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LAWS OF LARGE NUMBERS FOR D|0, 1]

BY PETER Z. DAFFER AND ROBERT L. TAYLOR
University of South Carolina

Laws of large numbers are obtained for random variables taking their
values in D[0, 1] where D[0, 1] is equipped with the Skorokhod topology. The
strong law of large numbers is obtained for independent, convex tight random
elements {X,} satisfying sup,E||X,||7, < oo for some r > 1 where || X, =
SUPg<,<1]X(?)|- A strong law of large numbers is also obtained for almost surely
monotone random elements in DJ[0, 1] for which the hypothesis of convex
tightness is not needed. A discussion of the condition of convex tightness is also
included.

1. Introduction.. Let D denote the space of functions x: [0, 1]— R which are
right-continuous and possess left-hand limits at each ¢ € [0, 1]. Suppose D is
equipped with the topology generated by the Skorokhod metric d, and let %) denote
the Borel field of this topology. Let (X,) denote a sequence of random elements
(re’s) in (D, D) and put X, = n~'S% _,X,. Some laws of large numbers (LLN’s)
are proved for D, i.e., conditions under which
(1.1) lim, ,.d(X,, &) =0
for some mode of convergence, where j, = n~!=" _ EX,.

The fact that the Skorokhod topology on D is not locally convex motivates the
definition of convex tightness of a sequence (X,) of r.e’s in D (or of their
probability measures). The main result is Theorem 1 which states that the strong
law of large numbers (SLLN) holds (i.e., (1.1) holds almost surely (a.s.)) for
independent convex tight r.e.’s in D satisfying sup, E|| X, ||>, < oo for some r > 1,
where ||x||,, = supoc,«|*(?)]. Theorem 2 provides a SLLN for almost surely
monotone r.e.’s in D, for which the hypothesis of convex tightness is not needed.

When the r.e’s (X,) take values in a complete subspace E of D which is
separable with respect to the uniform topology on D, convergence can be treated in
the uniform topology relativized to the subspace E, and the whole arsenal of results
for r.e.’s taking values in a Banach space can be applied. This situation is also
discussed in Section 3.

In general, the use of the uniform topology does not suffice, and the convergence
of the r.e’s must be investigated using the Skorokhod topology. The Skorokhod
topology on D is separable and has proved extremely fruitful for the study of
convergence of probability measures on D, and many central limit results and
invariance principles exist (see Billingsley [1]). The Skorokhod topology, however,
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has many troublesome properties which emerge in studying almost sure conver-
gence or even convergence in probability for D. The metric 4 is not translation
invariant, addition is not a continuous operation, and the topology is not locally
convex.

The strong law of large numbers for independent, identically distributed r.e.’s in
D was obtained by Rao ([8]). The central limit theorem in D has been investigated
in detail by Hahn ([3], [4]), and a law of the iterated logarithm and several
consequences thereof have been obtained by Kuelbs ([7]). The convergence of
random series in D has been investigated by Kallenberg ([6]).

2. Preliminaries. Let d(x, y) denote the familiar Skorokhod metric on D and let
[l x|l = SUP, o, 1jl x(?)|. Without express mention to the contrary the space D will
be taken to be equipped with the Skorokhod topology. The Borel field %) on D is
generated by the finite-dimensional cylinder sets, and a random element in D is a
measurable map from a probability space (2, , P) into (D, D). A random
element X in D is characterized by the property that X(f) is a random variable for
each ¢ € [0, 1] (1], page 128).

With the Skorokhod topology, D is not a topological vector space (addition is
not continuous, for example) and the use of the Pettis integral for expected value
does not follow naturally. However, the expectation EX can be defined pointwise
by (EX)(?) = E[X(9), ¢ € [0, 1], provided that EX € D. The “simplest” sufficient
condition yielding EX € D is E||X||,, < oo, and will be included in the hypothesis
of existence of EX. For J C [0, 1] let

wy(J) = sup, e,|x(s) = x(2)l,
. and define
w(8) = inf max,_, ... ([t 1))
where 8 > 0, and the infimum is taken over all partitions 0 = 7, <#; < - -+ <
ty_y <t,=10f [0,1] such that min,{#, — £,_,} > 8. Then x € D if and only if
lims_ow (8) = 0 (1}, page 110).

’-I,»‘he following operator will play a fundamental role. Define J,, ; = [(i —
n2=m 27", i=1,---,2" - l;and J, ,m=[2" - 27", 1 m=1,2,--- .
For x € D define
(2.1 T,x = 2%:1)‘(‘1_;:_1)11,,,_,
where I, is the indicator function of the set J. Then for each positive integer. m,
T,:D—D, cD and T, is linear (however, T,, is not continuous). We have
dim(D,,) = 2", D,, C D,,,, and UD,, is dense in D.

Thg following facts about 7,, are easily established:

1) lim,, ,,d(x, T,x) = 0 for each x € D;
() d(x, T,,x) < w,(2™™) + 2~™, for each x € D and each m.

The following lemma thus follows directly from (2).
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LemMa 1. If K is a compact subset of D, then
(2.2) lim,, , sup, ¢ xd(x, T,,x) = 0.

The operation of buildi‘n"gv the closed convex hull of a set does not preserve
compactness in D. This motivates the following definition.

DEFINITION. A family _(X,,) of random elements taking values in a linear space
E with a topology 7 is said to be convex tight if to each ¢ > 0 there is a convex
7-compact subset K of E such that

sup,P[X, & K| <e.

If E is a Fréchet space, then the closed convex hull of a compact subset of E is
again compact ([9], page 72, Theorem 3.25), and the notion of convex tightness
coincides with the classical notion of tightness ([1], page 37).

The need for convexity arises from the desired condition that a convex combina-
tion of elements {x;} of a set K C D, in particular, Z7_,(1/n)x;, again belong to K.

The following lemma easily follows and will be used in obtaining the laws of
large numbers for D[O0, 1].

LeMMA 2. If x,y,u,v € D, then
d(x + u,y + v) <d(x,y) + ||ullo + [|0]]

3. Laws of large numbers for random elements in D. We first investigate to what
extent Banach space results can be applied to obtain laws of large numbers for
re’sin D.

Consider a linear subspace E of D and suppose that E is a metric space. Denote
the metric topology on E by 7 and suppose that (E, 7) is an analytic space. Then, if
' is any other Hausdorff topology on E such that 7 C , the Borel sets of (E, )
are exactly the Borel sets of (E, ): for this see Hoffmann-Jgrgensen ([5], page 112,
Corollary 6). From this it follows that if E is a complete separable subspace of D in
the uniform topology, then a map X : € — D such that X € E a.s. is a random
element in D with thé uniform topology if and only if X is a random element in D
with the Skorokhod topology. This leads to a generic law of large numbers for a
sequence (X,) of random elements in D taking values almost surely in a closed
linear subspace E of D which is separable with respect to the uniform topology on
D:

(H) = SLLN or WLLN in D with the uniform topology
implies that ’
(H) = SLLN or WLLN in D with the Skérokhod topology,

where (H) denotes an hypothesis on (X,) and/or E.

Of course, the hypothesis (H) will involve conditions yielding the law of large
nurhbers (strong or weak) in the Banach space D with the uniform topology, and
the question can still be asked: which of these conditions can be weakened to
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involve only the Skorokhod metric and still yield laws of large numbers in D with
the Skorokhod topology?

Obviously there are many random elements whose ranges do not have separable
support with respect to the uniform topology. However, the concept of convex tight
random elements will yield several laws of large numbers.

THEOREM 1. Let (X,) be a sequence of independent convex tight r.e’s in D
satisfying sup, E|| X, || < T, where r > 1 and T is a constant. Then

lim,_, d(n~'2% _ X, n~'S;_EX,) =0,
with probability one.

ProoF. Let € > 0 be given. By convex tightness let K C D be convex and
compact such that P[X, & K] < e/"~D, for all k, and w.l.o.g., it can be assumed
that 0 € K. Then

Gl ElXdixexle < (EIX])Y - P[X, & K] < TV%.
Note that EX exists for every k since E||X,||, < T + 1.
d(n™ 'S8\ X n 'S8 EX,) = d(n T2 (X dix e k) + Xiix, ¢ x1)s
n~ "2t _(EX ix ex) + EXidix, ¢ k1)

) <d(n7 "o Xidix,exp 17 hmi T Xidix, ex)

(Ir) +d(n_12’;c=le(Xk1[XkeK])’ n_lZ'L-le(EXkI[XkEK]))
(11m) +d(n= 20\ T(EX Jix e ) 0~ 'Sk EXidix, ex1)
(Iv) +n 7 Zh 2 X L x, e k1l oo

V) +{n 7 'Eh o EX Iy, ¢ il oo

The above inequality is a consequence of Lemma 2.
This sum can be made < ¢ almost surely.
For (I), we have
d(”_12'1'<=1Xk1[xkeK]> Tm(n—lz’;c=leI[XkEK])) < sup,exd(x, T,(x)),
pointwise in £, since K is convex and 0 € K. Since lim,sup,cxd(x, T,,(x)) =0
from Lemma 1, there is m, such that (I) < ¢ for all m > mj, and every sample point

w € Q.
As for (II), using the linearity of 7,,,:

(D) < | T(n "o i(Xedix, ex1 — E[ Xiedixoex1])) oo
van (o0 i
n 12k=l(Xk('2_m')I[XkEK] - EXk(Eﬁ)I[xkeK])

Since K is compact, by Billingsley [1], Theorem 14.3, page 116, there is a constant
C such that sup, ¢ gsup,e;|x(#)] < C. For each i = 1, - - -, 2", |X,(i/2")x )

<3,
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< C, and hence, by the strong law of large numbers for random variables
. < i i
lim, . n ]2k=l(Xk(7n-)I[XkEK] - E[Xk(yr?)llxkexl]) =0 as.

Thus, for each given m, almost surely for sufficiently large n (II) < e.
By Lemma 1, lim,,_, sup,(II) = 0. Then, we have

(V) <n7'Zh o Xl dix 2 )

= 1725 [ Xl wlix,e k1 = EllXellolix, e x1]
+n7 125 1 E N Xl ool x, e k-

For the first of these terms we have
w ,
2k=17é_rE|”Xk“ooI[XkGEK] — E||Xill oI ix, ekl

0 2r—l r r
< (Bl el + (ENX ol )}

reco , .
<2 2k=lFE”Xk”oo][Xk€K] <2 2k-17&7 < oo,

since r > 1. Hence by Chung’s strong law of large numbers, the first term tends to
zero almost surely as n — co. For the second term, (3.1) yields

nTI2n_E|| Xellolix, ex) <eT'/" forevery n.

Finally, by (3.1) we have (V) < TV/"-¢.

Thus, a null set can be excluded for each m, and the countable union £, is
obtained. For ¢ > 0 and w & Q,, m is chosen large enough so that (I) and (III) are
< ¢ and then N(e, w) is chosen large enough so that (II) and (IV) are each <e. []

The case of identical distributions for Theorem 1 was obtained by Rao [8]
without using convex tightness, but a similar use of compact sets was needed.

Unfortunately, not all random elements are convex tight. An example is pro-
vided in the next section of a random element in D which is not convex tight.
However, a proof similar to the proof of the Glivenko-Cantelli theorem will yield
laws of large numbers for a class of random elements in D which may not be
convex tight.

Let D1 denote the cone of nondecreasing elements of D.

THEOREM 2. Let (X,) be a sequence of independent random elements in D
satisfying

‘(i) X, € D1 almost surely, for each n;

E|\X,I|"
(i) E—J—f”ﬁ < oo for some 1 <r < 2;
Gii) EX, = EX,, for all n.
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Then
lim,_||[n"'2%_ X, — EX||l, =0, with probability one.

PROOF. Put X, = n~'3%_ X, and p = EX,. Note that E||X,||7, < co implies
the existence of p. By Billingsley [1], page 110, Lemma 1, given m € N there is a

partition of [0,1], 0 =12, <#, < -+ <f, =1 such that sup,, ., |u(s) —
wt)| <1/m,fori=0,1,---,k(m)— 1. Since p € D1 this means u(#;,; — 0) —
wt)<1/m,fori=0,1,---,k(m)— 1.Lett €[0, 1], thent € [1,_,, t;) for some
i=12---,k(m)ort=1.1In any case,

X,(1) = () < X,(t; = 0) — p(ti-y)
<X,(6=0) — p(t; = 0) + 1/m

and
X,(0) — w0 > X, () — u(t; = 0)
> X, (1)) — w(t-) — 1/m.
Thus,
|1 X.(0) — (o)

< max{|X,(t; = 0) — p(t; — O)|, | X, (1) — p(t,_ )|} + 1/m
< max1<i<k(m)max{|/\7n(ti - 0) — u(t; — O), | X, (1) — ‘”‘(ti—l)” +1/m

—,. 0+ 1/m by the SLLN using Chung’s condition of (ii). Thus lim,_, [ X, —
ll, < 1/m as. and since m is arbitrary, lim, || X, — pll, = 0as. [

ReMARK. The conclusion immediately implies convergence in the Skorokhod
metric. A corresponding theorem holds mutatis mutandis for almost surely nonin-

creasing random elements.

Weak laws of large numbers can be obtained in a similar manner. However, the
hypotheses for the weak laws of large numbers involve less restrictive conditions
(often pointwise conditions will suffice). For comparison to the strong laws of large
numbers in this section, the following three results from Taylor and Daffer [10] are

listed.

~ THEOREM 3. Let (X,) be a sequence of convex tight re’s in D such that
E|X,|5 < T < oo, for all n, with r > 1. If )
lim,,_,,n 'S5 (X(r) — EX( (1)) = 0
in probability, for each dyadic rational t €0, 1], then
d(n~'2h_\X,, nT'S%_EX,) =0  in probability.
COROLLARY 4. Let (X,) be a sequence of convex tight r.e’s in D such that
E| X, <T forall n, with r > 1. If

lim

n—oo
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@D Cov{X,(1), X,(9)} = O, for each k + [ and each t € [0, 1]
and

() =% Var{X, ()} = e(n?), for each t € [0, 1],
then

lim d(n~ 'S, _ X, n™'S%_\EX,) = 0 in probability.

THEOREM 5. Let (X,) be a sequence of identically distributed, convex tight 1.e.’s
in D such that E||X,||oo < co. Then

lim,_,n~'3%_,X,(¢) = EX, in probability,
Jor each dyadic rational t € [0, 1], if and only if

lim, n~'2%_ X EX,) = 0 in probability.

——

If n~'3%_EX, converges to a constant, then Theorem 3 and Corollary 4 are if
and only if since convergence in probability implies weak convergence (in distribu-
tion), and hence poigtwise convergence in distﬁbution to a constant, which in turn
implies pointwise convergence in probability.

4. A discussion of convex tightmess. Let K={x,:0<a<s<1l-a<l},
0 <a <3, where x, = I, - That K is compact follows easily by applying the
criteria of Theorem 14.3 of [1]. That the closed convex hull co(K) of K is not
compact is seen as follows. Let § > O be glven and choose s, ¢ € [a, 1 — a] such
that s <f and t — 5 <&. Then x =3x, + 3% =3I, , + I, € co(K), but for
any partition {to, ty s by} of [O, l] satisfying min{¢, — ¢,_,} > 6,
max,w,((%,_}, £)) > 1. Thus, limg gsup, e corywa(8) > 1, and co(K) is not compact
by Theorem 14.3 of [1]. This property is related to the fact that the Skorokhod
topology on D is not locally convex. Some points of D possess a convex local base
but most do not.

This example can be strengthened by making the set K countably infinite. Let
K={x:i€eN0<a<s5<1-a<l} 0 < a <31. Then, if the sequence (s)
contains infinitely many different points of [g, 1 — 4], 1t is shown as above that the
convex hull of K is not relatively compact.

For x, = I;; ; and 0 <s <1, let the sequence (X,) be iid. where P[X, €
{x, 15, <s<s}]=s5,—5,0<s5 <s, <1 Theneach X, is ar.e. in D, and (X,)
does not have separable support with respect to the uniform topology since the
linear span of the set {x, : 0 < s < 1} is dense in D. Now, if a convex compact set
K, satisfying P[X, & K,] < ¢ existed, then K, necessarily would contain a set of
the form K; = {x,:s € J}, where J C[a,]1 —a] and m(J) > 1 — 2a — e(m is
Lebesgue measure). Being convex and closed, K; would contain the closed convex
hull of K. But from the above example it is clear that the closed convex hull of
such a set K; is not compact. Hence no such set K, can exist. While not being
convex tight, the range of X, is in D1. Hence, the SLLN of Theorem 2 applies for
independent copies of X.
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Roughly speaking, convex compact sets in D are those sets of functions which
become arbitrarily small in absolute value at cluster points of jumps in [0, 1]. The
following theorem characterizes the convex compact subsets K of D in terms of the
jumps of functions in K.

ForA c Dande >0, let

S,(A4) = {1 €[0,1] : sup,c4|x(¢) — x( — 0)] >e}.

THEOREM 6. If K is a relatively compact subset of D, then co(K) is relatively
compact if and only if S,(K) is finite for every ¢ > 0.

PROOF (“only if” part). Suppose that for some ¢ > 0, S,(K) is infinite. Then
there is ¢, € [0, 1] and a sequence {1,} of distinct points in S,(K) converging to #,
and a sequence {x,} of elements of K such that |x,(z,) — x,(¢, — 0)| > e, for all
n € N. Since K is compact, there is § > 0 such that

4.1) sup, cxwi(8) <e/2.

Find n and »', n #n’, such that ¢, ¢, € ({, — 6/2, 1, + 8/2) and such that
|xn(tn) - xn(tn - O)l > e and |xn'(tn') - xn’(tn' - 0)| > .

Since x,, x,, have jumps at #,, f,, respectively, of magnitudes > ¢, we have from
@.1), fori = n, n":

(4.2) Supt,-<t,s<t,+8|xi(t) — x(s)| <e/2
Supx,—s<z,s<t,|xi(t) = x(s)] <e/2.
Now let T = {¢,, 1}, + + , 1,,} be any partition of [0, 1] with min, ., ,,.{#, — %}

> §. Since |z, — t,| < 8, T can contain ¢, or #, or neither one, but not both. If, for
-example, ¢, € T, then ¢, & T and
|xn(tn’) + xn'(tn’) - (xn(tn' - O) + xn'(tn' - 0))'
> |xn'(tn') - xn’(tn’ - O)l - |xn(tn') - xn(tn' - 0)|
>¢—¢/2 =¢/2, using the relations (4.2).
Define x; =1x, + 3x,. We then have |xy(t,) — x5(t, —0)| >e/4. lf 1, €T
then ¢, & T and the same reasoning as above yields |xs(z,) — x5(¢, — 0)| >¢/4. If
t,& T and t, & T, then a fortiori |x4(2,) — xs(t, — 0)] > ¢/4. Thus, for any
partition T with min, ;,,{# — 4_,} > 8, we have sup, ,c;, _, |%s(s) — xs(1)| >
¢/4, for some i =1,---,m, and hence w,(8) > e/4. But x5 € co(K) and so
SUP, ccoryWi(8) > W (8) > /4.
Since € > 0 is fixed and 8 > 0 is arbitrary, this yields lim infs_oSup, e oxyWx(6)
> 0, and thus co(K) is not relatively compact in D. []

For the “if” part we first prove the following lemma.

LeMMA 7. If K is a relatively compact subset of D such that S,(K) is finite for
each ¢ > 0, then to each t € [0, 1] the following holds: for each € > 0 there exists
8 > 0 such that sup, ¢ w,([t, t + 8)) < & and sup, cxw,((t — 6, 1) <e.
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Proor. Let ¢ > 0 be given and fix ¢, € [0, 1]. By relative compactness of K,
find 8, > O such that sup, . ,w.(8;) < ¢/3. Now find §;, 0 < 8, < §,, such that
t € (ty, ty + §;) implies :

4.3) sup, cx|x(?) — x(¢ — 0)| <e/3.

Take x € K and let T = {f} be any finite partition of [0, 1] such that max;
sup, e xW(%,_1, 1)) <e/3 and min{s, — t,_;} > 8, If no point of T falls in
[t 2y + 6)), then w, ([1,, £, + 8,)) <e¢/3.1f a point 1, € T is such that ¢, € (¢, 1, +
0,), then max;sup, c ,w,([#;_ 1, 1,)) < ¢/3 yields w,([?y, ,)) > ¢/3 and w (1, 1, + 8,))
< ¢/3. By inequality (4.3), if x makes a jump at ¢, its magnitude is necessarily
< ¢/3. Thus, by the triangle inequality, w, ([¢,, o + 8,))) <e/3 +¢/3 +¢/3 =¢,
for any x € K. Hence sup, c xw,([#p, p + 0,)) < &. In a similar manner, a §, > 0
can be found such that sup, c ,w, (o — 8, #p)) < &. Now take § = min{§,, 8,} and
the proof is complete.

Proor (“if” part). Now, let ¢ > 0 be given and S,(K) be finite. Let S,(K) =
{t sty

Let IK = [tk’ tk+1] fork = 0, 1, c oty N, where to =0 and tN+l = l. Pllt tkl = tk
and corresponding to ¢, find, by Lemma 7, a 8(¢,,) > 0 such that

sup, e xWe([ % 1 + 8(1)))) <e.

For j > 1, inductively define # ;,, = #; + 8(¢;)) and set I; = [t,y, ; + 8(t,))
and I; = (#, t; + 8(%y) if j # 1. Let #,; and 8(%;) be determined alternately in
the following manner: given £, - - - , #;, find by Lemma 7, 8(%;) > 0, such that

suprKWx((tk,j+l - 8(tk,j+l)’ tk,j+l)) <e
and

suprwa([tk,j+l’ b ja1 T a(tk,j+1))) <e.

Each #; < ¢, since some x € K makes a jump at # .

In this way we get a sequence {#, %,, - - - } of points in [, #,,] and a
sequence of intervals I, I,,, - - -+ which are all open sets in [#, #.,,]. Another
application of Lemma 7 yields a 8(¢,.,,) > 0 such that

sup, e xWo((te 41 = 0(ti 1) frsr)) <&

Let I, = (4 — 0(5+ 1) f 1)

The collection of relatively open subintervals {1/, I, I;,, - - - } is an open cover
of [%,t,,,] which is compact. Consequently there e¢xists an open subcover
{Jev* + + 5 Juw, }- Let {1, - = - 5 s, } denote the respective centers of these inter-
vals.

Now this can be done for every k, k =0, 1,- - -, N. The collection of points
U U s} U U t;} forms a partition of [0, 1]; call it T" and denote
k=0 J=11%j =1
the points of it in ascendlng order by

0—S0<sl<"' <Sm_1<Sm=1.
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The claim is now that
(4.4) max;_,,.. -,m—]supxeco(K)wx([Si—]’ Si)) <e

and

SUP, e co(K)Wx [Sm—l’ 1]) <e.

Let x = 27_ ax;, x; € K, a; > 0 and 2fa; = 1.
Then

wx([si— 1» Si)) = Sups, te[si-1 S,)|2;= laj(xj(s) - xj(t))l
< 27.148Up e s, sl X (5) — x;(2)]
= 2;=laij,([si—1’ 5))

< 2;=1ajsupxexwx([si—1, S,-))
< 2;5_1611- - €

= ¢.
Hence, (4.4) holds and thus

suprco(K)w),c(a) <e

by taking § < min; ;¢ {s; — 51}
Thus to each £ > 0 there is § > 0 such that sup, ¢ ,x)W:(8) < e and so

lim,_osup,. ¢ oy Wa(8) = 0

¢

and co(K) is relatively compact. []
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