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HOW BIG ARE THE INCREMENTS OF A WIENER PROCESS?

By M. Cs6RGO' AND P. REVESz
Carleton University and Hungarian Academy of Sciences

Let B8, = a{log(T/ar) + log log T])'%, 0 <ar < T < oo and {W(r); 0
<t < o} be a standard Wiener process. This paper studies the almost sure
limiting behaviour of supyg;c7—q Brl/W(t + ar) — W(1)| as T— co under
varying conditions on a, and T/a;. With a; = T we get the law of iterated
logarithm and with a; = ¢ log T, ¢ > 0, the Erdos-Rényi law of large numbers
for the Wiener process. A number of other results for the Wiener process also
follow via choosing a; appropriately. Connections with strong invariance prin-
ciples and the P. Lévy modulus of continuity for W(¢) are also established.

1. Introduction. The ErdGs-Rényi law of large numbers ([2]) has the following
form when applied to the Wiener process:

THEOREM A. Let W(t) (0 < t < o) be a standard Wiener process. Then, for any
¢ > 0, we have
|W(t+clog T) — W(9)| _ 1
(2c)% log T

Strassen’s law of iterated logarithm [10] implies:

w.p. 1.

hmT—»oo sup0<t< T—clog T

THEOREM B. Let 0 <c¢ < 1 and W(f) (0 < t < o) be a standard Wiener pro-
cess. Then
|W(t + cT) — W()| _ 1

(2¢T log log T)%

A common property of these two theorems is that they study the increments of a
Wiener process on an interval [0, 7). The first one considers increments on
subintervals of length ¢ log T of [0, T'], the second one does the same on subinter-
vals of length c7. In this paper we intend to investigate the increments of a Wiener
process on subintervals of length a; < 7. Our main result is

lim supy._, ., SUPo<,<cT—cr w.p. L.

THEOREM 1. Let a; (T > 0) be a nondecreasing function of T for which
() 0<a; <T(T>0),
(ii) a;/ T is nonincreasing.
Then
(1) im supr_, ., SUPo<;<1—a, Brl W(t + ar) — W(1)|.= 1 w.p. 1
and
(2) ~hm supT—»oo sup0<t<T—aT supO{s(a.,— BTI W(t + S) - W(t)l = 1 W‘p' 1’
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where By = (2a;{log(T/a;) + log log T -1,

If we also have
(iii)
log T/ar
Mrswloglog T
then
3 limy_, o, SUPog,<7—a BrlW(t + ag) — W(1)|=1  wp.1,
and

(4 limy,, SUPo</< T ap SUPOKs<ay Brl w(t+s)— W) =1 w.p. L.
This theorem clearly implies Theorems A and B and it also implies the following
well-known result:

THEOREM C.

W+ 1) - W)l _
(2 log T)%

Our method of proof can also be used to prove

lim;._, , SUPoc,cT-1 w.p. 1.

THEOREM 2. Suppose that ar satisfies conditions (i), (ii) of Theorem 1. Then
(5) lim sup;_, ., B W(T + ar) — W(T)| =1 w.p. 1,
(6) lim sups._,,, SUPo <o, BrIW(T + 5) — W(T)| =1  wp. L

This theorem is a simple generalization of a theorem of Lai ([5], see also [6]) who
proved this result under somewhat stronger conditions on ay.

In their paper [2] Erdds and Rényi pointed out that their Theorem A is related to
the following theorem of Lévy ([7], see also [9]):

THEOREM D. We have
|w(t + h) — W()|
(2h log 1/h)?

lim,, 5 Supo<,<1

WG+ ) = W) _ |
(2h log 1/h)?

= lim;,_, supy¢, <1 SUPos<h w.p. L.

The exact relationship between Theorems A and D and also that of Theorems 1
and D is not completely clear yet. All three of them can, however, be proved from
our Lemma 1 of Section 2, but it is probably not true that they should directly
imply each other.

Chan ([1]) also proved a theorem which is closely related to our Theorem 1, and
which deals with the multi-time parameter Wiener process. His condition concern-
ing a; is more restrictive than those in this paper.
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Our Theorem 1 and the strong invariance principle of Komlds-Major-Tusnady
([3)) easily imply:

THEOREM 3. Let X, X,, + + + be a sequence of ii.d. tv’s satisfying the conditions
() EX, =0, EX? =1,

(ii) there exists a ty > O such that Ee™ < oo if |t| < 1,

Then for the sums S, = X, + X, + - - - + X, we have

lim SUP,_,0 SUP1<k<n—a, ﬂnlSk+a,, - Skl =1 w.p. 1

provided that a, satisfies conditions (i)—(ii) of Theorem 1, and a,/log n — . The
analogous statements for S, fashioned after (2), (3), (4), (5) and (6) are similarly true.

The case when a, = ¢ log n, ¢ > 0, was first treated by Erdés and Rényi ([2])
and further developed by Komlos and Tusnady ([4]). The case when a, = o(log n)
seems to be unknown. These two cases cannot be treated by invariance-principle-
like methods.

Assuming some stronger restrictions on a, and applying some further results of
[3] (see also [8]), condition (ii) of Theorem 3 can be replaced by weaker moment
conditions and results like those in [6] can be similarly proved by invariance
considerations.

2. An inequality. In this section we prove our

LEMMA 1. For any € > 0 there exists a constant C = C(e) > 0 such that the
inequality

@) P{sup0<“+,<l SUPo | W(s + 1) — W(s)| > vhzl} < Ch~le~v/@+o)
holds for every positive v and 0 < h < 1.

PrROOF. Let R be the smallest integer for which 1/R < ¢’1/4. Then for each
w €  we have

SUPo s, s+1<1 SUPo i<l W(s + 1) — W(s)|
i
< maxyg;cr- lsup0<,<,,|W( + t) W(ﬁ)l

i
+2 maxg;cp—1 Sup0<r<(l/R)|W( + 1) - W(})I

and for any x > 0
P{maxo<,<R 1sup0<,<,,|W( + t) (})l > xh2} <4Re %/ < Ch~le~*/2,
1
{2 maXog,<r-1 SuPo<r<(1/R)| W( (R )I > exhi}
i _1
< P{max0<,<R 1 SUPo<r<(1/R) W( T) - Wi §)| > xR zl}

< 4Re /2 < Ch~le~*/2,



734 M. CSORGO AND P. REVESZ

Combining the above three inequalities we get
8) P{Sup0<s,s+t<l SUpoc <l W(s + 1) — W(s)| > xh? + exhg} < 2Ch-le~*/2.

Choosing v = x(1 + ¢) in (8) we have our inequality (7) with a different choice of &

and C.
A simple analogue of this lemma is

LEMMA 1*. For any ¢ > O there exists a constant C = C(¢) > 0 such that the
inequality
P{sup0<,,s+,<T SUPoc,chl W(s + 1) — W(s)| > vhzl} < CTh 'ev/@+9

holds for every positive v, h and T.
This Lemma 1* follows from Lemma 1 and from the following observation:

LEMMA A. For any fixed T > 0 we have
(W(s); 0<s < T} = TTW(T™Y);0<s <T},
that is, for any 0<s5,<s5,<---<s5,<T (n=1,2,---) the joint distri-

butions of {(W(s)), W(sp), - -+, W(s,)} and that of (TW(s, TV,
1
T2W(s,T™Y, - - -, T2W(s,T ")} are equal to each other.

3. Proof of Theorem 1.
Step 1. Let
A(T) = SUPy ;< T, SWPo<s<a, Brl W(t + 5) — W(2)|.
Suppose that conditions (i), (ii) of Theorem 1 are fulfilled. Then
9) lim supy_, A(T) < 1 w.p. L.

ProoF. By Lemma 1* we have

P(A(T)>1+¢) < Calexp[ -1+ e)[log{— + log log T”
T T

= (f‘_T_)__l__
T (l og T)l+z :
Let T, = % (8 > 1). Then
© PA(T) > 1+¢€) <o
for every € > 0, & > 1, hence by the Borel-Cantelli lemma -
(10) lim sup,_,, A(T,) <1 wp. L
We also have '
Br,

<0
BT;"‘-I

(11) 1<

if k is big enough.
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Now choosing @ near enough to 1, (9) follows from (10) and (11), because
B! A(T) is nondecreasing and B, is nonincreasing in T.

STeEP 2. Let
B(T) = B|W(T) — W(T — ay)|.
Suppose that conditions (i), (i) of Theorem 1 are fulfilled. Then
(12) lim sup;_ ., B(T) >1  wp. 1l
ProoF. We have

exp{ -(1- e)z[log—aZ + log log T]}
T
>

a 1—e
(13) P(B(T) > 1 —¢) Tlo; T)

(ZW)%(Z(log—T- + log log T))2
ar

for T big enough.
Let 7|, = 1 and define T, by

Tk+l - aT;‘+l = Tk if p < l
and
Tk+l = 0k+l if p= 1,

where § > 1 and lim,_, a;/ T = p (we note that our conditions (i) and (ii) imply
that a; is a continuous function of T and T — ay is a strictly monotone increasing
function of T).

In case p < 1, (12) follows from the simple fact that

ar, 1-e
760-2( T, log Tk) -
and that the rv’s B(T}) (k = 1,2, - - - ) are independent.
Incasep=1,ar, > T, — Tp (if & is big enough), hence
B(Tk+l) > BT“.'W(TkH) - W(TY)|
= Br,., SWPocu<o< | W(0) — W(1)|.
By Step 1,
lim sup, .. Br,.. SUPocucocr, W(0) — W(w)| <2077,
We also have '
P{ By, [W(Tr) = W(T)| > 1= ¢} = O(k~C=9%/07D),
The latter two formulas imply (12), since @ can be arbitrarily large.
StEP 3. Let
C(T) = supog 1o, BrlW(t + ar) — W(1)|.
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Suppose the conditions (1)—(iii) of Theorem 1 are fulfilled. Then
(14) lim inf,,, C(T) > 1 w.p. L.

PrOOF. Since the rv’s
BAW(k + Dar) - Wikap)l  (k=0,1,2,- -, [T/a;] = 1)
are independent, by (13) we have
P{max0<k<[T/aT]—lﬂT| W((k + 1)ay) — Wi(kay)| < 1- 8}

—e\[T/ar] e 1—e
Y B A (X 1
‘(‘ (TlogT) ) <2"”‘p{ (aT)(logT) }

By condition (iii) we have

o ool — (L)L)
2j=,exp{ (aj)(logj) }<oo,

and whence, so far, we have proved
(15) lim inf, ,, C(j) > lim inf,_,., maxXog,c(j/a)-1 BIW((k + 1)a)) — W(ka)|
>1 w.p. 1.

Considering now the case of in-between-times j < T'<j + 1, we first observe
that 0 < a; — g; by condition (i), and that, by condition (ii), 0 < ar — ¢, < g; /J <
ba; for any 6 > 0, if j < T <,j + 1 and j is big enough. (The latter inequality is
immediate, since a/ T < a;/j by (i), and so, via ar < a(T/)), we have ar — a; <
a((T/j) — 1) < a;/j). Whence, for j < T <j + 1 and j large, we have

C(T) > maxycicpi/ai-1 Bl W((k + 1a) — W(ka))|
—SUPo ;< T 82, SWP0<s<da, Brl W(t + ) — w(1)|.

(16)

On the other hand, by Step 1 we have

lim SUpPr_, . SUPo< < 780, SUPOs<5ay Br|W(t + 5) — W(s)|

T 3
28aT(logv + log log T))
< lim supy_, T — = 87

T 2
(ZaT(loga— + log log T))
T

This, by (15) and (16), also completes the proof of (14).

ReMARK. In the submitted version of our paper we have asked the question
whether the statements of (3) and (4) can be true if (iii) fails. In his report the
referee gave a negative answer to this question, outlining a proof of the following
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statement:
lim infr.,  SUPo< < 7—a, BrlW(t + ar) — W(1)|

a7) ,
= lim inf7, , SUPo< ;< 7—a, SUPOLs<a, BrI W(t + 5) — W(1)| = ( s l) ;

Nj—

w.p. 1, where
(iii)*
log T/ar
T>~loglog T’
Earlier S. A. Book and T. R. Shore (personal communication) gave the same
negative answer. C. M. Deo (personal communication) also gave a negative answer
to our question. In the light of (17) we formulate the

r = lim inf 0<r< oo

ProBLEM. Find the normalizing factors y{", v§? for which we have
lim inf7 ,, SUPo< <70, YPIW(t + ar) — W(1)|

= lim inf7, , SUPo<;< 74, SWPO<s<a, YO IW(t +5) — W(D)| =1  wp. 1,

(18).
when r of (iii)* is equal to zero.
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