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PERFECT MIXTURES OF PERFECT MEASURES

By D. RAMACHANDRAN
Indian Statistical Institute

It is shown that all the possible cases can arise in the mixture problem with
respect to perfectness of probability measures. A characterization of perfectness
is obtained through properties of a countably generated sub-o-algebra given
which there is a regular conditional probability. Perfectness of a perfect mixture
of perfect measures is characterized.

0. Introduction and summary. Let (X, &) and Y, %) be two Borel spaces and
let u(x, B) be a transition probability on X X % ; that is, u(x, B) is a function
defined on X X % taking values in [0, 1] such that for every x in X, u(x,.) is a
probability on % and for every B € B, u(., B) is @-measurable. Let A be a
probability on @. The set function p defined on B by

w(B) = fu(x,B)dAN B eEPDB
is a probability on % . p is called the A-mixture of the u(x, .)’s. A is called a mixing
measure, the u(x,.)’s are called mixand measures and p is called a mixture
measure. The properties of a mixture measure depend on those of the mixing and
mixand measures. We complete here the study of the role of perfectness of
probability measures in the mixture problem which was started in Rodine (1966)
and pursued in Ramachandran (1974).

We call a mixture measure perfect mixture or nonperfect mixture according as
the mixing measure is perfect or nonperfect. In [3] two conjectures of Rodine
(1966) were settled. In Section 1 we illustrate by examples that all the possible cases
can arise in the mixture problem with regard to perfectness of measures. In Section
2, we give a characterization of perfectness in separable Borel spaces through
properties of a countably generated sub-o-algebra given which there is a regular
conditional probability. In Section 3, using the results of Section 2, we characterize
perfectness of a perfect mixture of perfect measures.

All measures considered in this paper are probabilities. %[0, j; denotes the Borel
o-algebra of [0, 1]. A Borel space (X, @) is called separable if @ is separable, that
is, @ is countably generated and contains all singletons. A probability space is
called separable space if the underlying Borel space is separable. For other
terminology used in this paper refer to Neveu (1965).

Let (X, @, P) be a probability space. P is called perfect if for every @-measur-
able real valued function f on X and every subset 4 of the real line for which

Received September 12, 1977.
AMS 1970 subject classifications. Primary 28A15, 28A20, 28A25, 28A35.
Key words and phrases. Atoms of a ¢-algebra, discrete measure, perfect measure, mixture, regular

conditional probability, partial selector.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

®
WWW.jstor.org



MIXTURES OF PERFECT MEASURES 445

f~'4 € @ there is a linear Borel set B contained in 4 such that P(f~'4) =
P(f~'B). It is known (see Sazonov (1962)) that: ‘

(P1) a measure P on (X, @) is perfect if and only if for every @-measurable
real-valued function f on X there is a linear Borel set B(f) contained in f(X) such
that P(f"'B(f)) = 1;

(P2) a measure is perfect if and only if its restriction to every countably
generated sub-o-algebra is perfect;

(P3) the restriction to any sub-g-algebra of a perfect measure is perfect;

(P4) a measure on a product space is perfect if and only if every marginal is
perfect.

It follows from (P1) that every discrete measure is perfect and that every 0-1
valued measure is perfect.

1. The examples. Rodine (1966) showed that a mixture of perfect measures, in
general, is not perfect and conjectured that perfect mixtures of perfect measures are
perfect. In [3] three examples were constructed to show that his conjecture is false
and to answer other questions raised by him. Table 1 lists all the cases that can
arise in the mixture problem and examples illustrating each case.

TABLE 1
Mixing Mixand Mixture
No. measure measure measure Example
1 perfect perfect perfect 1.2
2 perfect nonperfect perfect 1.4
3 perfect perfect nonperfect 1.3
4 perfect nonperfect nonperfect 1.6
5 nonperfect perfect perfect 1.5
6 nonperfect nonperfect perfect 1.7
7 nonperfect perfect nonperfect 1.1
8 nonperfect nonperfect nonperfect 1.8

ExampLE 1.1 (Rodine). Let (X, @, A) be a nonperfect probability space. Let
Y=X, B=@ and let u(x, B) on X X B be defined by pu(x, B) = 1z(x). Then
each u(x, .), being a 0-1 valued measure, is perfect. The mixture measure p = A is
nonperfect.

ExampLE 1.2. Let (X, @, A) be a perfect probability space. Let Y = X, % = @
and let u(x, B) on X X B be defined by u(x, B) = 1,(x). Then the mixture p = A
and is perfect.

ExampLE 1.3. Example 1 in [3] where X = [0, 1], & = By 4, A is the Lebesgue
measure on By, ,; and (¥, B) is a separable space.

ExAmpPLE 1.4. Example 2 in [3].

ExampLE 1.5. Example 3 in [3].
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ExampLE 1.6. Let X = {0}, @ = {X, S} and let A on (X, @) be the only
probability given by A(X) = 1, A\(&) = 0. Let (Y, B, u) be a nonperfect probability
space. Define u(x, B) = w(B) for all » in X. Then p is a nonperfect measure which
is a perfect mixture of nonperfect measures.

For the construction of our next two examples we need the following result:

For each i = 1, 2 let (X;, @, A;) be two probability spaces, (¥;, B,) be two Borel
spaces and p(x;, B) on X, X B, be two transition probabilities. Let y, be the
A-mixture of p(x;,.)’s. If we define X = X; X X,, @ =&, ® &,, A =7, XA,
Y=Y, XY, B =B, ®B, and p((x;, x,), .) = (X ) X py(x,, .) then the
following lemma can be easily established.

LeMMA 1. u((x), x,), B)is a transition probability on X X B such that p = p, X
iy where p is the A-mixture of the p((x,, X,), .)’s.

We shall call p the product mixture of yu, and u,.

ExampLE 1.7. Let p, and p, be obtained as in Examples 1.4 and 1.5 respec-
tively. Then by Lemma 1 and (P4) it follows that the product mixture is a perfect
measure which is a nonperfect mixture of nonperfect measures.

ExampLE 1.8. Let p, and p, be obtained as in Examples 1.1 and 1.4 respec-
tively. Then, by Lemma 1 and (P4), the product mixture is a nonperfect measure
which is a nonperfect mixture of nonperfect measures.

2. A characterization of perfectness in separable spaces. Let (Z, C, P) be a
separable probability space and let @ be a countably generated sub-o-algebra of C.
We assume throughout this section that there exists a regular conditional probabil-
ity p(z, C) on Z X C given @ which is proper as. [P|g]; that is, there exists
N € @ with P(N) = 0 such that u(z,.) is proper for all x & N. For relevant
definitions and results used in this section refer to [4].

LeMMA 2. Suppose P on (Z, C) is perfect. If (Z', C’, P’) is a separable probabil-
ity space and if h : Z — Z’ is a C-measurable map such that

G) Ph™'= P’, and

(i) his 1-1 on Z, € C with P(Z,) = 1, then P’ is perfect and h(Z) € C'* where
@ is the completion of C’ with respect to P’.

PROOF. Suppose f is a C’-measurable real-valued function. Then f o h; is a
C N Zymeasurable real-valued function where h, = h|,. Since (Zy, C N
Z,, P|z) is perfect there is a linear Borel set B C f © h; (Z) such that Phz_ (f7'B)
= 1. Hence PA~'(f"'B) = P'(f"'B) =1 and B C f(Z’). Thus, by (Pl), P’ is
perfect. Now take f to be 1-1. Then further f~'B c A(Z) and P'(f~'B) =1
implies that h(Z) € C'7", ‘

Suppose now that there is no partial selector for @ of positive measure. Then
there is an independent complement @* of @ which is countably generated (see
Theorem 3 of [4]). Let « and a* denote the quotient maps on Z with respect to
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atoms of @ and atoms of @* respectively. Let (Z,, @,, P,) and (Z,., @,., P,.) be
the quotient spaces of (Z, @, P|,) and (Z, @*, P|g.) induced by a and a*
respectively. Consider the separable space (Z’, C’, Py =(Z, X Z,., &, ® @,., P,
X P,.). Define the map hy: Z — Z’ by
he(z) = (a(2), a*(2))

where a(z) and a*(z) are respectively the @-atom and @ *-atom containing z. Since
@ and @* are complementary let Z, € C with P(Z;) = 1 be such that (& \/ @%)
N Z,=CnN Z,

THEOREM 1. Suppose there is no partial selector for & of positive measure. Then
hg is measurable and Phg' = P'. Further if Zq = h{(Z,) then (Z,, C N Zy, P|,)
and (Z3, C’' N Zy, P'|z) are isomorphic.

Proor. Let A4, € @, and 4,. € @,.. Then
hg'(Ay X Ap) =a™'4, N a*"'4,. and
P'(Ay X Ags) = Po(Ay) Por(Aye)
= P(a™'4,)P(a*"'4,.)
= P« N a*~4,.) (sin.ce @ and @* are
independent)
= Ph;' (4, X A,.).
Thus hg is measurable and P’ = Phg .
Clearly hgis 1-1 on Z,. In order to prove that (Zy, C N Zy, P| ) and (Zg, €' N
Z;, P’| ) are isomorphic it remains to show that 2(C N Zy) € €' N Z;. But
he(ANZ)=(ad X Z )N Z, if A€
and
he(A* N Zy) = (Z, X a*A*) N Z; if A* € @*

and so hg({@ N Zy, @* N Z,}) C C' N Z;. 1t follows that

he(CN Zy) cC' N Z
DEFINITION 1. Let & be such that there is no partial selector for @ of positive
measure. Then @ is said to resolve (Z, C, P) as a product space if h(Z) € C'7",

ReMark 1. Using Pl (see Sazonov (1962), for instance) we note that
z,®&,P) (Z. &,, P.) is a perfect probability space if and only if
(Z, &, Plg) (Z, @*, P|g)) is a perfect probability space.

THEOREM 2. Suppose @ is such that there is no partial selector for @ of positive
measure. Then (Z, C, P) is a perfect probability space if and only if
(i) (Z, @, P|g) is a perfect probability space
(ii) u(z, .) is perfect for almost all z, and
(iii) @ resolves (Z, C, P) as a product space.
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PROOF. Necessity. (i) P is perfect = P|, is perfect (by (P2)). (ii) follows
because almost all u(z, .) can be chosen to be compact approximable and hence to
be perfect (see proof of Theorem 5 in [1]). (iii) follows by Lemma 2.

Sufficiency. Let @*, a, a*, hg and Z, be defined as before. By Lemma 1 of [4]
there exists N, € @ with P(N,) = 0 such that z & N, implies u(z, A*) = P(A*) for
all 4* € @*. Since

[z, Zo) dP = P(Z,) = 1

there exists N, € @ with P(N,) = 0 such that for z & N,, u(z, Z,) = 1. By condi-
tion (ii) there exists N; € @ with P(N,) = 0 such that for z & N, u(z, .) is perfect.
Let Ny= N, U N, U N; U N and let z & N,. Consider (a(z), C N a(z), w(z, .))
where a(z) € @ is the @-atom containing z. The map a* : a(z) - Z,. is measur-
able, 1-1 on a(z) N Z, and p(z, a*'4,. N a(z)) = P(a*"'4,.) = P,.«(4,.) for all
A, € @,.. Hence by Lemma 2, P,. is perfect.

By Remark 1, (i) implies that P, is perfect. Hence by (P4), (Z’,C’, P’) is a
perfect probability space being the product of two perfect probability spaces. So by
condition (iii) (Z, €, P) can be imbedded as a measurable subspace of measure
one in the probability space (Z’, C'7', P’), which is perfect since (Z, @, P) is
perfect (see Sazonov (1962)). Hence (Z, C, P) is a perfect probability space.

We shall give an example in the next section (see Example 3.1 of this paper) to
show that conditions (i) and (ii) of Theorem 2 are not sufficient to ensure that
(Z, C, P) is a perfect probability space.

Let Z= MyU M, U M, U - - - be a maximal decomposition of Z according
to Theorem 1 of [4]. From the definition of a maximal decomposition given there it
is easy to see that if Z= My U M, U M, U - -+ =Myu M{U M;U - are
two maximal decompositions of Z then P(M,AM;) = 0 because P(M, N M,) =
P(M§{ N M,) =0 for every n > 1. So let us denote by M, the essentially unique
subset of Z which does not contain any partial selector for @ of positive measure.

DEFINITION 2. We say that @ is a product type sub-o-algebra if, whenever
P(My) > 0, @ N M, resolves the subspace (Mo, C N My, Py, = P(.)/P(Mp)) as
a product space.

THEOREM 3. (Z, C, P) is a perfect probability space if and only if
() (Z, &, P|g) is a perfect probability space
(ii) u(z,.) is a perfect measure for almost all z and
(iii) @ is a product type sub-o-algebra.
Proof. The necessity follows from Theorem 2 and Definition 2. To prove
sufficiency let Z = U ,M, be a maximal decomposition of Z.
Forn > l,let A, = {z : w(z, M,) > 0}. 4, € @ and
P(An N Mn) = fA",U,(Z, Mn) dP = P(Mn)'

Since M, is a partial selector for @, a|, s, is a 1-1 measurable map from
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(4, N M,, Cn 4, N M) to(ad,, & N ad,). Furtherif C € € N 4, N M, then
a(C) = a{z: u(z,C) > 0} € @ N ad,. Hence a|, ., is bimeasurable. Further
the measures P, ., ~!and P,|, are mutually absolutely continuous. Now from
(@) it follows that (Z,, &,, P,) is perfect by Remark 1. Hence (¢4, @, N a4,, P,|,,
= P,(.)/P(ad,)) is perfect. So it follows that (4, N M,, C N 4, N
M,, P, . \,) and hence (M, CnM, P,, ) are perfect probability spaces.

If P(My) >0,1letA ={z:u(z, Mg) >0} — N.Then4 € &.Let 4, = 4 N M,
Then P(Ay) = [,u(z, My) dP = P(M,). (i) implies that (4, & N 4, P,) is perfect.
Observe that

z€A=u(z,a(z) N My) >0

=a(z) N My# 2

and hence a(z) — a(z) N M, defines a o-isomorphism between the o-algebras
@ N A4 and @ N 4, Hence one can show using (P1) that (4o, @ N 4, P,) is
perfect. So (M,, & N M,, P,,) is perfect. By Corollary 1 of [4] and (ii), in the
separable space (My, C N My, Py, ) there exists a regular conditional probability
po(z, C N M) given & N M, which is proper as. [P|gn 4] such that almost all
measures po(z, .) are perfect measures. Since M, does not contain any partial
selector for @ of positive measure, there is no partial selector for @ N M, of
positive measure. Hence by (iii) and Theorem 2, (Mg, C N My, P,, ) is a perfect
probability space.

Finally if f is a real valued C-measurable function on Z then f, = f[, is
€ N M,-measurable for all n =0,1,2,- - . For each n > 0, there is a linear
Borel set B, C f,(M,) such that P, (f,'(B,)) =1 or P(f 'B,)= P(M,). Let
B; = U, 0B,. Then B; is a linear Borel set contained in f(Z) such that P(f~ lBf) =
3,50P(M,) = 1. Hence by (P1), (Z, C, P) is a perfect probability space.

CoRrOLLARY 1. If (Z, @, P|g) is perfect and if u(z, .) is discrete for almost all z
then (Z, C, P) is perfect.

ProOF. We shall show that if u(z, .) is discrete for almost all z, then P(M,) = 0
where M, is the essentially unique set in € which does not contain any partial
selector for @ of positive measure. By Theorem 3, P(M,) = 0 implies that
(Z, C, P) is perfect.

Suppose P(M,) > 0. Then A = {z : u(z, M) > 0} is @-measurable and P(4) >
0. By Proposition 1 and Corollary 1 of [4] there is a regular conditional probability
uo(z, C N M) given @ N M, which is proper a.s. [P|g ] and which is such that
for almost all z, uy(z, C N My) = u(z, C N M)/ u(z, M,). Now there is no partial
selector for @ N M, of positive measure. Hence by Proposition 4 of [4] u(z, .)
must be continuous for all z € 4o N My, 4y € @ with Py (4o N Mp) = 1. Let
Ay =AyN A. A, € & and since P(4 N My) = P(A, N My) = P(M,) we have
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P(A4)) > P(A, N My) = P(My) > 0. Now for all z € 4,, (2, )|, is continuous
since oz, .) is continuous. Hence u(z, .) is not discrete for z € 4,, with P(4,) > 0
which is a contradiction. Hence P(M,) = 0.

3. Perfect mixtures of perfect measures. In this section, given a mixture
problem where the o-algebras considered are countably generated, we construct an
associated separable space and a countably generated sub-o-algebra of this space
given which there is a regular conditional probability which is everywhere proper.
We shall then use results of the preceding section to characterize the perfectness of
perfect mixtures of perfect measures.

Let p. be the A-mixture of u(x, .)’s where (X, @, M) is a probability space with &
countably generated, (Y, %) is a Borel space with % countably generated and
w(x, B) is a transition probability given & on X X B. We denote by (X;, &, A))
the quotient space of (X, @, A) induced by atoms of @ and by (Y}, B,, u;) the
quotient space of Y induced by atoms of % . For x € X let x, denote the @-atom
containing x and for B € ® let B, denote the corresponding set in B,. Define
u(x;, B)) on X; X B, by p(x,, B;) = u(x, B). Then p,(x,, B,) is a transition
probability on X; X ®,. Let Z, = X; X Y,, € = @ ® B, and P, = A defined
by

Au(C) = f.“'l(xli Cx.) dh,, cec.

Then (Z,, @M, P) is a separable space. If we define p((x,,yy), C) = py(x, C )
then u((x,, y,), C) is a regular conditional probability on Z, X C, given &, X Y,
which is everywhere proper. We call (Z,, @F, P,) the separable space associated
with u. We have the following

THEOREM 4. Suppose A is perfect. Then p is perfect if and only if the associated
separable space (Z,, @M, P)) is perfect.

PrOOF. If p is perfect then p, is perfect by Remark 1 and hence the marginal of
P, on Y, is perfect. Since A is perfect A, is perfect. Thus (Z,, C,, P,) is a product
space in which both the marginals are perfect. Hence by (P4), (Z,, C,, P,) is
perfect.

If (Z,, G, P,) is perfect, by (P4) the marginal of P, on Y, and hence p, is
perfect. Again by Remark 1, u is perfect.

We are now in a position to show that conditions (i) and (ii) of Theorem 2 are
not sufficient to ensure that (Z, C, P) is a perfect probability space. It is easy to
see that u(x, .) is perfect if and only if pu,(x,, .) and hence u((x,, yy), .) is perfect.

ExampLE 3.1. Consider the setup of Example 1.3. Construct the associated
separable space (Z,, C,, P,). A is perfect implies (Z,, @ X Y, P,|g xy,) is perfect.
Each u(x, .) is perfect implies that each p((x,, y,), .) is perfect. Thus conditions (i)
and (i) of Theorem 2 hold. But p is nonperfect and so by Theorem 4, (Z,, C,, P,)
is not perfect.



MIXTURES OF PERFECT MEASURES 451

Let us now turn our attention to the general mixture problem. We are given a
probability space (X, @', \'), a measurable space (Y, %), a transition probability
uw(x, Byon X X %B’. Let y’ be the N'-mixture of u(x, .)’s. Suppose B is a countably
generated sub-o-algebra of B’ and pu = p'|. We shall denote by @ the smallest
o-algebra of @’ with respect to which p(. , B), B € B are all measurable. Then &
is countably generated. We denote A’|g by A. So p is in fact a A-mixture of p(x, .)’s
and the g-algebras considered are now countably generated. We can now associate
the separable space (Z,, C,, P,) and the sub-c-algebra @, = @ X Y, with p. Thus
in the general mixture problem whenever u denotes the restriction of the mixture
measure to a countably generated sub-o-algebra, we associate a separable space
(Z,, C,, P,) and a countably generated sub-o-algebra @, of this space with p. If in
addition the mixing measure and almost all mixand measures are perfect then
(Z,, &,, P,,,) is perfect and there is a regular conditional probability given &,
. on Z X @, which is almost everywhere proper and almost all of which are perfect
measures. Hence we have the following characterization of perfect mixture of
perfect measures.

THEOREM 5. Let the measure p' on (Y, B’) be a perfect mixture of perfect
measures. In order that y' be perfect it is necessary and sufficient that for every
countably generated sub-c-algebra B of B’', the sub-c-algebra @, of the space
(Z,, C,, P,) be of product type, where p. = Wg

Proor. If y’ is perfect then by (P3) p is perfect. By Theorem 4, (Z,, C,, P,) is
perfect. By Theorem 3, @, is of product type.

Suppose the condition holds. By Theorems 3 and 4 it follows that the restriction
of u’ to every countably generated sub-o-algebra is perfect. By (P2), p’ is perfect.

An alternative proof to Theorem 3 of [3] is now given.

COROLLARY 2 (Theorem 3 of [3]). Perfect mixtures of discrete measures are
perfect.

PrOOF. Let the setup be as in Theorem 5 with the additional assumption that
almost all mixand measures are discrete. Let % be a countably generated sub-o-al-
gebra of B’ and let p = p'|g. Consider the sub-c-algebra @, of the associated
separable space (Z,, C,, P,). Since the mixing measure is perfect P,|,, is perfect. It
can be checked, since almost all mixand measures are discrete, that in the regular
conditional probability given @, almost all measures are discrete. Hence by
Corollary 1, (Z,, C,, P,) is perfect. By Theorem 4, p is perfect. By P2), p is
perfect.
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