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MAXIMUM IN THE LEVY-BAXTER THEOREM FOR GAUSSIAN
RANDOM FIELDS

By TAkAYUKI KAWADA
Kobe University of Commerce

The range of almost sure limits of F-variation for a class of Gaussian
random fields is considered by adopting a class of sequences of partitions in the
parameter space of the random field. The application to Lévy’s Brownian
motion explains, in the case of two-dimensional parameters, that the almost
sure limit given by Berman is the maximum in a range.

1. Introduction. There is a series of results on the variation of stochastic
processes, especially of the Brownian motion and of Gaussian processes, most of
which give a single almost sure (a.s.) limit of the variation, even when a class of
sequences of partitions is considered.

The a.s. limit of the variation for a stochastic process depends in general on the
sequence of partitions. A main object of this paper is to define a class of the
sequences of partitions which generates not only one value, but a range of a.s.
limits of the variation for a class of Gaussian random fields. In Section 2, we define
this class and F-variation as a generalization of the ordinary quadratic variation. In
Section 3, the a.s. limit of the F-variation along each element of this class is
indicated, and, moreover, a condition is given under which it attains the maximum
in this range of the a.s. limits. An application of this model to Lévy’s Brownian
motion is given in Section 4. This shows in the case of two-dimensional parameters
that the a.s. limit given by Berman [1] is the maximum in the range.

2. Preliminaries. Throughout this paper we shall consider a class of real,
mean-zero Gaussian random fields {X(t); t = (¢}, t,, - - - , £,) €[0, 1]}, and it is
assumed that there exists a function § satisfying

E(X(t) — X(s))* = S(it - s|),

where |x|* = x} + x3 4+ - - - + x2, for x = (x;, X, - - , x;). The function § is
called the structure function of X. Then X has stationary increments.

The kth axis of the parameter space [0, 1]° is equally partitioned by a positive
integer a,(n), k=1,2,---,d, n=1,2,-- - ; ie., the mesh in the kth axis is
a; '(n). The number of cells in [0, 1] obtained through this partition is [[% _ ,a,(n).
Denote this by N{a(n)}. For the case g (n) = a(n) (k=1,2,---,d) write
N(a(n)). Set A4;(n) = N{a,(n)}/N(a,(n)), k = 1,2, - -, d. The sequence {A,(n)}
satisfies [1%_,4,(n) = 1.

Received March 9, 1977.
AMS 1970 subject classifications. Primary 60G15; Secondary 60G17.
Key words and phrases. Gaussian random fields, structure function, F-variation.

173

[28
3G 5‘&5
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to o2z

The Annals of Probability. EINERY
WWw.jstor.org




174 TAKAYUKI KAWADA

Define the mixed-increment of X(t) for t = {#} and s = {5}, (5, < : k=

,2,---,d)by
AdeAd_ l-"d—l e Al-"lX(t)’
where
Aksl"\’(t) = X(tl’ IR P ’td) - X(tl’ TSkt T td)~

Denote simply by Y; , the mixed-increment for t = {ira,"'(n)} and s = {(§ —
Da,~'(n)}, (i = {i}; i is an integer such that 0 < i < @g(n), k=1,2,---,d)
and by c(i, n) the cell {u= (u;, uy, - * - , u)|(ix — Da,~'(n) <y < iva,~'(n)}). In
what follows, we omit the subscript n from several sequences dependent on n when
it does not invite confusion. The increment-stationarity implies for each i that
E(Y}) = E(Y),1=(1,1,- - -, 1). Moreover, E(Y}) has an expression in terms of
the structure-function S:

0y E(le)/zd_l = 27(=1S((ak_2)%) - 2i<jS((ai_2 + aj_z)%)
+2,~<,<kS((a,."2 +a7 2+ ak‘z)%)
-+ (—-l)‘i_lS((al‘2 +a, 24 + ad‘z)il).

Here, we introduce a class of sequences of partitions. Denote by Q the class of
sequences of partitions {a, ~'} in the parameter space [0, 1] satisfying the follow-
ing conditions:

(D.1) 2,G(n)/(N*{a}E(YD))* < oo;

(D2 =4_,= N V4a,) < oo;

(D.3) Each 4, = N{a}/N(a;) tends to a constant L, €[0, 0], as n

-0, (k=1,2,---,d),

where G(n) = S, 8%(n; i, ), g(n; i,j) = max* D*(t, s)S(lt — s|), (D*t, s) =
0% /ot,0t, - - - Ot,0s, - - - 0s,;), max* denotes the maximum over all (t, s) € c(i) X
c(j), c(i) and c(j) being mutually component-wise disjoint, and X ,, denotes the
summation carried out over all pairs of such cells.

Next, we shall impose the condition (M) for X: there exist a positive exponent 8
and a continuous function M satisfying

(M.1) For a sequence {a,~'} satisfying (D.3), N®{a}E(Y])—> M({L,})
as n— oo;
M2) If |A(n)|— 0, (A= (A}, dyy- - -, Ay), then. M({L}) = 0.

Further, we shall define F-variation. Take F(u) = |u[*, (§ > 1; § an integer).
The F-variation for a sequence {a, '} is defined by
2F( Yi)/N{ak}l—Bsy

where the summation extends over all cells constructed for the partition {a,~'}.
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Finally, we set 07 = E(Y}) and we note an inequality concerning F and mixed-
increments;

@ E(F(Y) F( Yj)) E(F( Yi))E(F(Y)) const. p*(¥; Yj)F2(01),
where p is the correlation coefficient between Y; and Y; (cf. [1]).

3. Model.

PROPOSITION 1.  For each sequence {a,~'} € Q,

lim,_, S, F(Y)/ Ny = FIMA({L )] 2 03 exp(—x2/2) dx/Qm)3,
if Li#0,k=12---,d;
=0 .otherwise

almost surely.
PrROOF. In the first place we show that
S, Var(SF(Y)/Nay' ™) < oo.
In the relation
Var(Z,F(Y)) = 2, i)(E(F (Y)F ( Yj)) — E(F( Yi))E(F ( Yj)))’

we separate the right hand side into 2,y and X p); the former is for the pairs (i, j)
for which c(i) and c(j) are mutually component-wise disjoint, and the latter is for
the others. In X ,), the relation

E(Y;Y) = (" %)ffc(i)Xc(j)D(t, 92°S(|t — s|) dt ds
‘and the inequality (2) work. Then we have, applying the same letter C for various
constants,

S/ Nay™ ™" < CN (4 * B~V F(0,)Z)lo( Yy VI
_ _2\2 . o
< CN 4P~ VF(0,)( N0y %) S8’ )/ EX(Y7)
28 2
< C(NayPF0p'’?) " G(n)/ (N(ay’E(YY))

2
< CH(N (4yP0}) G(n)/ (N0 ’E(Y7)) -
The convergence of X 4, stems from (D.1) and from (M).

Next we have for the summand in X, a majorization by E 2(F 2( Y)) -
Ex(F *(Y})), which is equal to E(F*(Y,)), and note that the number of the pair (i, j)
appearing in 3 g, is bounded by a constant multiple of N, , %24 _,a,~"). Then we
obtain

S/ N0 < C(S1. 0~ W E(F(10) /N0
< C(24.1a, ") F(N 4, P0}).
This, (D.2) and (M) imply the assertion for the part Z .
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In the second place we observe that the almost sure limit exists for each {a, ™'}
in Q. The stationarity of increments implies that

E(ZK( Yi))/N{ak}l—ﬁs = N(ak)mofsfw x? exp(—x2/2) dx/ (277)%
= F((N(qy02) )/°° x exp(—x2/2) dx/ (2)?.

If some A4, diverges here (or equivalently, converges to zero under the condition
4_,4, =1), F(N {ak)ﬁaf) ) tends to zero by the condition (M.2). If every A4,
converges to a positive constant L,, (k =1,2,- - - , d), the almost sure limit is
F(M Lk))%) % % exp(—x2/2) dx /(2m)7. This completes the proof.

REMARK 1. Q contains a sequence {a, '} along which the a.s. limit of F-varia-
tion of X vanishes.

REMARK 2. If L; #0,j=1,2,---,d holds in Proposition 1, then we have
a(n) = 0(a,(n)) as n —o00,i=2,3,- - ,d. (The converse statement is trivial). In
fact, assume a,/a; — 0 in A4,. Since Ll # 0, there exists a number i(1), (1 < i(l) <
d) for which a,,,/a; — oo. Next by L,;, # 0, we have i(2) such that g,/ ;) — oo.
Take 4,,, and repeat the above procedure. Continue it until we find a number i(p),
(» < 9g), equal to some i(h) € {1, i(1), i(2),- - -, i(p — 2)} (we can find such i(p)
after, at most, d! repetitions of the procedure) and take the product; (a;y)/ @+ 1))
@ih+1y/ Gn+2) * * * (@ip—1y/ Gipy) = 1. The left-hand side tends to zero as n — .
This is a contradiction. The other cases are proved similarly.

PROPOSITION 2. If M is differentiable, then a sufficient condition for the existence

of a maximum of the F-variation limits is the existence of solutions of

G) xDM({x}) = xDiM({x}), D;=98/3x,j=12-"",4d,
subject to the conditions 1% ,x;=1,x,>0,i=1,2,---,d.

ProOF. The value of the limit depends only on F(M((xk})%), subject to the
condition I[9_,x; =1, x, >0, i=1,- - - , d. The rest follows immediately using
Lagrange’s multiplier and condition (M.2).

4. Lévy’s d-parameter Brownian motion. Let {X(t): t € [0 11}, (d > 2) be
Gaussian random fields with E(X(t)) = 0 and E(X(t)X(s)) = 3)([t|* + [s|* — [t —
s|*), @ € (0, 2). The structure function S(u) of X is S(u) = |u|*, a € (0, 2). Lévy’s
d-parameter Brownian motion corresponds to the case a = 1. Since we have (i)
Dy S)ZdE(X(t)X(s)) = (—3)D oIt — s|* and (i) D *%* < const./r?*=, (r =
4 _\xD)? ), we can set G(n) = const. /(min, {a, ~'})*?*?~9 in (D.1). Define a func-
tion M, for {x,} = (x,,xz,- e x)(x,>0,i=1,2,---,d) by
M({x})/297 = 24 _ (5D = S (32 + x2)** + E,<,<k(x + x2 + x2)

a/2
2)2

a/2

—---+(—1)"“(xf+x§+--- +
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This M, ({x,}) satisfies the condition (M.2) (cf. Appendix). For a partition {a™"}
in [0, 11 (see () E(YD) = M,({a,""}), and NE{a} E(YD) = M({4,"/}), (B =
a/d). Moreover, for the M,({x,}) in equation (3) {x, =, k=12,---,d} is a
trivial solution. But we obtain in the case d = 2 the following theorem:

THEOREM. For d = 2 let {X(t) : t[0, 1]} be the present Gaussian random fields.
Set F(u) = |uf®, (8 > 1:8 an integer). Define Q, = {{a,”'} € Q; lim,_,a,(n)
/ay(n) = 1}. Then the almost sure limit of the F-variation of X, S,F(Y)/N,,'~®,
(B = a/d), along any {a,~'} € Qy, attains the maximum

(@) F(ME((1)=.ox% exp(—x2/2) dx/ (272,
in the range of almost sure limits for all sequences in Q.

PrOOF. M, ({x,}) satisfies the condition in Proposition 2; more strictly equation
(3) has a unique solution. For {x,}, set x, = x,(1 + x), (x > — 1) and eliminate x,
from the equation. Then we get (y — 1)*/2 — (y = 2)/y'™*?=1,(y =1+ (1 +
x)?). Denote the left-hand side by g(y) and solve for y in g(y) = 1. A calculation
shows that g(1) = g(2) = 1, g(») is the unique maximum in [1, 2], and g'(y) <0
for y > 2. Thus we have the unique solution y = 2; i.e., x = 0. Accordingly, the
original equation (3) has the unique solution x, = x, = 1. Thus the a.s. limit of the
F-variation attains the maximum when lim,_,  A4,(n) = lim,_, ,4,(n). The relation
(a,/a,? = A,/ A, completes the proof.

COROLLARY. For d =2 let {B(t):t€[0, 1} be Lévy’s two-dimensional
Brownian motion. Set F(u) = |ul*’. Then the sequence {a,'(n) =27"; k = 1,2} is
_in Qq; ie., for the a.s. limit of F-variation of B it gives the maximum, which is (4) for

a=1andd =2 (cf. [1], [2]).
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his hospitality during its preparation at Granada University.

APPENDIX
When |A| — oo, one can assume without loss of generality that 4; — oo, (=
1,2,---,pip<d—1),4; (= A4/4,1<k<j<p)->cy; €[0, ) and 4, -
¢, €E[0,00), (h=p+1Lp+2,---,d) where ¢, =C2=""" = Guq1=
0(1 < ¢ — 1 <d — p). Then we rewrite:

Ma({Ak}) = 27=1A1a{1 - 21<i|(1 + Ag.)a/2 + 21<i|<i2(‘1 + AI%. + Agz)a/z -

d-1 . 2 2 4., 2 /2
+ (_ l) 21<i1<i2<"’ <,‘d_,(l + AIi, + AIiz + +A’id—l) }

a/2 a/2
+2§=F+I{A: - 2h<i|(A’3 + Ajzl) + 2h<i.<iz(A'% + AJ% + AJ%)

- 2 L. 2 a/2
— - + (_l)d h2h<f|<iz<"'<fd—h(A’% + Aj| + ' +Ajd-h) }.
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In the first summation take / = 1 and estimate the order in the bracket as |A| — oo.
For / > 1, the proof is quite similar, as follows. Count the number of *+1 and, in
general, of the terms like (1 + 4f, + - -+ +4})¥%2<i; <i, <+ <i;<p.
For the former, count the terms including only 4,,, (p + 1 < i, < d), applying the
Taylor expansion. For the latter, exclude (1 + 4}, + - - - +4},)*/?, if necessary,
as (T + 3'A%)*/? = T/ + (3'A%,/ T))*/?, where S’ denotes a sum over some
k’s, (k >p), and apply the Taylor expansion. They both accumulate to
S422(—1)%,_,C,, which vanishes. The order of 4,, as |A| - o, is 0(A4{Z,-,,47,)-
For the second summation, count the number of the terms which tend to i(cj% +
GH +E) (p+ g <) <jy<: -+ <Jn<d), taking into account that
A, -0, (h=p+1,p+2,---,p+ q— 1), which accumulates to
24 26(— 1¥,-,C,, which also vanishes.
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