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MAXIMA AND MINIMA OF STATIONARY SEQUENCES!

By RICHARD A. DAvis
University of California, San Diego

We show that the asymptotic behavior of the normalized maxima of a
stationary sequence satisfying a weak distributional mixing and bivariate condi-
tion is completely determined by the marginal distribution of the process.
Sufficient conditions are given in order for the maxima and minima to be
asymptotically independent. An example of a 1-dependent sequence where the
maxima and minima are not asymptotically independent is also provided.

1. Introduction. Let {X,:n=1,2,---} be a strictly stationary sequence
with Fand F; ..., (-, - -, -) denoting the marginal distribution function (df) and
joint df of X;, - - -, X, respectively. Let {u,} be a sequence of real numbers. We
shall say (cf. [2]) that the condition D(u,) is satisfied by the sequence { X} if for
any n, and any choice of integers i} < -+ - <@, <j; < - <J,Jj; — i, > 1, we
have

IEI,...,,;,,jl,‘..,jq(u,,, S, u,) — El’...,,;(u,,,- .- ,u,,)I*}b...,jq(u,,,- L u)| <a, g,

where a, , is nonincreasing in / and lim,_,a, , = 0 for some sequence /, — oo
with /,/n — 0. The condition D(u,) is potentially much weaker and easier to verify
than strong mixing, for there are fewer pairs of events to consider and these events
are of a particular form.

Let M, = max{X,, - -, X,} and u, = u,(x) = x/a, + b, for some constants
a, > 0 and b,. Gnedenko [1] showed that if {X,,} is an independent and identically
distributed (i.i.d.) sequence then there are only three possible nondegenerate
limiting distributions for the normalized maxima. Loynes [3] weakened the i.i.d.
assumption in Gnedenko’s trinity theorem to strong mixing and stationarity.
Leadbetter [2] extended Loynes result to stationary sequences satisfying D(u,) for
all x. Furthermore, Loynes [3] and O’Brien [4] showed that if a stationary strong
mixing sequence satisfied a particular bivariate condition R;, then P(a,(M, — b,)
< x) = G(x) if and only if P(a,,(M,, — b,) < x) > G(x), where G(x) is a nondegen-
erate df and Mn is the maximum of » i.i.d. random variables with marginal df F.
The condition R, was developed from the one used by Watson [5] for the
m-dependent situation. Section 1 extends this result to a stationary sequence
satisfying D(u,) and the following bivariate condition for all x. The condition
D’(u,) is said to hold if lim sup,nS7Z {P(X; > ty, X;,) > u,) = o(1/k) as k —
0.
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In Section 2 we prove, under a suitable mixing and bivariate condition, that the
normalized maxima and minima are asymptotically independent. Section 3 con-
tains an application to a stationary Gaussian sequence with covariance function 7,.
If r, log n—0 or 3|r,|’ < « for some p > 1, then the normalized maxima and
minima are asymptotically independent. We also give an example of a 1-dependent
sequence where the normalized maxima and minima marginally behave as though
the sequence was i.i.d., yet jointly they are not asymptotically independent.

2. Limiting results. The aim of this section is to prove that if P(M, < u,) —
e” " as n— oo, then P(M,, <u,)—>e™".

LeMMA 2.1. Suppose that D(u,), D'(u,) hold for the stationary sequence {X,}
where {u,} is a nondecreasmg sequence of real numbers. If P(M,, < u,) >e™" as
n — oo then P(M <u)—e ,0<1 < 00.

PrOOF. By the D(u,) assumption, we have
(2'1) Pk(Mn < unk) - P(Mnk < unk) _—)O>
for every fixed integer k (cf. Leadbetter [2]). Using some simple estimates and
stationarity, we have

1= n(1 = Fuy)) < P(M, < uy)
< 1 —n(l_F( k))+n2 P(X]>unk,X’+l>unk)

so that
(22) (A - n( = Fu) < PKM, < uy)

[1 = n(l = F(u,)) + n2iZ ZiP(X, >y Upger X 41 >unk)]k‘

Define ¢(k) = lim sup,n(l — F(u,,)) and ¥(k) = lim inf, n(1 — F(u,)). We now
show that

(2.3) 7 < lim inf k¥ (k) < lim sup kep(k) <.

Suppose lim sup, kp(k) > 7. Then there exists an ¢ > 0 and an increasing sequence
of positive integers k; such that k;p(k;) > 7 + ¢ for all j. Choose § > 0 such that
§ <e. Now, by the D’(u,) assumption, pick a k; so large that k; > 7 + ¢ and

klim sup,n2121P(X, > ty, X;py >ty ) <8.

Moreover, since @(k;) = lim sup,n(1 — F(u,)), there exists a subsequence n, such
that n(1 — F(u, k )) = @(k;). Taking the limit of the left-hand side of (2.2) through
the subsequence n, and makmg use of (2.1), the above construction, and some
elementary inequalities, we obtain the following contradiction

kK

2 (k) s\~
—r S pmT—(e=8) _rtt+te § B AP —r
e ">e >(1 k- +k- >11 kjkf+k- >e

J J J
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The proof of the left-hand side of (2.3) can be proved in a similar manner.
Let {X,} be an i.i.d. sequence with marginal df F. We then obtain

(24 (1 - n(1- F(unk)))k < Pk(Mn < unk) = P(Mnk < “nk)

< (1 - n(l - F(unk)) + Snk)k’
where M,, = max {A‘;,, IR )?,,} and S, = nZ’?__l’P()f', > Uy, /\;jﬂ >u,) = n(n

J

— 1)(1 = F(u,))* By (2.3), lim sup,S,, = o(1/k). It now follows that

k A
2.5) (1 ~ T+ 0(%)) < lim inf, P(M,, <)

R K
< lim sup, P(M,, < u,) < (1 - % + 0(%)) ,

using the fact that (k) = 7/k + o(1/k) and ¥(k) = 7/k + o(1/k). The idea
now is to replace nk by n in (2.5) and then let k — co to obtain the desired result.

For a fixed integer k, choose the sequence of integers r, such that r,k <n <
(r, + Dk. It is easily seen that

(26)  liminf,P(M, < u,) > lim inf,P(M(, + i < UG+ 1))
—lim sup,,P(u,, < M(,"H)k < u(,nﬂ)k).

However,
lim sup, P(u, < M(r,,+l)k < U +1)k)

< lim SupnP(ur,,k < M(r,,+l)k < u(, +1yk)

< lim sup,(r, + 1)kP(u, , <X, < U, +1)k)

= lim sup,(r, + Dk(1 = F(u, ) — (1 = F(u,+1))))

< kg(k) — k¥(k) = o(1) =0 )

as k — oo, using the hypothesis that {u,} is a nondecreasing sequence and (2.3).
Putting (2.5) and (2.6) together we obtain

Q.7 lim inf, P(M, < u,) > (1 - T+ o(%))k ~ o1),

where o(1) - 0 as kK — 0. A similar calculation yields

(2.8) lim sup, P(M, < u,) < (1 — T+ o(i—))k + o(1).

The conclusion of the lemma now follows at once by letting k — oo in (2.7) and

2.8). 0

The following technical lemma will be used in allowing us to remove the
nondecreasing requirement on the {u,} sequence.
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LeMMA 2.2. Suppose that D(u,) holds for the stationary sequence {X,} and
P(M, <u)—>e ",0<7< c0. Let {t,} be a sequence of integers tending to oo.
Then for every fixed positive integer k,

P(My, jiy <u)—>e ™ as n— oo,
where [s] denotes the greatest integer not greater than s.

ProoF. Under the hypotheses D(u,) and P(M, < u,) —> e ", it can easily be
shown that u, — x, where x, =sup {x: F(x) <1}. Hence P(X; >u )—>0 as
n— oo.

For a fixed integer k, choose a sequence of integers r, such that r,k <1, < (r, +
k. Since 0 < P(M, , <u,) — P(M, <u,) <kP(X;>u)—>0 as n—oo, it is
enough to show |P"(M,” <u)— P(M,, <u ) —0as n— oo. The proof of this
fact follows from Leadbetter’s proof of Lemma 2.5 in [2] replacing n by r, and nk
by ¢,.

LEMMA 2.3.  Suppose that D(u,) and D’(u,) hold for the stationary sequence {X,,}.
Then P(M, <u,)—>e "if (M, <u,)—>e ",0 <1< o0.

PrOOF. By the remark made at the beginning of the proof of Lemma 2.2, u, —
xo. Also, since e”" < 1, we have that u, < x, for all sufficiently large n. Hence we
shall assume, without loss of generality, that u, < x, for all n.

Define v, = max, . ;,{#%}. Then v, = u, = v, s(n) < n, s(n) - oo, and v, is
a nondecreasing sequence. Since v, > u, for all n, condition D’(v,) is obviously
satisfied and the condition D(v,) can easily be verified. Moreover,

e " = lim inf, P(M,, < u,) < lim inf, P(M, < v,) < lim sup,P(M, < v,)
< lim supnP(MS(,,) < U”) = lim SupnP(Ms(,,) < us(,,)) =e .

Hence P(M, < v,)—>e™" and thus, by Lemma 2.1, we have P(A?,, <v,) =
(1 = (1 = F(v,))" = e~ ". It should be noted that P(M, < v,) - e~ " if and only if
(2.9 1 = F(v,) = 1/n+ o(1/n).

Now let 1, = max;{j <n:v, <u,}. Then 4, <v, <u, <v,,;=u ., and ¢,
+ 1 < n. It is enough to show lim,_, (n/(z, + 1)) = 1 for we have
(2.10) n(1 - F(v,)) < n(1 = F(u,)) < n(1 — F(v,)) = tﬁz,,(l ~ F(v,)).

Upon letting n — oo and using (2.9), we have the outside terms of (2.10) going to 7.
Thus 1 — F(u,) = 7/n + o(1/n), giving us the desired result.

Suppose lim sup,(n/(t, + 1)) > 1. Then there exists a positive integer k and a
subsequence n; such that (t,,} + 1)/k < n; /(k + 1) fot all j. By construction, one
has

P(My, vy < ) < P(Mpn ey < “rn,+n)

< P(M[(r,,j+1 )/k] < “r,,j+1)'
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Taking the limit as j — oo and invoking Lemma 2.2, one obtains the contradiction
e”"/* > e="/k*1 Since 1, + 1 < n, it must be that lim,_,_(n/(z, + 1)) = 1, com-
pleting the proof.

THEOREM 24.  Suppose that D(u,), D'(u,) are satisfied by the stationary sequence
{X,} for all x, where u, = (x/a,) + b, for some constants a, > 0 and b,. Then, with

the established notation,
P(a,(M, - b,) < x) - G(x)
if and only if
P(a,(M, = b,) < x) > G(x),
Jor any nondegenerate df G (hence one of the three extreme value distributions).

PrROOF. First assume P(a,(M, — b,) < x) - G(x) for some nondegenerate df
G. By the preceding lemma, it follows that P(a,,(M,, - b,) <x)— G(x) for all x
where 0 < G(x) < 1. Since G is continuous this readily extends to all x.

For the other direction, see Theorem 3.2 in [2]. []

In the ii.d. case the limiting distribution of the maxima is completely determined
by the tail behavior of the marginal df F. As a consequence of Theorem 2.4, the
same is also true of a stationary sequence satisfying conditions D and D’. It should
also be pointed out that by considering the sequence {— X}, one can obtain
similar results for the minima.

3. Joint limiting distribution of the maxima and minima. In this section we give
sufficient conditions in order for the normalized maxima and minima (both jointly
and marginally) to behave as though the sequence was i.i.d.

Let {u,} and {v,} be two sequences of real numbers. We shall say that the

condition D(v,, u,) is satisfied if for any » and any choice of integers i; < - - - < i,
<j1 < c <jq,j1 - lp >lthen

lE,-'-in|”.jq(“n’ ) “n) - E,u-x},(“n’ Y un)F_}|...jq(un, R u,,)l < (o D
|P(X, >0, - , X, >0,) = P(X, >0, -, X, >0,

P(X/l >O"’ e "X,j], >vn)| < Qb
and
|P(v, <X, <u- -+, 0, <X, <u,) —P(v, <X, Sty 0,0, <X, <u4,)
P(o, <X, <ty ,0, <X, <u,)| <@,
where a, ; is nonincreasing in / and lim,_, o, ;, = 0 for some sequence /, - o

with [, /n — 0. In defining the mixing condition D(v,, u,), we could have bounded
the three inequalities with different functions satisfying the above criterion. How-
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ever, by taking a, , to be the maximum of the three functions and /, the maximum
of the respective sequences, we see that the two definitions are equivalent. Again,
the condition D(v,, u,) is potentially much weaker than strong mixing.

In order to obtain the asymptotic independence of the normalized maxima and
minima, we shall need the following condition. Let

e = 252 [ P(Xy >y, Xy > uy) + P(X, > u,, X 1 < On)
+P(X1 <vnk’X;'+l k)+P(X < O X, G+l S nk)]
The condition D’(v,, u,) is said to hold if lim sup,S,, = o(1/k) as k — co.

LeMMA 3.1.  Suppose D(v,, u,) is satisfied by the stationary sequence {X,}. Then
for every fixed positive integer k,

P(M, < uy, Wy >v,) — PX(M, <uy, W, >0v,)—>0asn— oo,
where W, = min {X|,- - -, X, }.

The proof is omitted since it follows the same lines of argument as in the proof
of Lemma 2.5 of [2] with the obvious modifications.

LemMA 3.2 If D(v,, u,), D'(v,, u,) hold and P(M,, < u,, W, > v,) — e, where
W, =min {X},---,X,}, M, =max {X,---,X), then P(M, < u,, W, >0v,)
—-e ", 0<7< o0

A

ProOF. P(M, < u, W, >v)=Pv, < X, < 4,0, <X, < u)=
(1 — (1 — Fu,) + F(v,)))" — e " if and only if
(3.1) 1 — F(u,) + F(v,) =1/n+ o(1/n).
Using elementary bounds and stationarity, we obtain
n(1 — F(u,) + F(v,)) — nZ72{P(4, N 4;,,) < 1 — P(M, <u, W, >0,
<n(l = Fluy) + F(o)),
where 4, = {X; > u k} U {X, < vy} Thus,
(1 = n(1 = Flu,) + F(v,)))* < PHM, < thys W, > 1,)
< (1= n(1 = Fluy) + Fow) + )
and now using Lemma 3.1 and (3.1) we have
(3.2) (1 = 7/k)* < lim inf, P(My < thyeo Woge > 00t
< lim sup, P(Myy, < thye, Wiy > 0yt)
< (I'=7/k + o(1/k))*.

As in the proof of Lemma 2.1, the result follows upon replacing nk by n in (3.2)
and then letting k — oo.
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THEOREM 3.3. Suppose there exist real constants a, > 0, b,, ¢, > 0, and d, such
that D(v,, u,), D'(v,, u,) hold for all x and y withv, = — y/c, + d,and u, = x/a,
+ b,. Then

P(an(ﬂn - bn) <X, _Cn(Wn - dn) <,V)’—) G(x’y)
if and only if P(a,(M, — b,) < x, —c, (W, — d,) <y)— G(x, y) for some df G with
G(x, ) and G(co, y) nondegenerate distribution functions. Moreover, if this is the
case, then G(x,y) = G(x, ©)G(0, y) and P(a,(M, — b,) < x,c,(W, — d,) <)
— G(x, o)1 — G(c0, —y)) for all x and y.

PROOF. Suppose P(a, (M, — b,) < x, —c,(W, — d,) <y) - G(x,y). As is well
known, the maxima and minima from an ii.d. sequence are asymptotically inde-
pendent. Therefore, G(x,y) = G(x, 00)G(c0,y). By the preceding lemma, with
T = — log G(x, y), we have P(a,(M, — b,) < x, —c, (W, — d,) <y)—> G(x, y) for
all x,y such that G(x, 0)G(co,y) > 0. But the continuity of G(x, ©0)G(o0, y)
allows us to extend this for all x and y.

Now assume P(a,(M, — b,) < x, —c, (W, — d,) <y)— G(x, y). It follows, by
Theorem 2.4 and the remark made at the end of Section 2, that P(a,,(ﬁ,, -b,) <
x)— G(x, o0) and P(—c,( W,, — d,) <y) - G(o0,y). The asymptotic indepen-
dence of M, and W, implies P(a, (M, — b,) < x, —c,(W, — d,) <y) >
G(x, ©0)G(%0, y). Invoking the previous paragraph, we obtain

P(an(Mn - bn) < x, _Cn(VVn - dn) <y) - G(x’ OO)G(OO,y),
for all x and y. Hence we must have G(x,y) = G(x, ©0)G(c0, y). Also, since
P(a, (M, — b)) < x,c, (W, — d,) < y)+ Pla,(M,—b,) <x, —c,(W,—d)<y)
= P(a, (M, — b,) < x), we have
P(a,(M, — b,) < x, c,(W, — d,) <y)— G(x, 0)(1 = G(c0, =)).
This completes the proof of the theorem. -

It is worth noting that there are examples of sequences satisfying the D(v,, u,)
condition where the maxima and minima are asymptotically independent, yet
marginally they do not behave as though the sequence was i.i.d. The crucial

hypothesis in establishing the asymptotic independence of the maxima and minima
seems to be the “cross terms” in the D’(v,, 4,) condition.

4. Examples. We exhibit two sequences illustrating the conditions of Theorem
3.3.

Let {X,} be a stationary Gaussian sequence with EX; =0, EX? =1, and
covariance function r, = EX,X, . It has been shown in [2] and by others that if
r, log n— 0 or 3|r,|? < oo for some p > 1, then P(a, (M, — b,) < x) > e~ °  and

1
P(a,(W, + b,) < y)—>1 — e~ where a, = (2 log n)? and

b, = (2log n)% —1(2logn)” %(log log n + log 47).

Let u, = x/a, + b, and v, = — y/a, — b,. Using a general form of Lemma 4.2
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and Lemma 4.3 in [2], one can show that D(v,, u,), D'(v,, u,) hold for all x
providing r, log n — 0 or Z|r,|” < oo for some p > 1. Thus, under these types of
restrictions on the covariance function, the maxima and minima are asymptotically
independent.

The next example is a 1-dependent sequence where the normalized maxima and
minima are not asymptotically independent. First, let {Y,} be an i.i.d. sequence
with marginal df F which is symmetric about the origin and belongs to the domain
of attraction of some extreme value distribution G. Hence, there exist constants
a, > 0, b, such that

1= F(x/a, +b,) = — 289D 4 oq /)
for all x where G(x) > 0, and
F(=y/a, = b,) = =B 4 5(1/m) Gz > 0.

Now let {J,} be an iid. sequence of Bernoulli trials, independent of the Y,
sequence, with P(J; = 1) = a > 0 and P(J, = 0) = 1 — a. Define X, =Y, if
J,=land X, = — Y, if J, = 0. It is clear that {X,} is a stationary 1-dependent
sequence with marginal df F. Letu, = x/a, + b, and v, = — y/ a, — b,. It is easy
to verify that D'(u,) is satisfied by {X,} and { — X, } so that P(a, (M, — b,) < x) >
G(x) and P(—a,(W, + b,) < y) > G(»). However, one can show that

P(a,(M, — b,) < x, —a,(W, + b,) <y) > G(x)' *""9G(y)if y < x,

- G(x)G(y)' 720D jf x < y.
Although the limiting marginal distribution of the maxima and minima in this

example behaves as if the sequence were i.i.d., the asymptotic joint distribution
does not.
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