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INFINITE DIVISIBILITY IN STOCHASTIC PROCESSES

By H. D. MILLER
London School of Economics and Political Science

It is shown that infinite divisibility of random variables, such as first
passage timés in a stochastic process, is often connected with the existence of an
imbedded terminating renewal process. The idea is used to prove that for a
continuous time Markov chain with two, three or four states all first passage
times are infinitely divisible but for more than four states there are first passage
times which are not infinitely divisible.

1. Introduction. For a simple continuous time random walk, Feller (1966)
showed that the first passage times are infinitely divisible. This was generalized by
Miller (1967) to include discrete state Markov processes with skip-free transitions
which include, for example, the general birth-death process. Steutel (1973) drew
attention to the fact that distributions arising in queueing theory are in some cases
infinitely divisible, e.g., waiting times, queue lengths and busy periods. There is no
obvious structural property of these processes implying infinite divisibility of
passage times which, by contrast, in the case of Brownian motion, for example, is a
direct consequence of path continuity and independent increments.

In the present paper it is shown that in many of these cases infinite divisibility is
connected with the existence of an imbedded terminating renewal process. The
main work of the paper however is to remove the ‘skip-free assumption and to
examine whether the first passage times of general continuous time Markov chains
are infinitely divisible. The result is given in Theorem 5.2. In a concluding section it
is shown that the result for continuous time chains does not in general carry over to
discrete time.

2. Terminology and notation. All Markov processes considered will be homo-
geneous, i.e., the transition probabilities will be assumed to be independent of time.

A Markov process with a countable set of states will be called a Markov chain in
continuous time or discrete time, whichever is appropriate.

If F(x) (x > 0) is a nondecreasing function, then the Laplace-Stieltjes transform

f(s) = [Fe™"dF(x)
will be referred to simply as the Laplace transform of F and denoted by the
corresponding lower case letter. If F is the distribution function (possibly defective)

of a random variable X then f will also be referred to as the Laplace transform of
X. Also f(0) will always mean f(0 + ).

Received January 4, 1978; revised March 29, 1978.
AMS 1970 subject classifications. Primary 60E05, 60J10; secondary 60K 05.
Key words and phrases. First passage time, infinite divisibility, Markov chain, terminating renewal
process.

406

[
) (I
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Qﬁ% )z
The Annals of Probability.

®

Www.jstor.org



INFINITE DIVISIBILITY IN PROCESSES 407

3. The imbedded terminating renewal process. The terminating renewal pro-
cess is considered by Feller (1971, page 374). Intervals between renewals are
nonnegative random variables X, X,, - - - which are mutually independent with
common defective distribution function G(x) where G(0 + ) = 0, G(o0) < 1. The
interpretation of the defect 1 — G(o0) is that at each renewal epoch there is a
probability 1 — G(o0) that the process terminates. Termination occurs at the nth
renewal (n =0, 1, - - - ) with the geometric probability {1 — G(c0)}{G()}", and
the total duration M of the process is finite with probability one and has Laplace
transform

1- G(0) _1-2(0)

G = g()  1-50)’

where g(s) is the Laplace transform of G. Note that M can be zero, i.e., the process
may terminate at time zero, with positive probability, namely 1 — G(c0). The
Laplace transform (3.1) is that of a compound geometric distribution and is thus
infinitely divisible. In this way, if a stochastic process can be shown to have an
imbedded terminating renewal process, an infinitely divisible distribution will arise.
Some examples follow.

(a) The already known fact that the maximum of a random walk (and the
limiting waiting time in the queue GI/G /1) is infinitely divisible follows from the
above discussion. See Feller (1971) and Spitzer (1956, Theorem 4.1).

(b) Regenerative events (Kingman (1964)). A standard, stable regenerative event
& can be regarded as being produced by an alternating renewal process in which
the renewal intervals X,,_; (n =1, 2, - - - ) have a common exponential distribu-
tion ge~ % (0 < g < oo0) whilst the intervals X,, (n = 1, 2, - - - ) have an arbitrary,
possibly defective distribution G(x) (G(0 + ) = 0). The regenerative event & is
thought of as occurring throughout the currency of the intervals X,, ,, n =

1,2,- - . If g0) = G(e0) <1 then & will be transient. The intervals (X, +
X3), (X4 + X5), - - - will then form a terminating renewal process of total duration
M whose Laplace transform is the compound geometric form
1 - g(0
(32) 1 ===
~ 7550

Thus M is infinitely divisible. Now X, and M are independent and X, + M is the
last epoch of occurrence of &. Since X is infinitely divisible, so is X, + M. The
intervals X, (X, + X3), - - * (X, + X5,.1), - + + , may be considered to generate
a delayed terminating renewal process whose total duration X, + M has Laplace
transform ¢f(s)/(q + s). Note that the delayed process cannot in this example
terminate at time 0. ’

(¢) Markov chains in continuous time. Consider for the sake of simplicity an
irreducible recurrent chain with states labelled by the positive integers. States 1 and
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2 may be considered as an arbitrary pair of states without loss of generality and let
fi2(s) denote the Laplace transform of the first passage time from state 1 to state 2.

In the notation of example (b) above let X, X5, X, - - - represent the successive
intervals during which state 1 is occupied and let X,, X,, - - - represent successive
away-times from state 1 but avoiding state 2; the X,, (n = 1,2, - - ) thus have a

defective distribution G(x). As in example (b), X, + M is the duration of a delayed
terminating renewal process and represents the last epoch of occupancy of state 1
with state 2 having been a taboo state. Let K(x) be the (defective) distribution
function of the first passage time from state 1 to state 2 without a return to state 1.
Since the chain is recurrent an exit from state 1 is followed either by an eventual
passage to state 2 without returning to state 1 or an eventual return to state 1 while
having avoided state 2. Thus,

(3.3) K(o0) + G(c0) = k(0) + g(0) = 1,
and
(34) fials) = 5 k() + 5 8(5)ils)
whence
k(s)
(3.5) fals) = =L
2 q+s l_qisg(s)
g+s k(0) ;_ qisg(s)

g(0) < Lk(0) + g(0) = 1.

The representation (3.6) shows that the first passage time from state 1 to state 2in a
recurrent chain may be regarded as the sum of three independent random vari-
ables:
(i) a delay X, represented by q/(q + s); this is the initial sojourn in state 1;
(ii) a period during which recurrences of state 1, which may number
0, 1,2, - -, alternate with periods away from state 1 avoiding state 2; this
is the duration M of a terminating renewal process and is represented by the
last factor in (3.6); and
(iii) a final transit U to state 2 represented by the middle factor in (3.6).
The random variables X, and M are infinitely divisible but at this stage nothing
can be said about U in this connection. .
If the chain is irreducible but transient then k(0) + g(0) < 1 instead of (3.3), but
the relations (3.4) and (3.5) still hold. However (3.6) now becomes

' __q k) _1-2(0
(B7)  fils) T+3T-80 1_ : i Sg(s), k(0) + g(0) < 1.
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The random variable U, the final transit to state 2 and represented by the middle
term in (3.7), is now defective, the defect 1 — k(0){1 — g(0)} ~! representing the
probability of absorption in the set of transient states (3, 4, 5, - - - ) without prior
entry to state 2 conditional on no return to state 1.

This example will be developed further in Section 5.

4. Some results of mixtures of convolutions of exponentials. The results in this
section are of some interest in themselves and with the exception of Lemma 4.4 are
required in the sequel. They concern the infinite divisibility of mixtures of convolu-
tions of exponential distributions. Steutel (1967) proved the interesting result that
mixtures of exponential distributions are infinitely divisible and extended this in
(1973), Theorem 4.2” to include some special cases of mixtures which permit
negative weights. The results of this section, however, appear to be independent of
those of Steutel.

A nonnegative random variable is infinitely divisible if and only if its Laplace
transform can be written in the form exp { —y(s)} (Feller (1971), page 449), where
Y(s) is of the form

1 —e™
(a1) W) = J§ ——2— ap(x).
Here P is nondecreasing and [{°x ~'dP(x) < co.

DEerFINITION 4.1. A Laplace transform f(s) will be called infinitely divisible if it
is, apart from a positive constant multiple, the Laplace transform of a distribution
function, i.e., if

f(s) = ce ), c>0,
where y(s) is of the form (4.1).

In particular for the exponential density ge ~#* with Laplace transform ¢ /(g + s)
the function P in (4.1) is given by dP(x) = e ~%dx. The rational infinitely divisible
Laplace transform (g + s)~! can therefore be expressed as

1 wl—e™> _
=;exp fo—x—e Pdx |.

q+s
It follows that a rational function f(s), whose zeros and singularities have negative
real parts, can be written as

_(s+a)---(s+a,)

(4.2) f(s) = — ,
(s + b) (s +5,) Re(q) >0,i=1,---,m,

Re(,) >0,i=1,---,n

1] —e™*
(4‘3) = cexp _ISO__xﬁ___(lee—b.x - Z'i"=1e_a.~x)dx s

where ¢ = (a, - - - a,)/(b, - - * b,). The a; and b; are not necessarily distinct. The
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expression (4.3) is valid provided that Re(s) > — min; ;,{Re(a;), Re(b,)}. A Laplace
transform of the form (4.2) will be infinitely divisible if and only if

4.9 Sn_e78* > 3m e=%*  forall x >O0.
LemMa 4.1.  Let a, < a,, by < b, be positive. Then
(4.5) (e7b* + e7b%) — (e7* + e7%*) > 0

for all x > 0 if and only if a; + a, > b, + b, and a, > b,.

ProOF. The necessity of the condition @, > b, can be seen if x is large. Thus
assume a; > b, and consider the sufficiency part of the proof. If a, > b, then (4.5)
is obvious. Suppose therefore that a, < b, and let A(x) denote the 1.h.s. of (4.5).
Then

(4.6) ebzxx(x) = e(bz_al)x{e(al—bl)x —_ 1} —_ {e(bz—az)x — 1}.
Now, if a; + a, > b; + b, then a; — b, > b, — a, > 0, and (4.6) implies that
ebzxx(x) > e(bz—al)x{e(bz'az)x - 1} — {e(bz"az)x — 1}

= {e(bz‘al)x — 1}{e(bz—az)x — 1}

>0
for all x > 0. Hence the condition a, + a, > b, + b, is sufficient for (4.5). It is
clearly also necessary since A(0) = 0 and X'(0) = (a, + a,) — (b, + by); if N'(0) < 0
then by continuity A(x) < 0 in an interval to the right of x = 0.

LEMMA 4.2. Let a, < a,, b, < b, be positive. Then
(a, + s)(a, + 5)

4.7 =
“7) ) = b+ )b, +9)"
is an infinitely divisible Laplace transform if and only if a, + a, > b, + b, and
a, > b,.

Proor. The result follows from Lemma 4.1 and the condition (4.4).

LemMA 4.3.  Suppose b; > 0, b, > 0, a is complex and a is the complex conjugate
of a. Then
(a + s)(a+s)
4.8 =
“9 19 = o, + e, + )

is an infinitely divisible Laplace transform if and only if Re(a) > 1(b, + by).

PrOOF. Let a = a + in where a and n are real and let
A(x) = e 2% 4 g0 — o™ — g8 = g=bix _ p=b¥ _ Do oog .
Now, A(x) > 0 if and only if a > 3(b, + b,) for by Lemma 1
Ax)>e b+ e —2e7 >0

if 2a > by + b,. Also X'(0) = 2a — (b, + b,) and X'(0) > 0 is a necessary condi-
tion for A(x) > 0 (x > 0). Again the condition (4.4) implies the result.
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LEMMA 4.4. Suppose a; > 0,a, > 0,0, > 0,5, > 0,2 >0, 8 > 0 and let

—_ « B
4.9) fls) = (a, + s)(a, + 5) + (by + s)(by + 5)°

Then f(s) is infinitely divisible (i.e., a mixture of two convolutions each of two
exponentials is infinitely divisible).

PrROOF. Suppose without loss of generality that a, + a, < b, + b,, a, < a,, b,
< by. Let aj = min(a,, b)), by = max(a,, b). Then

_ (s; + s)(sy + 5)
(4.10) Js) = (@ + B) G5y, + s)ay + )5, + )
If s, and s, are real then min (s, s,) > a; since the Laplace transform of a

nondecreasing function can have no real zeros to the right of the abscissa of
convergence. Further, for real or complex sy, s,

s+ 8, = ;—_""_—B(b, + b)) + a—f—é(a, + ay).

Hence s, + s, is an average of (a;, + a,) and (b, + by) andso s, + 5, > a; + a, >
a; + a,. It now follows from Lemma 4.2 or Lemma 4.3 that (s; + s)(s, + 5)/
{(a; + s)(a, + s5)} is infinitely divisible and so therefore is f(s).

By letting in turn a, — 00, a; — o0 and b, — o0 in (4.9) the following is obtained.

COROLLARY. Laplace transforms of the following forms

(4.11) a +s + (b, + s)(b, + 5)°

B

(4.12) a+ B TG, 735)
B

(413) a+ m’

are infinitely divisible provided a, > 0,b, > 0,5, >0,a > 0,8 > 0.
It may be noted that the result (4.13) follows by a passage to the limit from
Steutel’s theorem on mixtures of exponentials.

LEMMA 4.5. Let

(4.14) o) =axp [ GRS o }

where a > 0, 8 > 0 and a, b, and b, are all positive. Then f(s) is infinitely divisible
provided that the function in square brackets is the Laplace transform of a bounded
nondecreasing function, i.e., provided that a > min(b,, b,).

Proor. The function f(s) is rational and provided a > 0 may be written as

(4.15) fls) = a- ((; : 238 I Z))
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where —s; and —s, are the zeros of the numerator and satisfy
(4.16) s+ 8,=b,+ by+ Ba' > b + b,

If the function in square brackets in (4.14) is the Laplace transform of bounded
nondecreasing function then so also is f(s). This means that if s, and s, are real
then min(s,, s,) > min(b,, b,), which, together with (4.16) and Lemma 4.2, implies
that f(s) is infinitely divisible. If s, and s, are complex conjugates then the result
follows from (4.16) and Lemma 4.3. The result for a = 0 follows by taking a limit

as a — 0.
The next lemma shows that the infinite divisibility of mixtures of the type so far

considered does not extend in general to cases where more than two exponential
factors are involved.

LEMMA 4.6. Let b, >0(i=1,2,3),p>0,4>0,p + g = 1, and let

byb,bs
(b, + s)(by + s)(bs + 5)

(4.17) fs)=p+gq
Then it is possible to choose values of p, q and b, b,, by such that f(s) is not infinitely
divisible.

PROOF. A numerical case demonstrates the result. Let p = 99/1170, g =

1071/1170, b, = 1, b, = 9, b, = 11. Then

_ (s +18){(s + 1.5 + 6275} 99
&) = ¥ DG+ )G+ 1) 1170

The roots of the numerator are thus — 18 and — 1.5 * i(62.75)%. LetA(x) =e™* +
e=% + e~11¥ — 2¢=15% cos px — e~ 18 where n = (62.75). Then if x, = 27/7 a
numerical calculation will show that A(xy) <O from which it follows by the
condition (4.4) that f(s) is not infinitely divisible.

5. Markov chains in continuous time. Consider a continuous time Markov
chain and let the states be labelled by the positive integers. All states are assumed
to be stable; thus instantaneous transitions are excluded and the duration of a
sojourn in state j has the exponential density e %' (0 <¢; < 00;j=1,2,- ).
For any set A of states let ,f,(s) be the Laplace transform of the first passage time
density from state j to state k (or if j = k the first return time density to state ;)
maintaining a taboo on the states in the set 4. Even if j € A4, the first passage time
is defined to include the initial sojourn in state j, and in general the first return time
also includes this initial sojourn in state j. Note that the process need not be
irreducible or recurrent. .

Further let P be the transition probabilities of the imbedded discrete time
Markov chain. Thus p; q;dt + o(df) is the probability of a transition from state j to
state k in the interval (¢, ¢ + df) conditional on state j being occupied at time z.
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The p;, satisfy
p”=0 j=1’2’...’
2k P =1
and p; = g;/q; where g, is the transition intensity from state j to state k.

THEOREM 5.1.
(i) The following relations hold:

_ jfjk(s)
(5.1 f;k(s) = m ,
(5.2) jf}k(s) = # {ij + Ei;igek Pjijﬁk(s)}~

(i) If ;fu(s) is infinitely divisible, so is f;(s).

ProoF. Suppose first that p; > 0 for all j, k (j # k). Then the chain is irreduc-
ible and in the notation of example 3(c),

1 fio(s) = q -ll-s

and

2fuls) = g(s).

Since the states 1 and 2 were arbitrary in example 3(c), (5.1) follows from (3.5). The
relation (5.2) follows by considering all the possible passages from j to k without
returning to j, following the first transition out of state ;.

The infinite divisibility statement (ii) follows from the fact {1 — , ]j.j(s)}‘l is of
the compound geometric form.

If some p; are zero the results follow by suitable passages to the limit from the
case py > 0.

q+s

THEOREM 5.2. For a Markov chain with n states all first passage time distribu-
tions are infinitely divisible if n < 4, but if n > 5 there are first passage distributions
which are not infinitely divisible.

ProOF. It is supposed for convenience in the following proof that Pix > 0for all
Js k,j # k. The general result will follow by suitable passages to the limit.

() n = 2. The result here is obvious since there are only two first passage time
distributions and they are both exponential.

(i) n = 3. Consider without loss of generality the formula G.D)forj=1k=3;
the numerator as given by (5.2) is

1fis(s) =

Now | f,3(s) represents a first passage time in the subchain consisting of two states

P +S{P13 P121f23(5)}-
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(2, 3). Hence | fy3(s) = Pnd>/(q; + s) and

_ 4 P12P2392

which is infinitely divisible by (4.13). Thus f(s) is infinitely divisible by Theorem
5.1(ii) and is given by

(53) fis(s) = q,q-:- P (Pls + gz—i‘i‘?){l - 3f11(s)}_l
where

9,9
(54) 3fn(s) = P12P2 (q, + S;(;z ¥ 5) ’

(i) n = 4. In this case consider (5.2) withj = 1, k = 4. Then
q
(5:5) 1f1a(8) = =——={P1s + Pr21f2a(8) + P13 1f34(9)}-

q,+s
The two terms , fo4(s) and | fy,(s) represent passage times within the 3-state
subchain (2, 3, 4) and may be expressed in forms similar to (5.3); for these two
terms the denominators are respectively 1 — 14 f55(s) and 1 — 14 f33(s) and these are
equal since

1af22(8) =14f33(8) = P3Pn (g, + ;];2123 s

So, (5.5) becomes

q _
(5.6) 1fa(s) = 7 _:_ 5 [Pm + R(){1 = 1afn(9)} l]
where
P29 D23P3493 P1393 D32P219>2 )
== e §
5.7 R(s) q2+s( u ™ 43+5)+‘13+5(34 g, ts

Note in (5.6) that R(s){1 — 14 £a(s)} ™! is the Laplace transform of a defective
probability distribution and that it reduces to the form

Bla + 5)/ {(by + s)(b, + )}
where 8 > 0,a > 0 and —b,, —b,, the zeros of 1 — 14f5(s), are real and satisfy
0 < b; < min(gy, ¢;) < max(q,, g;) < b,. Lemma 4.5 may therefore be applied.
Hence the square-bracketed term in (5.6) is infinitely divisible and so in turn are
1 f14(s) (from (5.6)) and f,4(s) (from Theorem 5.1(in)).
(iv) n = 5. Consider the following example of a 5-state chain. Let p;, > 0, py5 >
0(piy + Pis = 1Py = L,p3a = Lpss = 1, Pse arbitrary (k =L, - - - /4). Then

q P12939445
s) = +
Fis9) = o5 |75t (G + (g + 9(gs + 9)
q1

7+ g(s), say.
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Now g(s) is of the form (4.17) and for suitably chosen values of the constants is not
infinitely divisible by Lemma 4.6. Nor for these values can f,s(s) be infinitely
divisible for all g,, for if it were so also would g(s) be by letting ¢, — 0. The
theorem is therefore proved.

It is perhaps worth noting that the theorem may be rephrased as follows. If a
subchain of a Markov chain in continuous time consists of one, two or three states
then all first passage times out of the subchain are infinitely divisible, but not all
such passage times are infinitely divisible if the subchain consists of more than
three states.

6. Markov chains in discrete time. The results of Section 5 do not carry over to
the discrete time case. As will be seen below, a perfectly ordinary three-state chain,
for example, can have first passage times which are not infinitely divisible. A slight
qualification is necessary in discussing integer-valued random variables. Let X be a
nonnegative integer-valued random variable with probability generating function

g(2) = 2 op,2".

A necessary and sufficient condition that X (or g(z)) be infinitely divisible is that
g(z) should have the compound Poisson form
(6.1) g(z) = exp[A{h(z) — 1} ] A>0
where A(z) is a probability generating function of a nonnegative random variable.
Thus it is necessary that g(0) = p, > 0. Now a passage time N in a Markov chain
is necessarily positive, i.e., N > 1, so that its probability generating function will
always have a factor z. Thus, strictly, N can never be infinitely divisible into
integer-valued factors but N — 1 can be and as shown by Miller (1967), the first
passage times for skip-free chains are infinitely divisible if the passage time is
defined as N — 1. It is in this sense that passage times are considered in this
section.

The formulae of Theorem 5.1 carry over, in an obvious notation, to the discrete
time case. Thus

jfjk(z)
6.2 2 (2) = ——"—
( ) . ﬁk( ) 1— kfl“j(z)
(6.3) jj;'k(z) = pyZ + zi;i;ej, kpjijfik(z)'
For a three-state chain
,
DP12P23Z

(6.4) lf]3(?) =p;z+ ]_li—;z;;,

) 2
(6.5) 3f11(Z) =pnz+ Paba?

1 —ppz’
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Now consider the numerical example

1 2 3
I |% 2

P = (ij) = 2 s 14 1|
30 30 30

. w
(=]

3
where p;, (k = 1,2, 3) may be arbitrary. In this case (6.2) becomes, for j = 1,

k=3,
(66) site) = LD

_z 1+(14/3)z
T 201 - (43/60)z

after some calculation. The function (6.6), ignoring the factor z, cannot be an
infinitely divisible probability generating function because it has a zero at z =
— (3/14) and a function of the form (6.1) is analytic and zero free in the region of
the complex plane |z| < 1. Thus the results of Section 5 do not carry over to
discrete time.

Nor indeed do the lemmas of Section 4 have straightforward counterparts for
generating functions. Note first that a probability generating function g(z) is
infinitely divisible if and only if log{g(z)/g(0)} is a power series in z with
nonnegative coefficients and convergent for |z| < 1. This can be seen from (6.1).
Thus the rational function

(I = az)(1 = ay2)
6.7
(67) (1= b,z)(1 - by2)’
which corresponds to (4.7), will (ignoring a normalization constant) be an infinitely
divisible probability generating function if and only if

(6.8) bl + bl >al + af n=12--.

Now it is not difficult to prove that for given b, b5, (0 <b; <1,0<b, < 1) a
necessary and sufficient condition for (6.8) is that @, and a, should lie on or inside
the octagon in the (a,, a,) — plane with vertices at (= b,, £b,) and (*b,, *b)).
This condition is rather more complicated than that of Lemma 4.2.

g;real, |g) <1,0<bh, <1,i=12,
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