing
function on [1, 0o) such that

(2.35) §7 17H(p(1) ¥~ exp(—44%(1)) dt < o0 .
Then
(2.36) P[|S,| > V¥n)p(n) i.0.]=0.

REMARK. Let V(n) = n*L(n) for some 0 < a < 2 and some nondecreasing
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slowly varying function L(n). Then lim,_ V(Kn)/V(n) = K*. Therefore Theo-
rem 2 holds for 0 < y < «, and the condition (2.35) already looks quite like the
best possible condition {y 7='(4(7))*' ! exp(—3¢*(7)) dt < oo as given by (1.9).
Although Theorem 2 does not give the sharpest upper-class test, it yields a
much more delicate result than the upper half (2.3) of the law of the iterated
logarithm. For example,

#(t) = {2logyt + (1 + ¢ + 677%) log, ¢}t

satisfies (2.35) for each ¢ > 0. The only additional assumption we have to add
to those in Theorem 1 for this sharper result is that ¥(n) is nondecreasing. As
pointed out before, this simple condition implies condition (2.2) of Theorem 1.
When Cov (X;, X;) = 0 for all i, j, the conditions of Theorem 2 are satisfied, as
has been shown in the proof of Corollary 1.

Proor oF THEOREM 2. By Theorem 1, the upper half (2.3) of the law of the
iterated logarithm holds. Therefore without loss of generality, we may assume
that for all large ¢,

(2.37) #(1) < 2(log, 1)} .

Let ¢(1) = ¢(t) — b/¢(r), where b > 0 is to be chosen later. Now (2.35) implies
that ¢(z) = (log, t)t for all large ¢ (cf. Jain, Jogdeo and Stout (1975), Lemma
2.3), so

(2.38) 1 (16H(1) 7 (logy 1 exp(—h(1)) di < oo .
Let n, = [exp(k(log k)~*7)]. We note that
(2.39) PlIS,| > Vin)d(n)] < ($(m) ™ exp(—3F(m) -

Applying a change of variable ¢+ = exp(u(logu)=*7) to (2.38), we obtain using
the integral-comparison test for series that

2 (B(ne)) " exp(—44*(m)) < oo .
Hence by the Borel-Cantelli lemma,
(2.40) P[|S,,k| > Vi(n)o(n,) — bVi(n,)/d(n,) i.0.] =0.

Let M, = max, ..c,, IS, — S, | Since V(n) and ¢(n) are both nondecreasing
and (2.40) holds, to prove (2.36), it suffices to show that

(2.41) P[M, > bV¥(n,)/é(n,) i.0.] =0.

Let x, = Vi(n,)/{¢(n, )V ¥(n,,, — n,) log, ¥(n,,, — n,)}. As in (2.23), we obtain
that
(2.42) P[M, > bVi(n,)|d(n,)] < P[sup,,, (V(n)log, n)~4[S,| > bx,] .

(Recall that log, x is redefined as 1 for x < e° and is monotone, as stated Section
1.) Since (2.3) holds by Theorem 1, we can apply Lemma 3 to the right-hand
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side of (2.42) and obtain that

(2.43) P[M, > bVi(n,)/d(n,)] < exp(—21b°x.?)
for all large k. By the mean value theorem,
(2.44) Ry, — M, ~ (log k)77 exp{k(log k)=%7} .

Therefore by Lemma 2, V(n,)/V(n,,, — n,) > (log k)®. This together with (2.37)
and (2.44) implies that there exists ¢ > 0 for which x,* = ¢*log k for all large
k. Hence choosing b > 2/c makes the right-hand side of (2.43) a term of a
convergent series, thus proving (2.41). []

3. Lower half of the law of the iterated logarithm. In this section, we con-
sider the problem of finding restrictions on {¥(n)} which imply the lower half
of the law of the iterated logarithm. The following theorem presents a lower-
class test and the remarks which follow give some important special cases and
corollaries of the theorem.

THEOREM 3. Suppose that (2.1) and (2.5) hold and there exist M = 1 and 6 > 0
such that for all m = M and mjn < 0,

(3.1) V(n + m)[V(n) — 1 < M{V(m)|V(n)}}/log, (n/m) .
If ¢(t) is a positive nondecreasing function on [1, co) such that
(3.2) I7 (16(0) 7 exp(—44%(r)) dt = oo,

then P[S, > Vin)¢(n)i.o.] = 1.

REMARKS. (i) The function ¢(f) = (2log,t + log,r)t clearly satisfies
(3.2). Thus Theorem 3 implies the lower half of the law of the iterated
logarithm. Although Theorem 3 does not give the sharpest lower-class
test, the condition (3.2) already closely resembles the best possible condition
02 (19(0)) X (p(1))= exp(—3¢*(t)) dt = oo given by (1.9) under much more
stringent conditions on V(n).

(i) Suppose (2.1) and (2.5) hold and
(3.3) Cov(X;, X)) £0 for i#j.

Then (3.1) is satisfied. To see this, we note that

V(n + m)[V(n) — 1 < V(m)[V(n) = (V(m)[V(n))}/(V(n)[V(m))*,
and that by Lemma 2, V(n)/V(m) = C(n/m) > Clog,*(n/m)if m = hand n/m >
h, for some positive constants C, y, and 4.

(iii) Suppose V(n) = n*L(n) + O(n**) where 0 < a <2, < 4 and the
function L is slowly varying, monotone increasing, and satisfies (1.8) for some
positive constants C and d. Then (3.1) holds. Moreover, (2.1) and (2.2) are
clearly satisfied, and so (2.5) holds by Lemma 1.

The proof of Theorem 3 depends on the following two lemmas. Lemma 4
was obtained by Pathak and Qualls (1973) and independently by Lai (1973)
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under a slightly stronger assumption but as a corollary of a more general result.
Lemma 5 was obtained by Slepian (1962).

LEMMA 4. Let (Y,, k = 1} be a stationary zero-mean Gaussian sequence such
that Var Y, = | and

(3.4 EY,Y, = O(l/log k).
Let (k) be a positive nondecreasing function on {1, 2, -..}. Then
(3.5) PlY, > ¢(k) i.0.] =0 or 1 according as

L7 (P(k) " exp(—4¢7(k)) < oo or = co.

LeEMMA 5 (Slepian’s lemma). Let (Z/, ---, Z)'), (Z,", -+, Z,") be two zero-
mean Gaussian random vectors such that
(3.6) VarZ/ =VarZ/" (i=1, ..., N) and
Cov(Z/,Z/y<Cov(Z",Z”) for 1<i<j<N.
Then for all constant vectors (a,, - - -, ay),
(3.7 P(UL[Z) > a]) =2 (UL [Z" > al]) -

ProOF oF THEOREM 3. Set n, = [e**] where 1 > 0 will be chosen later. Let
Z, = S, [V¥n,). Noting that 2ES,, S, = ES,* + {ES,’ — E(S, — S,.)’}, we obtain
that for 2 < k,

(3.8)  2Cov(Z,, Z,) = (V(m)[V(m))t + (V(ne) — V(ne — my))/{V(m)V(m)}E .
Therefore by Lemma 2, (2.5) and (3.1), there exist positive constants p, C,
and A (which do not depend on 2) such that for all # < k with 22 = C and
Ak — k) = A,

(3.9) Cov (Z,, Z,) < Ce~?e%=h  Cllog (A(k — h)) .

Take 2 = max (4, C, e°). Then (3.9) holds for all k >k > 1. Let r(s) be a
continuous convex (on [0, co)) even function on the real line such that r(0) = 1
and r(r) = Ce=** 4 C/(log at) for t = 1. By Pélya’s criterion (cf. Lukacs (1970),
page 83), () is the covariance kernel of a zero-mean stationary Gaussian process
{Y(1), t = 0}. By (3.9), Cov(Z,, Z,) = Cov (Y(h), Y(k)) for all k >h=1.
Moreover, EZ,> = EY*(k) = 1 for all k. Therefore by Lemma 5,

(3.10) P[Z, > ¢(n) i.0.] = P[Y(k) > ¢(n,) i.0.].
Applying a change of variable t+ = e** to the integral in (3.2), we obtain by
the integral-comparison test for series that 7 (4(n,))™! exp(—4¢%(n,)) = oo.

Therefore by Lemma 4, P[Y(k) > ¢(n,) i.0.] = 1. In view of (3.10), this implies
that P[S, > Vi(n)p(n)i.o.] = 1. []

4. Characterization of upper and lower functions. In this section, we regulate
more precisely the rate of growth of ¥(n) than in Sections 2 and 3. The follow-
ing theorem gives an integral criterion for classifying monotone functions ¢(¢)
into upper and lower classes associated with {S,} sequence.
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THEOREM 4. Suppose that there exist0 < a < 2,7 > a/2, M=>1,6>0,8>0
and a positive sequence {L(n)} satisfying the following conditions:

4.1) n*L(n) € V(n) € n*L(n) as n— oo,
(4.2) [V(n + m)/V(n) — 1| £ M(m/n) if onz=zmz=M,
(4.3) lim sup, ., {Max, g, w-s5;5a L(j)/L(n)} < o0 and

lim inf,_, {minn(logw_psjs” L(j)/L(n)} > 0;
(4.4) Vo>0, dm, and 1 =2, >0 suchthatif A,nz=mz=m
then (m/n)® < L(n)/L(m) < (n/m)° .
Let ¢(t) be a positive nondecreasing function on [1, co). Then
(4.5) P[S, > Vi(n)p(n) i.0.]=0 or 1 according as
{7 (1) exp(—3¢*(1)) di < o0 or = oo

REMARKs. (i) If a function V(.) is regularly varying (with exponent a) and
satisfies (4.2) with y = 1, then it is called smoothly a-varying by Taqqu (1977).
Thus V(n) = n*L(n) in (1.7) is smoothly a-varying since L(n) is a slowly varying
function satisfying (1.8). In Theorem 4, for a < 2, since we only require y >
a/2 in (4.2), our condition is weaker than in the case of smooth variation. Taqqu
(1977, Lemma A2) has obtained the following useful connection between regular
variation and smooth variation: if v(+) is (0 — 1)-varying (at infinity) with o >
0, then V(n) = X %., v(k) is smoothly p-varying.

(ii) The conditions (4.3) and (4.4) closely resemble certain well-known pro-
perties of slowly varying functions. Of course they are not strong enough to
imply that L(.) is slowly varying. On the other hand, (4.3) is a little too strong
for functions which are barely slowly varying. While it is clearly satisfied by
slowly varying functions like log, x (k = 1), it is not hard to construct slowly
varying functions (though of a somewhat pathological nature) which violate
(4.3). Using the integral representation for slowly varying functions (cf. Feller

(1966), page 274), it is easy to see that condition (4.4) is satisfied by slowly
varying functions.

CoroLLARY 3. Letr(n) = EX, X,,,,n=0,1,.... Let L(+) be a positive slowly
varying function satisfying conditions (4.3) ( for some 3 > 0).
(a) Suppose 1 < a < 2 and

(4.6) r(n) ~ n**L(n) .
Then the upper-lower class test (4.5) holds for 0 < ¢(+) 1, and
4.7 V(n) ~ 2{a(a — 1)}~*n*L(n) .
(b) Suppose 0 < a < 1 and
(4.8a) r(n) ~ —n*"*L(n);
(4.8b) r(0) +23x,r(n)=0.
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Then the upper-lower class test (4.5) holds for 0 < ¢(+) 1, and
(4.9) V(n) ~ 2{a(1 — a)}~'n"L(n) .

REMARK. InCorollary 3(b), since 0 < a < 1 and |r(n)| ~ n*~2L(n), 35 |r(n)| <
oo. Hence ¢*> = r(0) + 2 } 7, r(n) is a finite nonnegative number. (The fact
that it is nonnegative is well known; see the proof of Corollary 4 below.)
Corollary 3(b) therefore deals with the case ¢* = 0. The case where ¢ > 0
will be treated in Corollary 4 for a < %.

Proor oF CorROLLARY 3. As shown by Taqqu (1977, Corollary A2), V(n) =
2t 21%=, (i — j) is smoothly a-varying under the assumptions that L(.) is a
positive slowly varying function and that (4.6) (resp. (4.8)) holds for 1 < & < 2
(resp. 0 < a < 1). Moreover, the asymptotic relations (4.7) and (4.9) hold.
Since L(-) is also assumed to satisfy (4.3), Theorem 4 is applicable and the
upper-lower class test (4.5) follows. []

COROLLARY 4. Let r(n) = EX,X,,,, n=1,2, -... Suppose that for some
>3
(4.10) r(m)] < n=* .
Let * = r(0) + 2 37 r(i). If 6* > 0O, then
(4.11) V(n) = a*n + O(n®-*7),

and the upper-lower class test (1.5) holds for 0 < ¢(+) 7.

Proor. We note that

V(ny = nr(0) 4+ 2 222t (n — Dr(i)
= ng® — 2n 32, r(i) — 2 3 12tir(i) = ne® 4+ O(n®=97).

Therefore (4.11) holds, and this implies that (4.2) holds with y = 1 — (2 — ¢)* >
4. Set « = 1 and L(n) = 1 in Theorem 4. The conditions of Theorem 4 are
all satisfied and the upper-lower class test (4.5) reduces to (1.5) since on? =
Vin)(1 + O(n=?%)) with 2 > §. []

ReMARk. Corollary 4 gives immediately the classical upper-lower class test
(1.5) for sums of i.i.d. N(0, ¢*) random variables. By an embedding argument,
Stout and Philipp (1975, Corollary 5.1) have obtained the upper-lower class
test (1.5) for partial sums of nonstationary Gaussian sequences satisfying certain
conditions which in the particular case of stationarity reduce to (4.10) with
e = 2.

The following lemma, which will be useful in our proof of Theorem 4, shows
that the conditions of Theorem 4 imply the conditions of Theorem 1 on the
upper half of the law of the iterated logarithm. Since y > a/2 in (4.2), it is
obvious that the conditions of Theorem 4 also imply the conditions of Theorem
3 on the lower half of the law of the iterated logarithm.

LEMMA 6. Under the assumptions of Theorem 4, (2.1) and (2.2) both hold.
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Consequently by Theorem 1, the upper half (2.3) of the law of the iterated logarithm
holds. Therefore to prove the upper-lower class test (4.5), it suffices to consider
the case
(4.12) o(t) < (3log, 1)t forall large t.
Proor. By (4.1), there exist ¢; > ¢, > 0 such that
(4.13) e;n*L(n) < V(n) < ¢,n*L(n) for all large n.
Let d denote the lim sup in (4.3). Then by (4.3) and (4.13), for every integer
K =2,
lim inf, ., V(Kn)/V(n) Z (c/c,)K* lim inf, ., L(Kn)/L(n) = ¢,K*/(c,d) .

Therefore choosing K such that K* > ¢,d/c,, we obtain (2.1). From (4.2), it is
easy to see that (2.2) also holds. []

Lemma 7. If (4.3) holds for some 8 > O, then it holds for all 5 > 0.

ProOOF. Suppose there exist 5 > 0, 0 < a < 1 < b and n, such that alL(n) <
L(j) < bL(n) for n = n, and n(log,n)™# < j < n. Then for n(log,n)™* < j <
n(log, n)~# and n large,

a’L(n) < aL(n(log,n)~%) < L(j) < bL(n(log, n)~#) < b*L(n) .
Proceeding inductively, we thus obtain that for each k > 1,
L(n) < L(j) < BL(n),
if n is large and n(log,n)™* < j < n. []

LEMMA 8. Assume the hypotheses of Theorem 4. Given 0 < ¢ < min {a/2, y —
@/2}, there exist m, and 2, such that if ,n = m = my, then

|ES, S,|[{V(m)V(n)}t < (mfn) .
ProoF. As indicated in the proof of (3.8), for n = m,
(4.14) 2ES,, S, /{V(m)V(n)}t
= (V(m)[V(n)t + (V(n) — V(n — m)[{V(m)V(n)}t .
By (4.2), there exist m, and 0 < 4, < 1 such that if 3)n = m = m,, then
(4.15) [V(n) — V(n — m)| < M(m/(n — m))'V(n — m).
By (4.13), (4.14) and (4.15), choosing m, and 2, suitably, we have for 2,n >
m = m,, :
|ESy Sl [{V(m)V (n)}?
(4.16) < C(mjny(L(m)/L(n))?
+ Clmf(n — m)}r{(n — m)[(mn)}*{L(n — m)[(L(m)L(n))}}

where C is a positive constant. For A,n = m, wehave n >n — m > (1 = 2)n,
and so by (4.3), L(n — m) < C’'L(n) if 2,n = m = m,, where C’ > 0 and m, is
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chosen large enough. Take any o > 0. By (4.4), choosing m, = m, and 2, <
4,, we obtain that L(m)/L(n) < (n/m)* and L(n)/L(m) < (n/m)f if ,n = m = m,.
Applying these estimates to (4.16), we obtain that for 3,n = m = m,,
\ESw Sl [{V(m)V(m)}t < C"{(m[n)'«=0* 4 (m[n)r=(re7%)
for some C” > 0. [
We now make use of the above lemmas to estimate the first exit probability

(1.10). Our estimates, which are crucial to the proof of Theorem 4, are given
in Lemmas 9 and 10 below.

LEMMA 9. Assume the hypotheses of Theorem 4. Let ¢(t) be a positive function
such that lim,_, ¢(t) = oo and (4.12) holds. Then
(4.17)  P[maxyg, o1 (V(n))74S, = (2°)] < ($(2)) ¥~ exp(—14%(2")) -
Proor. By Lemma 7, we can choose 8 > 3/a and let I(k) = [2¥/(log k)?],
m(k) = [2(log k)?]. For each fixed k, set n; = 2% + il(k), i =0, 1, - .-, m(k).
By (4.2), for k large and i =0, ..., m(k), if n, + M < n < n,,, then
(4.18) V(m)/V(n) — 1| < M{(niy, — ni)/n}” < M(log k)=#7.
On the other hand, if n; < n < n, + M, then since (2.2) holds by Lemma 6 and
V(n) — V(n,)] £ |V(n) — V(n; + 2M)| 4 |V(n; + 2M) — V(n;)|,
(4.18) also holds with M replaced by M’ = 2M, provided that k is large enough.
Therefore for all large k and i = 0, ..., m(k),
(4.19)  (V(n)/V(n))He(2F) — (#(2%))7}
< {1 + 2M’(log k)=*1}H{(2%) — ($(2%))7} < $(2) .
To see the last inequality above, we note that 8y > 1 by our choice of 5 and
so (log k)=#7¢(2%) = o(1/¢(2*)) by (4.12).
" From (4.19), it follows that for all large k,
n?ﬁf) [maxniSnSnHI (Sn - Snl) = (V(ni))§/¢(2k)]
N [MaXogigmu (F(n:))74S,, = #(2%) — 2(4(2°)7']
C NS [Maxgeg,goer S, < (V(m)HB(2Y) — (6(2°)7}]
C [mMaXyg g1 (V(n)) 7S, < ¢(2)] .
Therefore, for all large k,
P[maXyeg,goe+1 (V(n))74S, = $(2°)]
(4.20) < P[maX,gcme (V(1:))74S,, = 6(2°) — 2(4(2%))7']
o+ Y P[max, c.g.. (5. — S,) = (V(1))H/é(25)] -
But by stationarity,
(421) :’ig) P[maxniéns'n”l (Sn - S'nl) = (V(nl))%/qs(zk)]
< 2(log k)’ P[max; <ok g 1y-6 S; = Milggicmuy (V(1:))2/(2°)] -
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By our convention, log,n = 1forn > 1. Also (2.3) holds by Lemma 6. Hence
letting
(4.22) a, = Mingig,gpers (V(n)H/{$(2F) MaX; cotqog 1-5 (2V()) 108, 24)}
we can apply Lemma 3 to obtain
(4.23)  P[MaX;cokog 1-8 S; = MiNygigpmu, (V(n))}/3(24)]
< P[sup;z: (2V()) log, /)7'S; = 4] = exp(—34)’) .

By (4.1) and (4.3) together with Lemma 7, as k — oo,
(4.24) Mingig, cgers V(1) > 2% MiNgg, cpers L(n) > 262L(2F) .
Since (2.6) holds by Lemmas 1 and 6,
(4.25) MaX; pkn0g 1-# V(J) K 2¢(log k)*?L([2*(log k)~])

L 2k(log k)=**L(2%) by (4.3).
Putting (4.12), (4.24) and (2.25) into (4.22), we obtain that for some C > 0
and all large k,
(4.26) (log k)’ exp(—4a,’) < (log k)’ exp(—C(log k)**~)

= o({(#(2))* " exp(—=34*(2"))}) »
since a8 > 3 and ¢*(2*¥) = O(log k).
From (4.20), (4.21), (4.23) and (4.26), it suffices to prove that

(4.27)  P[maXogigmu (V(m:))78S,, 2 6(2°) — 2(4(24)7']

L ((2)) =~ exp(—$4%(2Y)) -
To prove (4.27), let p,(i, j) be the covariance between (¥(n;))"tS, and (V(n;))~*S,,
for 0 < i, j < m(k). We note that for all large k and m(k) =i > j = 0,
, L= o, ) = 1 = §(V(n)V(n)) 4V (m) + V(n;) — V(n — n;)}
(4.28) = $(V(n)V(n))~*V(n — ny)
C"(ny — n;)*L(n; — n;)[{n*/"n;**(L(n:)L(n;))*)
(i = p/(log k)} < C{(7 — j)/m(k)}*
for some positive constants C, C’, and C” by (4.1), (4.3) and the fact that
n, — n; = (i — j)[2¥/(log k)*] and 2% < n;, n; < 2%+,

Let d be a positive integer such that d* > C. Then
(4.29)  P[maxigigma (V(1))72Ss, 2 ¢(2°) — 2(4(24)7]
< 2o PImax, g uzizo-vmma (V(1:) 7S, = 6(2F) — 2(4(2%))7'] -

Let r(r), |t| < d~', be an even positive definite function such that r(0) = 1 and
r(t) < 1 — C|y* for || < d-'. By Polya’s criterion (cf. Lukacs (1970), page

83), such functions exist. Now let {Z(r),0 < t < d~'} be a separable station-
ary Gaussian process with covariance function r(f). For v = 1,...,d and

fiA - 1IA
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vm(k)/d = i > j = (v — 1)m(k)/d, we obtain from (4.28) that for all large &,
(4.30)  pu(h)) 2 1= C{(F = j)/m(k)}* = Cov {Z(i/m(k)), Z(j/m(k))} -

Therefore by Lemma 5 (i.e., Slepian’s lemma) and the stationarity of Z(.), for
all large k,

‘3:1 P[maxum(k)/dziz(v—l)m(k)/d (V(”i))_ﬁsni = ¢(2k) - 2(¢(2k))-1]
(4.31) < d P[maXogizna Z(i/m(k)) 2 ¢(2°) — 2($(2%)7']
< d P[supyg,cq-1 (1) 2 $(2) — 2(4(29))7']
L (P(2)) @0 exp(—3{$(2") — 2$(2")7Y)  as k—oo.

The last relation above follows from Slepian’s lemma and a theorem of Qualls
and Watanabe (1972, Theorem 2.1). From (4.29) and (4.31), (4.27) follows as
desired. [J

LeEmMA 10. Assume the hypotheses of Theorem 4. Let c be an integer > 1 and
let (1) be a positive function such that

(4.32) log,t < ¢*(t) < 3log,t  forall large t.
For each k define the set
(4.33) G, = {c* + i[e*[g" ()] i =0, 1, - -, [367 ()]} -
Then as k — oo,
(4.34)  P[max, ., (V(m)74S, = (c**)] > ((c")¥ 7" exp(—1*(c"™)) -

Proor. For each fixed k, let n, = c* 4 i[c*/¢¥*(c**")] and let p,(i, j) be the
covariance between (¥(n,))7tS, and (V(n;))7%S, . Asin(4.28), for0 < j<i =<
[36¥(c*™)];
(4.35) L= (i, ) = ${2 — (V(n)/V(ny))t — (V(ny)[V(n))*}

+ 3(V(r)V(ny)~ ¥ (n: — ny) .
By (4.1), (4.3) and (4.32), for all large k and 0 < j < i < [§¢%(c**")], since
c* < n;, n; < 2¢kand ny — n; = (i — j)[c*/$**(c**')], we obtain
F(V(n)V(n;)~V(n; — ny)
(4.36) 2 D'(n; — ny)*Lni — ny)/{n*n;X(L(n) L(n;))*}
2 D(i — j)/#* ()}
for some positive constants D, D’. By (4.2), there exist y > a/2, M = 1, and
0 < 6 < 1 such that for all large k and 0 < j < i < O[¢%*(c**)],
2 = (V(n)[V(ny)) — (V(n;)/ V()]
(4.37) = {1 = (V(n)[V(n))H1 — (V(n)/V(n:)) )
< FMH(n — np)[ng}r < SMP(E — J)IPH (TN

Noting that § = (i — j)/¢¥*(c**") in (4.37) and applying (4.36), (4.37) to (4.35),
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we can choose ¢ > 0 sufficiently small (say M?§*" - < D) so that for all large k
and 0 < j < i < O[¢%*(c** )],
(4.38) L= oulls j) 2 3D{(7 = J)/g* ()} -
Let 0 < d < D. Letr(t), |t| < 6, be an even positive definite function such
that r(0) = 1 and
(4.39a) r(t) = 1 — 3djt]* + o(]1]%) as t—0;
(4.39b) r(ty =z 1 — §Djtj* forall | <6.
Such functions exist by Polya’s criterion. Let {Y(r), 0 < ¢ < 6} be a separable

stationary Gaussian process with covariance function r(z). Set u(k) = ¢**(c**").
For all large k and fu(k) = i > j = 0, we obtain from (4.38) and (4.39b) that

pi(is ) = 1 — 3D{(i — jlu(k)}* < Cov {Y(iju(k)), Y(jlu(k))} .
Hence by Slepian’s lemma, for all large k,
P[maxneak V(n))~tS, = ¢(c**)]
(4.40) = P[mMaX<i<pui (V(ni))“isni = P(ct*)]
= P[maxgiggun Y(iju(k)) = ¢(c*)].

Let A(x) = (dx?)~V* and note that A(¢(c*+)) = d="*/u(k). In view of (4.39a),
we can apply a result of Qualls and Watanabe (1972, Lemma 2.3) to obtain

PlmaX,g;<pu) Y(i/u(k)) > ¢(ck+1)]
(441) = P[maxogige/(dl/aA(¢(ck+1))) Y(id”“A(gﬁ(c"“))) > ¢(Ck+l)]
~ p(B(ck1)) @01 exp { — 4@ (ck 1)) as k— oo,

where p is a positive constant. From (4.40) and (4.41), (4.34) follows as
desired. []

REMARK. With the same notation and assumptions as in Lemma 10, we have
obtained that

(¢(Ck+1))(2/a)—1 exp(_%¢2(ck+1)) < P[max”eak (V(n))‘QS,L > ¢(Ck+1)]
= P[maxc"sn§c"+1 (V(n))"i’Sn = ¢(ck+l)]

& (¢(ck+l))(2/a)—1 exp(—%qiz(c"“)) .

The last relation above follows from a straightforward modification of Lemma
9. Now the consecutive points of G, are at a common distance [c*/¢¥*(c*+1)]
apart. By (4.32), when a = 1, this distance is 3» and « c*/log k. If instead of
the geometric subsequence {c*}, we consider the subsequence {v;}, where v, =
[ctiNee ], thenv,,, — v; ~ v,/log j. Thus, partitioning the “large” block [c¥, ck+1]
into “small” blocks of size [c*/log k] is “asymptotically equivalent” to partition-
ing [c*, ¢**'] with those points of {v;} which lie inside the interval [c*, c**'].
The subsequence {v;} is used in most standard proofs of the classical upper-lower
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class test (1.5) for the i.i.d. case. Partly because {v,} is a little too fine, these
proofs of the lower half of (1.5) are rather difficult.

~ With our results in Lemmas 9 and 10, we now proceed to complete the proof
of Theorem 4 by a simple adaptation of the Borel-Cantelli lemma. Such an
easy adaptation (of the “independent half” of the Borel-Cantelli lemma) is
possible because the geometric subsequence {c*} yields a nice asymptotic inde-
pendence property. The following easy lemma gives an equivalent statement
(involving the geometric subsequence {c*}) of the integral criterion in the upper-
lower class test (4.5).

LemMA 11. Let ¢(t) be a positive nondecreasing function on [1, o). Let ¢ > 1
and @ > 0. Then

(4.42) V7 17 (@ (0) ¥ exp(—34%(1)) dr < oo
if and only if
(4.43) 27 (#(0c*))*/ 7 exp(—34%(6ct)) < oo

ProoF. Since ¢(r) is nondecreasing and the function g(x) = x*®~! exp (— 4x?)
is eventually monotone, it follows that (4.43) holds if and only if

(4.44) §7 (§(0c)) " exp(—$¢*(fc*)) du < oo .

Applying a change of variable ¢ = fc* to (4.42), it is clear that (4.42) and (4.44)
are equivalent. []

ProoF oF THEOREM 4. By Lemma 6, we may assume without loss of generality
that ¢*(¢) < 3 log, ¢ for all large r. First we assume the integral in (4.5) con-
verges. Then ¢() 1 co and hence by Lemmas 9 and 11 we obtain that

20 P[maXaegagakrr (V(n) 74, = ¢(25)] < oo
Since ¢(+) is nondecreasing, it follows by the Borel-Cantelli lemma that
P[S, =z (V(n))}¢(n) i.0.] =0,
proving the upper half of the theorem.
Now assume that the integral in (4.5) diverges. As is well known (cf. Jain,

Stout, and Jogdeo (1975), Lemma 2.3 and page 131), we may assume without
loss of generality that for all large ¢,

(4.45) 2log,t < ¢%r) < 3log,¢t.
Let ¢ > 3 be a positive integer to be specified later. Let #,; = c* + i[c¥/¢**(c**1)],
i=0, ..., [$¢¥(c**Y)], and G, = {t};: i = 0, - - -, [4¢¥%(c*™")]}. Define

E, = [max, q, (V(n))74S, < g(c*™)].

By Lemmas 10 and 11, 7, P(E\') = oo (E,’ = Q\E,). Asin the Borel-Cantelli
lemma, we write

(4.46) 1 — P[E/ i.0.] = lim,_. [ P(E))
+ lim,_., {P(Nn E) — II= P(EV)} -
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In order to complete the proof of the theorem, noting the monotonicity of ¢(+),
it suffices to prove P[E, i.0.] = 1. The first limit in (4.46) is zero because
e P(E,') = co. Therefore, we need only prove the asymptotic independence
of the E,’s (for ¢ chosen sufficiently large) in the sense that

(4.47) lim,,_,, lim,_, |P(N2% E,) — [~ PE, = 0.
Let [(k) = [§¢%*(c**")]. As is well known (cf. Qualls and Watanabe (1971),
Lemma 1.5),
(4-48) [N Ex) — TI% PE,
= Zmsknsn 2120 2520 Mty Gp)l S f(B(e54), $(eM+); (2, 1,5)) d2
where r(1,,, t,;) is the correlation coefficient between ( V(1)) 7#S,,,and (V(1,,)) 7S, .»

and f(x, y; p) is the standard bivariate normal density with correlation coefficient
o. Note that for & > k,

hZ ez @) for i< k), j< ().

Take 0 < ¢ < min {a/2, y — a/2}. Choose ¢ > 3 such that (3)c > 4,7, where
Ay = () is as given by Lemma 8. Then, by Lemma 8, for 2 > k = m, and
i < [(k), j < I(h), we have
(4.49) (15> )| < (/1) = B)e* 0 < &,
by choosing c sufficiently large. Therefore taking k,(= m,) large enough, we
obtain by (4.45) and (4.49) that for A > k > kjandi < I(k), j < I(h),0 <2< 1,
S((e*7), §(eH+); r(tuss 1))
(4.50) = (27)7(1 = (3)") 7 exp{—3[$(c**) + #*(c**)
— 2{r(t, ;)| B(*)B( )]}

< n texp{—log k — logh + }(log h)i(log k)}} < n—'k~h~%,
‘Therefore using (4.45), (4.49) and (4.50), there exists A4 > 0 such that for
m 2 ko,

Limsksh 21120 21520 [M(tir tip)|§5 f(B(*HY), G(MH); Ar(tys, 145)) dA

Zimsean (k) + D)(I(R) + D) e Pn=tk""h~
A 3 msien (log h)Y/ecmeh=Rf~th=4
AN w k7 L5 (k4 j)7H(log (k + j))ee
O(Xpmkt D) -0 as m-— oo,
Hence by (4.48), (4.47) holds, proving the theorem. []
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