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ON GENERATORS OF SUBORDINATE SEMIGROUPS

By HENRYK GZYL
Universidad Central de Venezuela, Caracas

Let X be a standard Markov process with semigroup (P,). We show how to
compute the infinitesimal generators (weak and strong) of the semigroup
0.f(x) = E*{m,f(X,)} with m, = exp(—7,) and 7, a right continuous, increasing
strong additive functional; the computation is in terms of the infinitesimal
operators of (P,) and the Levy system of the joint process (X, 7).

1. Imtroduction. Let X = (2, 9N, 9N, X,0,, P*) be a standard Markov process
with state space (E, &), where E is locally compact and second countable and &
denotes its Borel sets (see Chapter 1 of [1] for definitions). Let m, = (m,),5, be a
multiplicative functional (Chapter III, [1]) which we assume to be of the form

(1.1) m, = exp — T,

where 7, is a right continuous positive strong additive functional (Chapter IV, [1])
which we shall assume to be quasileft continuous, i.e., lim 7, = 7 almost surely
for any increasing sequence {T,} of stopping times relative to {91, } with limit T.
For simplicity we assume 7, = 0 a.s. which implies that for all x, P*{my =1} = 1.

We distinguish a cementery point A, which we assume isolated in E, put
¢ =inf{t: X, = A} and we assume that 7, _ = 7, = 7, for any 7 >§.

Then (X, 7) = (&, 9, 9, X,, 7, 8,, P*) is a Markov additive process according
to [2]. We will denote by K, K,, IC and I(, the usual completions of o(X; : s > 0),
o(X,; s < 1), o(X,, 7,: s > 0) and o(X, : s < 1) respectively, with respect to the
family { P* : u finite measure on (E, &)}. Certainly X, c 3(, C 9N, but they need
not be equal.

The structure of 7, can be described relatively to the regular version of the
conditional probability P*{ |} on 9N (the existence of which is 2.20 in [2]),
which moreover is independent of x, as follows: 7, can be written as
(1.2) =1t +i+ 1
where (see [3]) 7¢ is an increasing additive functional of X, ¢ is a pure jump,
increasing, additive functional which is continuous in probability relative to P*{
|X}, and 7/ is a pure jump increasing additive functional whose jumps coincide
with those of X.

The Lévy system of (X, 7) is defined to be a pair (H, L), where H is a continuous
increasing additive process of X and L a kernel from (ExR,, & ® % (R,)) into
(E, &) (i.e., sending a function f € (6 ® (R,)), into a function in &, ), and such
that for any f € (6 ® & ® B (R.)), and any previsible process (Z,),, (see [5])
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976 HENRYK GZYL

the following identity holds for all x € E — {A}.

Ex{2s>OZsf(Xs - Xs’ Ty — T "‘)I{X,_;g.x: or 1, %1, }
= E*[°Z, dH,[¢,p, L(X,, dy, du)f(X,, y, u).

The existence of Lévy systems for Markov additive processes has been recently
proved in great generality by Maisonneuve in [8].
We shall make the following assumption about the kernel L.

AssuMpTION A.l. Let f € bb, the mapping x — [ exr,L(x, &y, duw)f(y)
(1 = e™*) is bounded and finely continuous.

For the definitions of fine continuity, nearly Borel sets, and any other objects or
concepts we deal with and do not define explicitly, the reader should look in [1] or
in [9].

For Section 2 we shall make the following assumptions about 7¢, the continuous
part of 7, and the Lévy system (H, L) of (X, 7).

ASSUMPTION A.2. We assume that 7° = f(a(X,) ds with x — a(x) being finely
continuous and bounded. ‘

ASSUMPTION A.3. We assume that H, =¢.

In Section 2, working under assumptions A.1, A.2 and A.3, we compare the
infinitesimal (resp. weak infinitesimal) generators and the characteristic operators
of the semigroups (P,) and (Q,), where Pf(x) = E*{f(X,)} and Qf(x) =
E*{e""f(X,)} fort > 0,x € E and f € b.

If we denote by 4, A4, @ respectively the (strong) infinitesimal generator, the
weak infinitesimal generator, and the characteristic operator of (P,); and by 4’, 4,
@’ the same objects for (Q,); and by 9,, D, etc., their domains; then we
show that 9, = 9., D; = Dy, Dg C D and that, for example, for f € D,

Af(x) = Af(x) = a()f(x) = [per, L(x, dy, d)f(y)(1 = 7).

In Section 3 we show how to remove hypotheses A.2 and A.3, i.e., that we no
longer need to assume that H, = r and that 77 = [}a(X,) ds.

Let us now briefly recall the notion of subordinate process. It is proved in
Chapter IIT of [1] that if X is a strong Markov process, and m, is a strong
multiplicative functional, one can construct a new strong Markov process b'e (see
3.11, Chapter III, [1]) on a new sample space, etc. such that £ xf(X ) = E*X{m,f(X))}
= Q,f(x) for f € b. Moreover the trajectories of X are right continuous if those of
X are so, and from the formula right after (3.5) (same reference) it follows that for
any stopping time 7, Ef(X ) = E*{m f(Xp)}.

We should also mention that it follows from the work of Sharpe [10] and of
Kunita-Watanabe [7] that if m, is such that for 1 <, 0 <m, < 1, and m, is
adapted to the X,s, then (1.1) with 7/ = 0 in (1.2) is indeed the general case,

2. The infinitesimal generator of Q,. All the statements about weak infinitesi-
mal generators, their domains, etc., that are mentioned in this section and not
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explicitly referenced are taken from or are obvious modifications of statements in
Chapters I, II and V in Dynkin [6].
We will define

Bo={/E€E;|Pf~fIl>0 as 10},
(2.1) Bo={fEE :PAx)>fx)Vx as 10},
Go = {bounded finely continuous functions},
= {bounded continuous functions}.
Then in Section 5 of Chapter V of [6] it is shown that By Cc G C %0 c R, and

that every f € %0 is nearly Borel.

Analogously to (2.1) we define

(22) By ={f€b&:]Qf-fl>0C as 10}
By ={fE€E : Qf(x) >f(x)¥x as 10}

Since we are assuming that m, = 1, from Q,f(x) = P,f(x) + E*{(m, — Df(X))},
from the right continuity of m, and the dominated convergence theorem it follows
that B, = B¢ and $, = ${ and therefore the comments after (2.1) hold for the
subprocess X as well.

Let us now put, fora > 0, D, = U*B,, D; = U*B,, D, = V°Byand Dy, =
VeB,; where as usual U® = [e P, dt and V* = [Fe”“Q, dt, and also the
left-hand side of each defining identity is independent of a. It is also easy to see
that P, By C B, P%O c By, 0B, C By and 0,%, c By. Also, U*B, C B,
U*$y ¢ By, V2B, C By C By, VB, C 6J?> and that aU®% and aV*f both tend
to f uniformly (p01ntW1se) if feB, (f f € %0) It can also be seen that U* and
Ve are both 1 : 1 on B, and B, and that D, c D; c B, C % with ¢, (resp.
;) dense in B, (resp. %0) (Analogous relationships hold for 4’ and 4".)

Let O and O, be the original and fine topologies on E respectively. In Sections 3
and 5 of Chapter V of [6] are defined the characteristic operators @ (&) relative to
O and O, respectively and the following results are of interest to us:

@) If f € D, then f and Af are finely continuous. .
(i) If f € 9D; and Af is continuous then @f(x) = Af(x). .
(iii) If f € D; and Af is finely continuous then @, f(x) = Af(x).

The way to compute 4, A , A’ and A’ from P, and @, is through
={ feB,: l(P,f — f) converges uniformly to g € B, as tiO}
D; = { fed,: (  f — f) converges boundedly to g € B, as tw}
23) D, = {f IS T(Q“f — f) converges uniformly to g € B, as tw}
= { f€E gbo : l(Q,f — f) converges boundedly to g € ‘3'30 as th}.

As usual we have (a — A)U’f = f for f € GJBO and U%(a — A)g =g for g €
Dy; (@ — AYUY = ffor f € B, and U%(a — A)g = g for g € D;; and analogous
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relations for A, A’ and V°. Since U%: B, — D, (resp. U*: ?BO—-)GD,;) and
Ve: By — D, (resp. V*: %, — D;) are bijections with inverses (a — 4) (resp.
(a — A)) and (a — A’) (resp. (a — A")), then there is an obvious bijection from D,
(resp. from D; to D;). The questions are: how big is D, N D,?; what is the
relationship between 4 and 4’ on D, N ,? (and analogous questions for A, A).
For f € &, (resp. ;) it is easy to verify that

(24) (X)) — f(Xo) — [oAf(X,) ds = M,

(and analogously with 4 replaced by A) is a local and locally square integrable
martingale with respect to (2, 9, P*) (see Chapter IV [8]), and therefore that
f(X) = f(Xy) + [LAf(X,) ds + M, is a semimartingale. By the way, if (E, &)=
(R", B (R™) and if the coordinate mappings are in %, (resp. ®D;), then X is an
R"-valued semimartingale. We can now state our main

(2.5) THEOREM. Let (P,), (Q,) be as above, and let f € D,. Assume also that A.1,
A.2 and A.3 of Section 1 hold. Then f € . and for every x € E
(26)  A'f(x) = Af(x) — a()f(x) = [, LAx, dy, d)f(x)(1 = 7).

Proor. The key ingredient comes in from the application of the change of
variables formula (21, Chapter 1V, [9]) to m, = exp(—7,) to obtain

(27) m, = my — fﬁms - de + 20<s<t{(ms - ms—) + ms—ATs}
= mO - f:)a(Xs) dS‘ - 20<s<te—.r(s_)(l - e_AT:)'

From the comment right after (2.4) and taking into account that the trajectories
of m, are of finite variation, then (from 23.2, Chapter IV, [9]) it follows that

(2.8) d(mtf(Xt)) = m,_df(X,) + f(X,) dm,.

Let us compute a¥*(x). From (2.7), (2.8) and our assumption on 7, it follows
that

aVf(x) = E*[Pe f(X)d(—e™*) = f(x) + E*[5e”"d(e”"f(X,))
aV*f(x) = f(x) + E*[fe~%e~"' D df(X,) + E*[§e”"f(X,) dm,
= f(x) + E*[Qe~%e "Af(X,) dt — E*[Fe”“f(X,)a(X,) dt
—E*Ss0e” % f(X)(1 — e75%)
= f(x) + E*fPe "% "Af(X,) dt — E*[Fea(X)f(X)) dt
— E*[e™ e~ "d(s N\ §)f exp, L(Xp &, du)f(y)(1 — €7)

where in the fourth step we used the fact that E*f{e”*e~"- dM, =0 since
e~ e~ ™~ dM, is a martingale which is zero at ¢ = 0 according to Theorem 20,
Chapter IV, [9]; and for the fourth step we used the definition of Lévy system given
in Section 1. Also, since f is bounded and by our assumption on the Lévy system,
x> [ e, L(x, dy, d)f(y)(1 — e™") is bounded.

We have proved that

29 Ve(a — 4 = a() + LO)A(x) = f(x)
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where a(*)f(x) = a(x)f(x) and L()f(x) = [ gz, L(x, dy, du)f(y)(1 — e™*).

From (2.8), and a similar computation, one obtains
(2.10)
0.f(x) = EX{mf(X,)} = f(x) — E*[oma(X)f(X,)f(X,) ds

+E*[om Af(X,) ds — E*[om,d(s N\ §) ger , L(X,, v, d)f(y)(1 — e™*);

then taking into account our regularity assumptions, from (2.10) it follows that
211)  Af(x) = Af(x) = a()f(x) = [ per L%, dy, du)f(p)(1 — e7¥)
and (2.9) can be rewritten as V*(a — A")f(x) = f(x) Vx € E.

(2.12) CoROLLARY. Under the assumptions of Theorem (2.5) it follows that D =
@ A/o

ProoOF. From Theorem (2.5) it follows that D, c ), and there is a bijection
between the two sets.

REMARK. To know whether 4 and A’ determine the processes X and X (up to
equivalence, at least) one should know whether it is possible to extend (P,) and (Q,)
from %, to transition semigroups on b& in such a way that Qf < Pf, Vi,
Vf € &, holds. Then one would have to prove that the process with transition
semigroup (Q,) can be made equivalent to a process obtained by subordination
from the process associated to (P)) with respect to a multiplicative functional
equivalent to m.

The proof of the next theorem can be carried out in the same way as the proof of
2.5).

(2.13) THEOREM. Let (P,) and (Q,) be as above, and assume that hypotheses A.1,
A2and A3 hold. Let f € D;, then f € Dy and D; = Dj,.

PROOF. The fact that 9 i = D; follows from D; c 9D;, since there is a
bijection between % ; and ..

In order to prove that 9 ; i C ; we take h € ; and write it as & = U°f for
some a > 0 and some f € By, and prove that lim,o{ Q, U%f(x) — U°f(x)}~! exists
for every x € E. All we need to note is that U°f being in D ; implies that U “f(X,) is
a semimartingale and that, as in the proof of Theorem 2.5,

HQUY) - U) = L Expraevixy)

E*[4U(X,)de ™™ + = fte "¢ dUf(X,)

E*[5US(X,)a(X,) ds
= L E*fhe (s A §)] pun, L(X,, d, di) USF(p)(1 — e7)

+ %E" [te " AU(X,).
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Taking limits as 7]0, we see that convergence takes place as desired to
(2.14) A'U%f(x) = A'h(x) = Ah(x) — a(x)h(x)
= Jexr, L(x, dy, du)h(p)(1 — ™).

REMARK. (2.14) gives an explicit way of computing 4’ in terms of 4 and (a, L).

We mentioned in Section 1 that the subordinate process X wasa right continu-
ous strong Markov process, and therefore one can define its characteristic opera-
tors @ and @; relative to the O and 0, topologies on E, and we have:

(2.14) THEOREM. Let (Q,), (P,) be as above and assume that A.1, A.2 and A.3 hold.
I;etf (S GD@, thenf (] GDar and

@15 @f(x) = @f(x) — a(x)f(x) = [per,L(x, dy, du)(1 — e™*)
Jor every x.
REMARK. The same theorem holds true for € and @’ replaced by &, and &;.
Note also that if we allow @ not to be defined at every x € E, then @’ would only
be defined where @ is.

Proor. It follows as in the previous theorems from

e " Df(X7) = [§A(X,)d(e™™) + [§e~"C7) df(X,)
for any stopping time T. Note that for x # A, and _putting T' = T(U) = inf(z >
0:X,& ), T=inf{r: X, & U} we have £*{f(X7)} = E*{e~"Df(X,)} and

EX{T} = E*[le~" dt
and it is not hard to verify that
E"{fg(%)e"' dt}/E*{T(U)} -1
when we take any sequence of neighborhoods QU decreasing to x such that
T(U)|0.

The results of this section generalize some of the results of Section 4, Chapter IX
of [6].

3. Reduction to the simple case. As we said before, in this section we prove
that in order to compute the characteristic operator of (Q,), our assumptions about
77 and the Lévy system of (X, 7) are good enough.

In this section we will be following [4] quite closely and we shall assume that

m, = exp — 7, where 7, is a quasileft continuous strong additive functional such
that

=1+ T+ 'r,f
where 7¢, the continuous part of 7, is a continuous additive functional of X; 7%is a
pure jump increasing additive process which is continuous in probability with

respect to P*{ |H}; and 7/ is a pure jump increasing additive process whose jumps
coincide with those of X.
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Let (H’, L) denote a Lévy system for (X, 1), with H’ being a continuous
additive functional of X and L’ a transition kernel such that for all positive
fEE®E ®BMR,),allx e Eandt >0,

E* {20<:<pf(X:—’ Xs’ Ts — Ts—)I{X,- #X, or 7,_ #*1,}
= E*[o dH] [, L'(X,, dy, du)f (X, y, u)

Again as in [4] we put
32) H = H  + 1+t

Then H, is a strictly increasing continuous additive functional of X. There exists
positive, & -measurable functions a(x) and A(x) (Chapter V, [1]) such that

(3.3) m° = [ba(X,) dH,, H, = [th(X,) dH,.
We shall also define
G4 L(x,.,.) = hx)L(x.,.)
(3.5) L(x, B) = L(x, {x},B), L/(x,4,B) = L(x,4 — x, B)
(36)  K(x,A)= LY(x, A,R,), F(x,y; B) = L6 B)
K(x, &)
where L9 describes the jumps of 7¢ given X, and F describes the jumps of 7/ given

that X has had a jump (see [4]).
From (3.4), (3.3) and (3.2) it follows that

Ex{zs<tf(Xs—’ Xs’ Ts — Ts—)I{X,_#X, or'r,_#:‘r,}}

= Exf:) stfExR+(Xs’ dy’ du)f(Xs’ Vs u)

for all x € E, t > 0 and positive f € & @ & ® B(R,).

Let us now define o, = inf{s : H, > t}. Since H, is continuous and strictly
increasing, it follows that o, is continuous, strictly increasing and o, = lim,_, o,
= 0. If we define ¥,=X,, §,=1,, 7=, 7, = M, b,=49,, “then we can
restate Proposition (2.35) of [3] as:

(3.7) PrOPOSITION. Let (X, 7) be a Markov additive process having a Lévy system

(H, L) with strictly increasing H. Let (o,) and (Y,, S,),50 as above. Then (Y, S) =

(SZ T T Y Sy 0,, P*) is a Markov additive process with Lévy system (H L), where
=t A f and f H,.

We also have the following two results taken from [1].

(3.8) PROPOSITION. Let X be a standard Markov process; then Y (the time change
of X relative to 0,) is a standard Markov process with lifetime { = H,.
This is exercise (2.11) in Section 2, Chapter V of [1].

(3.9) ProPOSITION. Let X and Y be as above. Then X and Y have the same hitting
distributions.
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This corresponds to the comments at the beginning of Section 5, Chapter V of
[1]. Recall that this means that if D € & and T =inf{t >0: X, € D}, T’ = inf
{t>0:Y, €D} andf €&, then for all x € E, E*f(X7) = EX(Yyp).

In Section 1 we denoted by X the canomcal subprocess corresponding to e~ ™.
Let us now denote by Y the process X and state

(3.10) LeMMA. The process Y, is the canonical subprocess (of Y) corresponding to
S, = Topr

ProOF. Letf € bG, then E*(X,) = E*{e~"f(X,)) for all x € E.

From T’ = or for T =inf{t >0: X, € D} and T"=inf(r>0:Y, =X, €
D}, and T’—o* for T = inf{z >0: X, € D} and T = inf{z > 0: Y, = X €
D}, the following proposition follows easily (see comment at the end of Remark
5.9, Section 3, Chapter V of [6]).

(3.11) PrROPOSITION. The processes X and Y both haoe the same characteristic
operator. The same holds true for the processes Xand Y.

Now, to end up this section, recall that D, c Dy C D7 and D, C Dg C D;..
Therefore as far as 4 and A’ (resp. @ and @) goes, there i is no loss of generality in
working under the assumptions of Section 2. As far as A and A’ goes, we do not
lose anything if we work with functions f such that 4 4f is continuous (resp. finely
continuous) for then Af(x) = @f(x) (resp. Af(x) = @, f(x)) and A’f(x) = @'f(x)
(resp. A’f(x) = @, f(x)) for all x € E.

4. A generalization of the Feynman-Kac formula. Suppose we have a standard
process X = (&, 8, 8,, X,, 6, P*) on (E, &) with infinitesimal generator 4 defined
on %, and dense in %,. Suppose moreover that we are given a finely continuous
function a(x) and a kernel L(x, 4, B) from & ® B (R,) into & such that x —
L(x, A, B) is finely continuous, V4 € &, VB € B(R,).

Assume that from these ingredients one can construct a Markov additive process
X, ) =@®, 9, ¢M,, X,, ,, 8,, P*), such that X = (Q, O, I, §,, X,, P*) is a
standard process, equivalent to X, and that 7 is an increasing strong additive
functional such that ¢ and L are as in Section 1, then we have

(4.1) THEOREM. With the notatzons introduced above, if f € D ,, then the solution
(s, x) of
W(t’ x) = AU(¢, x) — a(x)WU(¢, x) — [grL(x, dy, du)U(2, x)(1 — e™*)
with (0, x) = f(x) is given by U(t, x) = E*{e”"f(X,)}.
But we are leaving the point as it is for the time being.
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