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LIMIT THEOREMS FOR ABSORPTION TIMES
OF GENETIC MODELS

By S. N. ETHIER
Michigan State University

We consider a sequence of Markov chains occurring in population genetics
(viz., the so-called multiallelic Wright-Fisher models) that converges weakly to a
multidimensional diffusion process. Certain absorption times, which arise na-
turally in connection with the genetic models, are shown to also converge
weakly. This extends a result of Guess. Corollaries include convergence of
moments of absorption times and convergence of absorption probabilities. The
latter results are used implicitly in population genetics.

1. Introduction. Let
K= {xERd:x, >0,---,x;,>0 39 x; < 1},
where d is a fixed positive integer, and define £ to be the space of continuous paths
w: [0, 0) > K, endowed with the topology of uniform convergence on compact
sets. In Section 2, we construct a sequence { P™} of Borel probability measures on
Q, induced by a sequence of (suitably scaled and interpolated) discrete-parameter
Markov chains occurring in population genetics, viz., the so-called multiallelic
Wright-Fisher models (allowing for selection but disregarding mutation and migra-
tion). Here N represents the population size (or a fixed multiple thereof).

The problem is to investigate the asymptotic behavior as N — co of the P™_dis-
tributions of certain absorption times that arise naturally in connection with the
-genetic models. Sato [11] has shown that there exists a Borel probability measure P
on Q, induced by a diffusion process in K, such that P™ = P as N — oo (the
symbol = denotes weak convergence). Our results include the following. For each
t > 0, define the coordinate map x(¢): 2 — K by x(#)(w) = w(?), let Vi, =

{o®, - - -, 0*D} be the set of vertices of K, and define 7, : 2 — [0, 0] by
Ty = inf{z > 0 : x(#) € V,)}, where inf & = oo. Then

(1.1) PMorgi=>Porg as N—oo,

(1.2) limN_)wP(N)'E[de)] = P-E[’de)],l k = 1, 2, oy,
and

limN_mP(N){x('r(d)) = U(i)} = P{X(’T(d)) = O(i)},
(13)
Cd=1,ee,d+ 1,

despite the fact that 7, is P-a.s. discontinuous.
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We note that P o 7! is the fixation time distribution for the Nth genetic
model, where time is measured in units of N generations (see Section 3 for details).
Because these distributions are rather difficult to deal with, geneticists usually
approximate them by P o 'r(',;)', the advantage of the latter being that expressions
such as those on the right sides of equations (1.2) and (1.3) can occasionally be
explicitly evaluated by solving certain differential equations subject to certain
boundary conditions. The present work, which extends a result of Guess [5] (see
Remark 6.1), may be regarded as providing a mathematical justification for these
diffusion approximations.

2. Definitions and preliminary results. Let N be a positive integer. Put K, =

{a/N € K: a € Z), where Z? is the d-dimensional integer lattice. Define 2, to
be the space of functions w : Z, — K, endowed with the topology of pointwise

convergenceon Z, = {0, 1,- - - }, and let M™ be the class of Borel sets in £ N
For each n € Z , define the coordinate map X(n) : @, — K, by X(n)(w) = w(n),
and let MY be the o-algebra of subsets of 2, generated by X(m), m =0, - - , n.

Given Y™ : Ky — K and x € Ky, let 0 be the unique probability measure on
&y, IM™) such that

@1 QM (X(©) = x) = 1
and
02 OVUKG D = a/NIUDY = NI K@) [P0,

a/N €eKy,neZ,,
where Y, =1 - y™ - ... —yManda,,, = N — a, — - - - —ay; in particu-

‘lar, {X(n) : n € Z, )} is a Markov chain on the probability space (2, IN™, QM)
Of course, we can express (2.2) verbally by saying that, for each n € Z , the
conditional QV)-distribution of NX(n + 1) given MM is (d-variate) multinomial
with mean vector Ny®(X(n)) and sample size N.

Recall that Q@ = C([0, ), K) has the topology of uniform convergence on
compact sets, and let I be the class of Borel sets in 2. Recall also that, for each
t>0,x(t): Q> K is defined by x(#)(w) = w(?), and define x(o0) : @ > K by
x()w) = ((d+ )7L+ -,(d+ 1)7") (then, in particular, x(Tqy) in (1.3) is de-
fined on all of &, not just almost surely). For each ¢ > 0, let 91, be the g-algebra of
subsets of § generated by x(s), 0 < s < ¢. Define the map @, : @y — £ by

x(1) o @y = X([Nt]) + (Nt — [ Ne])(X([Ne] + 1) — X([ Ne])), t>0,
where [ Nt] denotes the integral part of N¢, and note that @, is Borel measurable (in

fact, it is continuous). )
Given Y™ : Ky, - K and x € Ky, let P be the probability measure on

(R, 9M) defined by
(2.3) PN = oM o @1,

where Q™ is the probability measure on (2, IM™) defined in terms of Y’ and x
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by (2.1) and (2.2). In other words, P®" is the Q()-distribution on (2, ) of the
process obtained from {X(Nt) : t=0,1/N,2/N, - - - } by linear interpolation.
Given b € C(K, R?), form the degenerate elliptic operator

9?2 ]
_l d - o || ——— d N —_— = 2
24 L= 22i,j-lxi(8ij x;) 3x,-8xj + Zio1bi(x) ax,’ D(L) = CHK).
A solution to the martingale problem for L starting at x € K is a probability
measure P, on (2, 9N) for which P, {x(0) = x} = 1 and

(2:5) {f(x(0)) — [o(Lf)(x(s)) ds, O, : ¢ > O}

is a P_-martingale for every f € C*(K). The following result, due to Stroock and
Varadhan [12], indicates that, if the martingale problem for L is well posed, then its
solution may be regarded as the diffusion process in K with generator L.

PrROPOSITION 2.1. Let b € C(K, R?), and define L by (2.4). If the martingale
problem for L starting at x has a unique solution P, for every x € K, then
{P, : x € K} is a homogeneous, strong Markov family.

We will be concerned specifically with the case in which b is determined by a

sequence of functions Y™ : K, — K (defined for N =1, 2, - - - ) as follows:
(2.6) limy_, o, SqueKN|N(Y(N)(x) - x) = b(x)| = 0.
It should be noted that in this case b satisfies the inward drift condition
2.7) b(x) > 0if x € Kand x; = 0, i=1---,d+1,
where
(2.8) X1 =1-32%_1x, x€EK,
and
.9 by = —3%.b, beE C(K, RY.

The conventions (2.8) and (2.9) are used throughout.

THEOREM 2.1. For N=1,2,- - -, let Y™ : K, > K, and define the family
(P™ : x € Ky} of probability measures. on (2, M) in terms of Y™ by (2.3).
Suppose that b € C(K, R?) satisfies (2.6), define L by (2.4), and let x € K. If the

martingale problem for L starting at x has a unique solution P,, and if xy € Ky for
N=1,2,--+ and xy— x as N - o, then P = P, as N — 0.

PrROOF. For N=1,2,- - -, define the family {Q®’ » x € Ky} of probability
measures on (2, M) in terms of Y™ by (2.1) and (2.2). Using (2.6), it is easily
verified that .

limy_,, squeKNINQ)(cN)'E[Xi(l) - xi] — b(x)| =0,
limy squeK~|NQ;(cN)'E[(Xi(1) = x)(X,(1) - x;)] - x(8; — x;)| =0,
limN—»oo suprKNNQ)(CN)-E[ (Xz(l) - xi)4] = 09
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fori,j=1,---,d The third of these equations implies that
liInN—mo supxeKNNQ)(cN){lx(l) - xl > 8} =0

for every € > 0, so the theorem is a consequence of the invariance principle of
Stroock and Varadhan [12] (cf. [10]). ‘
The next result is useful in connection with Theorem 2.1. The proof is given in

[3].

PROPOSITION 2.2. Suppose that b € C4(K, R?) satisfies (2.7),® and define L by
(2.4). Then the martingale problem for L starting at x has a unique solution for every
x € K.

PROPOSITION 2.3. Given 6 € C(K, R**"), define b : K — R? by
(2.10) b(x) = xi('oi(x) - dlllx o(x))

and L by (2.4). Then the martingale problem for L starting at x has a unique solution
P, for every x € K. Define

(2.11) Ly= %E‘J{jtlxi(sij -

b 2
%) ox,0%,°
and for each x € K, let Q, be the unique solution to the martingale problem for L,
starting at x. Then P, < Q, on 9N, for each x € K and t > 0.

D(Ly) = CX(K),

Proor. If we define a : K — S, by a;(x) = x(8; — x;) (S, is the set of sym-
metric, nonnegative definite, d X d matrices) and ¢ : K — R by ¢(x) = g,(x) —
0,4, 1(x), then

b(x) = x(o (x) - ,=1x a(x) (1 ,-1 )°d+|(x))
= j-lx'( i x.)(a.(x) - °d+1(x))>
1_1 a;(x)ci(x), xEK,i=1---,d

Therefore the conclusions follow from Proposition 2.2 and the Cameron-Martin

formula (cf. [12]).

The class of genetic models considered in this paper is described by the following
theorem, which is an immediate consequence of Theorem 2.1; in fact, the theorem
is a special case of a result of Sato [11]. The interpretation of these genetic models
is indicated in Section 3.

THEOREM 2.2. Let 6 € C(K, R**"). For N=1,2,- - -, define Y™ : Ky > K

by

2. M(x) = x. 9,(x) d+1 “j(x)

Q) 0 = {1+ g1 A0,

where N is the smallest positive integer N such that 1 + N ~'g9(x) > 0 for all x € K
and i=1,---,d+1, and let {P™) :x € Ky} be the family of probability
measures on (R, IN) defined in terms of Y™ by (2.3). Define b : K — R by (2.10)

2In fact, it suffices to assume that b : K — R is Lipschitz continuous and satisfies (2.7).
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and L by (2.4), and for each x € K, let P, be the unique solution to the martingale
problem for L starting at x. Suppose that xy € Ky, for N=1,2,- - - ,x € K, and
Xy = x as N— 0. Then P’ = P, as N — 0.

We conclude this section by defining the hitting times to be considered. For

i=1---,d+1,let
Vi={x€R?:x,=0}, 0@ =(8;, --,8,) €K,

and define 7, : £ — [0, o] by
(2.13) 7= inf{s > 0: x(?) € V¥, or x(£) = v?}.
Forj=1,---,d,let

Vop=u{V,n - nV:1<i<--- <i<d+1},
and define 7;, : € — [0, o0] by
2.14) 1y = inf{t > 0: x(2) € V).
Of course, 7y, * * +, T4y and 7y, - - - , 7, are all Borel measurable. We note also

that each of these hitting times is in fact an absorption time with respect to each of
the probability measures P on (2, 1) defined in the statement of Theorem 2.2.

3. Genetic interpretation. Here we consider two special cases of the class of
genetic models described by Theorem 2.2. Let s = (s;) be a real symmetric
(d + 1) X (d + 1) matrix (resp. s € R“*"), and define ¢ : K — R“*! by

o(x) = Z9tls;x;  (resp. o(x) = ;).

Let N be an even positive integer (resp. a positive integer) such that 1 + N ~lg(x)
>0 foreachx EKandi=1,---,d+ 1, and define y™ : K, - K by (2.12).
Note that

K)
Y‘(N)(x) = d:|lx1 ( )/Ek I-lxkxl(l + T’:,I')

(resp Y(x) = x(l + )/Edillx( 7\,’—))

forallx € Kyandi=1,--:,d. Let x € K, and define the probability measure
oM™ on (Ry, MM™) by (2.1) and (2.2).

The Markov chain {X(n) : n € Z,} on the probability space (2, MM, ™)
is known as a Wright-Fisher model and has the following genetic interpretation
(see [4] for definitions). Consider a single locus, with alleles 4,,- - -, 4,,,,in a
randomly mating monoecious diploid (resp. haploid) population in which there are
exactly N/2 (resp. N) individuals in each generation. Suppose that the genotype
A;A; has fitness 1 + N~ 's; fori,j=1,---,d + 1 (resp. 4, has fitness 1 + N7,
fori=1,---,d+1), and that neither mutation nor migration is present. Then,
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fori=1,---,dand n € Z_, X(n) represents the relative frequency of 4; genes
among the N genes in the nth generation (at the locus under consideration).

As mentioned earlier, the probability measure P on (2, 9N) defined by (2.3) is
just the Q®)-distribution of the process obtained from {X(Nf):t =
0,1/N,2/N, - - - } by linear interpolation. The important point here is that, on
the probability space (2, M, P), time is measured in units of N generations. The
relevance of the absorption times defined at the end of Section 2 should now be
clear. For i =1,- - - ,d + 1, 7; represents the first time at which the allele 4; is
either lost or fixed, while forj = 1, - - -, d, 7;, represents the first time at which at
least j alleles are lost; in particular, 7, represents the fixation time.

4. Some properties of the limiting diffusion. In this section we derive several
properties of the limiting diffusion process of Theorem 2.2.

PROPOSITION 4.1.  Given 6 € C(K, R**"), put A = max(B2/2n, 28), where B =
Sup,. KZ‘“"Iaj(x)| and me™ = 3/32, and let f, € C([0, 1)) N C?((0, 1)) be the unique

j=1
solution to the differential equation

(4.1) su(1 — w)fy(u) + Au(l — u)(1 — 2u)fy(u) = -2, O<u<l,

with boundary conditions f,(0) = fy(1) = 0. Define b : K — R by (2.10) and L by
(2.4), and for each x € K, let P, be the unique solution to the martingale problem for

L starting at x. Then, fori =1, - - ,d + 1,
(4.2) P-E[7] < fo(x), xEK,
where 7; : 2 — [0, o] is defined by (2.13).

ProoF. Let H={h€ C([0,1]) : () = h(1 — u),0 < u < 1}. Given g€ H
with 0 < g < 1, let f € C([0, 1]) N C*(O0, 1)) be the unique solution to the dif-
ferential equation

Ju(l — w)f"(u) + (1 — w)(1 — 2u)f'(u) = —2g(u), O0<u<l,

with boundary conditions f(0) = f(1) = 0. It is then easily verified that f = Bg,
where B is the linear operator on C([0, 1]) defined by

4h(w)

22w(1—w)
w(l — w)e aw dv.

(BR)(u) = fie™ 203
In particular, f > 0 on (0, 3], f/ < O on [4, 1), and

4.3) supy,_ <ol f(#)] < 4ee2“2"(% - 82)_1
for0<e<j. Fixi €(l,---,d+ 1}. By (2.8) and (2.9),

1B,(x)] < x((1 = x)lo(x)| + T2}, jui xlg(0)]) < Brx(1 = x,)
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for all x € K, so we conclude from (4.3) with e = 8/2\ (¢ = 0 if A = 0) that
31 = x)f"(x) + b(x)f (%) + 28(x)

bi(x) ’
= x(1 — x) S -x) A1 = 2x) | f'(x)
(4.4)
<i(B+ 28}\)4ee2‘2>‘(% - ez)_l
< 2me"/E =1, xEKO0<x <l

We remark that the special case g = 1 yields
(4.5) 3%(1 = x)fy (%) + b(x)fg(x) < =1, x€K0<x <1,
a result that is needed in Section 5.

Now choosé a sequence { g,},5; C H N C'([0, 1]) such that 0 < g, < X,y for
each n and g,1xq, 1 as n100. (X, 1y is the indicator function of the interval (0, 1).)
Define the sequence {f,},5; C C([0, 1]) by f, = Bg,, and note that f, € C¥(o, 1))
for each n and £,1f;, as nfoo. Finally, define { g},5; C C(K), {fi}n51 C CHK),
and fi € C(K) by g/(x) = g,(x), fi(x) = f,(x), and f§(x) = fo(x,), and observe that

(Lf:)(x) = %xi(l = x)f7 (%) + b(x)f(x) < 1= 2g,(x)
for all x € K and n > 1; here we are using (2.8), (2.9), and (4.4). Thus, by the
optional stopping theorem,
P-E[ fi(x(r; A )] = fi(x) + Po-E[ [gN(Lf)(x(s)) ds]
< fi(x) + PE[[3N(1 - 285(x(s))) ds]
for each x € K, ¢t » 0, and n > 1. Letting n — oo, we find that
Px'E[fé(x("'i A\ t))] < folx) - Px'E["i A\ t]

for each x € K and ¢ > 0. It follows that P, {7, < o0} = 1 for each x € K, so since
f4(0) = fo(1) = 0, we obtain (4.2) by letting ¢ — oo.

PROPOSITION 4.2. Let b € C(K, R?), and define L by (2.4). If the martingale
problem for L starting at x has a unique solution P, for every x € K, then, for
0<e<iand i=1,---,d+ 1, the stopping time 7 : @ —[0, ), defined by
7@ = inf{z > 0: x(¢¥) & Gy(e)}, where
(4.6) Gle)={x€ER:e<x,<1—¢}
is P -a.s. continuous for every x € K. '

ProOF. Fixi € {l,- - ,d+ 1} and 0 <e <3, and define 7 : [0, o] by
7© = inf{z > 0 : x(¢) & G/(e)}, where G,(¢) denotes the closure of G(e). Clearly,
7 is continuous at each path w € @ for which 7{?(w) = 7(w). By Proposition 2.1,

Px{'rtw = 'Ft(e)} = Px'E[x{f,(=)<°°}Px(‘r,(l>){'1_'?) = 0}] + Px{’r,(e) = 00}
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for every x € K, so it suffices to show that P ,{7® =0} = 1 for each x € K N
9G,(¢).
Fix such an x, and suppose that

4.7) P{7® >0} > 0.

We now show that this leads to a contradiction. Since (2.5) is a P -martingale for
every f € CX(K), it is easily verified that

{Jx(®)) = J(LF)(x(s)) ds, O, = ¢ > 0)

is also a P,-martingale for every f € C*(K). But 7® is an {9, } stopping. time, so
by the optional stopping theorem,.

P-E[ f(x(t AT™))] = f(x) + P-E[ [V (Lf)(x(s)) ds]
for every f € C*(K) and ¢ > 0. Consequently, if f € C%(K) satisfies
(4.8) f(x) > SuPyeKnﬁ,(e)f(,V)a
then

P-E[ [ (Lf)(x(s)) ds] < 0

for all ¢ > 0; dividing by ¢ and letting ¢/0, we find that (Lf)(x)P {7 > 0} < 0,
which, by (4.7), implies that
(4.9) (Lf)(x) < 0.

However, there exist functions f € C*(K) satisfying (4.8) but not (4.9). To see
this, define ¢ : K—R' by o(y) =(y; — e)(1 — e — »), where y,,, =1—y,
— -+ =y and choose h € C*(R") such that x_, 13 < & < X(_ o, 1} Then, for
each § > 0, the function f; € C*(K) given by f; = (¢ — 8p)h(p/8) satisfies (4.8),
but (Lf)(x) = (1 — €)(1 — 2¢)* — 8(Lg)(x), and this is positive for & sufficiently
small.

Recall that X, Q, x(-), Ly, V,, Vi and 7, all depend implicitly upon d, which is
a fixed positive integer. In the remainder of this section, it will be convenient to
indicate this dependence with a superscript. Thus, forn = 1, - - - , d, we denote by
K®,Q0, xO(-), L, VO, v, and {7 the corresponding objects with n replacing
d. (The absence of a superscript will imply that n = d.) Givenn € {1, - - ,d} and
integers 1 <ij <--- <i, <d+1, define =, ..., : K—>K® by =, ..., (x)=
(%, ++ 5 x;) (recall 2.8)) and #; ..., : @ >QP by 4, ..., (W) =17, ..., °w

n

Lemma 4.1, Letn€{l,---,d}and1 <i; < -::- <i, <d+ 1. Define L, by
(2.11), and let x € K. If Q, solves the martingale problem for L, starting at x, then
Q, o #, ..., ~" solves the martingale problem for L starting at i (X).

Proor. The result follows from the easily verified fact that Ly(f o W)=
(L§Y) o m, ..., for every f € CHK®).
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PROPOSITION 4.3. Given 0 € C(K, R**"), define b : K — R® by (2.10) and L by
(2.4), and for each x € K, let P, be the unique solution to the martingale problem for
L starting at x. Then the hitting times 7y, + * * , T4y and Tqy, * - - , T(q) defined at the
end of Section 2 are in fact absorption times with respect to P, for every x € K.
Moreover, for every x € K, each of these hitting times either has a (proper)
continuous P, -distribution or is P, -a.s. equal to zero.

REMARK. The conclusion that 7}, - - -, 74,, and 7y, - - -, 7(,) are P,-a.s. finite
for every x € K clearly implies that each of these hitting times is P,-a.s. discon-
tinuous for every x € K.

Proor. Define L, by (2.11), and for each x € K, let Q, be the unique solution
to the martingale problem for L, starting at x. Fixi € {1, - - ,d + 1}. By Lemma
4.1, {Q, ° # ' : x € K} may be regarded as the diffusion process in [0, 1] with
generator L{, so

1=0, oa {xP() =0o0r1}
= 0.{x() € V;u (vV}} = P.{x(1) € ¥, U {v7}}
for every x € K N (V; U {v®}) and ¢ > 0, and
0= 0, a {r) = 1) = Q= 1} = P{r,= 1)
for every x € K and ¢ > 0, where, in both cases, the third equality follows from

Proposition 2.3 together with the first two. By Proposition 4.1, P, {7; < o} = 1 for
all x € K, so Proposition 2.1 yields

P x(r,+ ) € V;u {v?¥} forall >0} =1

for every x € K.
Finally, the latter result implies that the conclusions for 7, « - -, 74 follow

from those for 7, - + + , T4,

LEMMA 4.2. Define LY by (2.11), and for each x € K@, let Q, be the unique
solution to the martingale problem for LY starting at x. Then
(4.10) 0. {x?(+§) = (0,0} =0
for each x € K@ except x = (0, 0), where 78y : & — [0, oo] is defined by (2.14).

PrOOF. Let K§® denote the interior of K®. It is known that there exists a
nonnegative ¢ € C((0, o0) X K2 X K{) such that

0. {x®(0) €T} = rq(t, x,y) &

for each Borel set T' ¢ K§?, x € K{?, and ¢ > 0. In fact, an explicit eigenfunction

expansion for ¢ has been obtained by Kimura [6]. However, here it will suffice to
note that

SUp, e k) 2q(s, x,y) ds <
for every x € K{? and 8 > 0.
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For each & € (0, 1), define 5, € C}(K®) by h(x) = log(x, + x, + ¢)/log ¢, and
note that (LPh)(») < <2 log(1/e))~'(y, + y,)~! for every y € K{?. By the op-
tional stopping theorem and the fact that [ Kg,”( nw+y)ldy =1,

Q,-E[h(x?(r \/ 8))] — 0,-E[ h(x®(8))]
= QB[ [{BVHLER)(xP(s)) as]
= O -E[ [2(LPh)(xP(8))xxe(xD(s)) ds]
= [ xp(LPR)(¥)a(s, x, y) dy ds
< (2 log%)
for each x € K?,8 > 0, and 0 < e < 1. Letting &0, we obtain

Q. {xA(r v/ 8) = (0, 0)} = 0, {x®(8) = (0,0)}

for each x € K{? and 8 > 0. Letting 8/0, we conclude that (4.10) holds for each
x € K, which suffices for the proof.

PROPOSITION 4.4. Given 6 € C(K, R*"), define b : K — R? by (2.10) and L by
(2.4), and for each x € K, let P, be the unique solution to the martingale problem for
L starting at x. If d > 2, then, forj=1,---,d — 1,

(4.11) PX{X(T(j)) (S V(j+|)} = 0, xX€EK n Vij-f-l)’
where 7(; : & — [0, o] is defined by (2.14).

Proor. Define L, by (2.11), and for each x € K, let Q, be the unique solution

" to the martingale problem for L, starting at x. Note that, forj=1,---,d — 1,

(4.11) holds if and only if P,{x(r, A\ ?) € V{;,)} =O0forevery x € K N V(;,,,
and ¢ > 0. Therefore, by Proposition 2.3, it suffices to show that, for j =

Le,d—1,
(4.12) Qx{x(’r(_,)) (S V(I"")} = O, xXEK n V€j+|).
We proceed inductively. Given integers 1 < i, <i, <d + 1,
{x(ry) € V;, n V,)} € #,, " {xP(r) = (0, 0)},

so Lemmas 4.1 and 4.2 imply that (4.12) holds for j=1. If d > 3, fix k €
{2,---,d— 1} and suppose that (4.12) holds for j = £ — 1. To show that

(4.13) O (x(14)) € Vigany} =0
for every x € K N Vi 1y it is enough to consider x € K N V(. But for such x,
xX(Tge-1)) € Vig—y N Vg Q-a.s. by the induction hypothesis, and

Qx{x("'(k)) € V(k+1)} = Qx-E[Qx(‘r(k_l)){x(T(k)) € V(k+l)}]

by Proposition 2.1. Thus, we need only verify (4.13) for each x € Vi, _j, N V.
Fix such an x, and suppose that x, # 0 for i =i, - -,i,,,, where 1<

1
supyEKt()z)fgoq(S, X, y) d‘.
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<.+ <i, <d+1landn=d+ 1— k. Itis then clear that
(4.14) O {x(twy) € Viksy) = @, © ﬁ,.l,,,,;'“{x(")(fg'))) eV}
But the right side of (4.14) is zero by Lemma 4.1 and by (4.12) with j = 1 and
d=n.

We conclude this section by observing that Proposition 4.4 yields the following
result of Littler [8].

COROLLARY 4.1. Under the conditions of Lemma 4.2,
(4.15) 0 {xP(8) € V) = xyx,[(1 — x) 7'+ (1 = x) 7]
for each x € K@ except x = (0, 1) and x = (1, 0).

PrRoOF. For 0<8<1l,letJ;={x€R?*:x,<1-8,x,<1—§}, and de-
fine 75 : 9@ [0, 0] by 7, = inf{z > 0 : x®(¢) & J;}. The function f € C(K@
N J,) defined by f(x) = x,x,[(1 — x;)”' + (1 — x,) '] satisfies LPf = 0, so by the
optional stopping theorem,

Q-E[f(xP(r& N\ 1)) ] = ()
for each x € K® N J, and 0 < § < 1. Noting that Q,{7, < 78} = 0 by Proposi-
tion 4.4 with d = 2 and ¢ = 0 (or by a slight extension of Lemma 4.2), we obtain
(4.15) for each x € K@ n J, by letting 8/0.

5. A property of the sequence of Markov chains. In this section we prove
essentially the analogue of Proposition 4.1 for the sequence of Markov chains of
Theorem 2.2.

PROPOSITION 5.1. Given ¢ € C(K, R?*"), define f, € C((0, 1]) as in the state-
ment of Proposition 4.1. For N = 1,2, - - -, define Y™ : Ky — K by (2.12), and let
(P : x € Ky} be the family of probability measures on (Q, O) defined in terms of
Y™ by (2.3). Then there exist positive integers v and N,, depending only on o, such
that, fori=1,---,d+ 1,

(5.1) PM-E[1] <¥fo(x), x€EKyN >N,
where 7; : § — [0, oo] is defined by (2.13).
Proor. Fixi€(l,---,d+1}.ForN=1,2,-:-, let {Q¥: x € K} be

the family of probability measures on (2, M™) defined in terms of Y™ by (2.1)
and (2.2), and define the linear operator Ly on C(K)) by
(Luf)(x) = N{QM-E[ f(X(1))] = f(x)}.

In addition, define fi € C(K) by fi(x) = f,(x,), and for 0 < & <3, define G(e) C
R“ by (4.6). The crux of the proof is to show that there exist positive integers » and
N,, depending only on o, such that

(5.2) sup, ek, nolLafo)(x) < =1/, N >N,
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Let us first prove that
(5'3) lim SUp,, 0 lim SUPN 00 suprKNnG,-(In/N)(LNfé)(x) < —-L

A fourth order Taylor expansion yields
(Lnfe)x) = N{Zhor 7 QB[ (1) = 2)*]1890x)
+ 2 OM-E[(X,(1) = )51 = D70, + X () = ) a]

foralx € Ky N G(0)and N =1,2,-- -, where X;,,(1) =1 — j_,X(l) (We
note that the integral under the fourth expectation exists, as does the expectation
itself.) Expanding each of these moments about y/)(x), which we denote tempor-
arily by v, (of course, y§¥, = 1 — y{™ — - - - —y{"), we obtain

(L)) = NG = 5)1x) + 5| B2 4 = 07 o

+ %[ 'Yi(l - 'Y;\),(zl - 2Yi) + 3y,(1 — ');;3(7;' - xi) + (v, — xg)B}f(?)(xi)

3v2(1 — ) L 2= v)(1 = 6, +6v))

N
+0F N2 INE

+ 4y, (1 — v)(1 = 2v)(v; — x;)
N2

+ 6'Yi(1 - 'Yi)(Yi - xi)2

4
N + (‘Yl xi)

- fo(1 = t)3 S“Po<u<1|f(()4)(x‘ + t(u — x;))| dt
forallx € Ky N G(0) and N=1,2,---, where § =6, , €[—1, 1]. Now one
can easily check that

N(¥™(x) = x) = B)(1 + O(N )
and
V)1 — ¥V(x)) = x(1 - x)(1 + O(N 1)
as N — oo, uniformly over x € K,; here we are using (2.8) and (2.9). Also, by

direct calculation, there exist constants M, (k = 1, 2, 3, 4), depending only on o,
such that

| fo(w)| < M, log[u(1 — u)]”', |/8P()| < M[u(l — u)]~“7",
for 0 < u < 1and k = 2, 3, 4. Finally, we note that
ming, [ X% + t(u — x)][1—x,— t(u—x)] > (1 = )x,(1 — x,)
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for each x € K and 0 < ¢ < 1 since the minimum occurs at u = 0 or u = 1, and
therefore

61 = 1) supoc, il SE2(x; + t(u — x))| dt < My[x,(1 - x)]~°
for all x € K N G;(0). Combining these results, we conclude that
(Lnfo)(x) < 31 = x)fg () + bi(x)fy(x,)
+ (3M; + M) [ Nx(1 — x)] 7" +iM,[Nx(1 — x)] >+ O(N Y
as N — oo, uniformly over x € Ky N G(0), which, by (4.5), implies (5.3).
Next, we show that
(54) lim supy o, SUP, ek ; o mm/w(Lafo)(x) <0, m=1,2,---
A second order Taylor expansion, in conjunction with (4.1), yields
(Lafe)(x) = N{Q-E[ X,(1) — %] fi(x)
+QM-E[(X(1) = %)’[§(1 = 0f5(Z) dt])
= NOM-E[ X,(1) — x;] fo(x)
—2ANQM-E[(X,(1) = x)*[§(1 — 0)(1 = 2Z)f|(Z) dt]
—4NQM-E[(X,(1) — x)[i(1 - Z,7'(1 - Z) ™" dr]

foralx € Ky N G(O)and N = 1,2, - -, where Z, = x; + #{(X(1) — x,). Since,
form=1,2,- - -, the first two terms on the right are O(N ~! log N) as N - oo,
uniformly over x € Ky with x; = m/N, (5.4) is equivalent to

(5.5)
lim infy_,, inf,c x,; =m/wNOSV-E[ (X(1) = %)/5(1 — 271 = Z) " dt] > 0
for m=1,2,---, where Z, = x; + t(X(1) — x;). Fix a positive integer m.

Clearly, Y™ (x) = m/N + O(N ~%) as N — oo, uniformly over x € K, with x; =
m/N, so foreach/ € Z ,
m!
e " =0;

i -1
iy S0Pyl Y )1V (1 = V()Y = 22

of course, this is the familiar Poisson approximation of the binomial distribution.
Since the expectation in (5.5) can be expressed as

kAol -3 13- -2
(M@ - v )"

an application of Fatou’s lemma shows that the left side of (5.5) is at least as large
as

m!
32 (1 — m)*fi(1 - Hm+ (I - m)] dtTe m
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which of course is positive. This proves (5.4), and a similar argument yields
(56) lim supy_,, supxeKN;x,-l—m/N(LNf(l))(x) <0, m=12---.

The combination of (5.3), (5.4), and (5.6) implies that there exist positive integers »
and N,, depending only on g, such that (5.2) holds.
Now for N=1,2,- - -, define T; : @y -> Z, U {0} by

(5.7) T, = inf(n € Z, : X(n) € ¥, or X(n) = v®},
and note that by (2.2),

(A = £ (L) X m), G i n e 2, )

is a Q™ )-martingale for every x € K. Thus, by the (discrete parameter) optional
stopping theorem and (5.2),

0L -] FX(T, Am)] = Jix) + QU-E[ 550 (Lufh) X(m) |

<) = 5 0-E[ H(T A m)]

for each x € Ky, n € Z,, and N > N,. It follows that Q"(T; < 0} = 1 for
every x € Ky and N > N, so since f(0) = f,(1) = 0, we obtain

O¢-E[ 5 T| <oflx), X € KN >Ny

by letting n — 0o0. Of course, this is precisely (5.1).

COROLLARY 5.1. Under the conditions of Proposition 5.1, there is a constant
u > 0, depending only on o, such that, fori=1,--:,d+ 1,

SUPy s SUD, e, PV-E[ €] < oo
Proor. Fixi € (l,---,d+ 1}. Choose f, € C([0, 1]), » > 1, and N, > 1 as
in the statement of Proposition 5.1. Then
sup, ek, PYV {7 >t} <t7'sup,eg, PM-E[1,] <t™ ' supoc,<1 fo(¥)

forall N > N, and ¢ > 0, 50 supy 5, SUp,cx, PV{7, >t} <1 for all ¢ sufficiently
large. The result therefore follows from standard considerations (cf. [2], page 112).

6. Limit theorems for absorption times.

THEOREM 6.1. Let « be the identity map of Q into K, and define
(K, Ty * 5 Tapp) t 2> QX [0, 0]+ by (2.13). ([0, wo]?*! denotes the (d + 1)-
fold product space [0, 00] X - - - X[0, ].) Then, under the conditions of Theorem
22,

(6.1) P,(‘f:’) o (K, Tyy* ,Td+l)_l=>Px o (Ky Ty - ,'rdH)_l as N — oo.
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The proof of this theorem depends on the following proposition, which, as
observed by Lindvall [7], is a consequence of a result of Billingsley ([1], Theorem
42).

PROPOSITION 6.1. Let P™ N =1,2,- - -, and P be Borel probability measures
on a metric space S such that P®) = P as N — 0. Let S’ be a separable metric

space with metric p, and suppose that &,k = 1,2, - -, and & are Borel measurable
mappings of S into S’ such that
@) &, is P-a.s. continuous for k = 1,2, - -,

(i) § > £ as k —> oo P-as,
(iii) lim, _, , lim supy_, . P™{p(&. §) > &} = O for every 6 > 0.
Then P™ o ¢ '= P ot 'as N— oo.

PrOOF OF THEOREM 6.1. We apply Proposition 6.1 with {P™} = (PI}, P =

P,S=98 =2x[0, 0l*], {£} = {(x, 70, - - -, 72 )}e=l 1 ... (see Pro-
position 4.2), and ¢ = (k, 7, - * * , T4, ). Further, we take p to be the metric on
Q X [0, co]?*! defined by

[ (C I P N (% % AU /)

= po(®, @) + max, ;¢ 4 |tan”" 2, — tan~! £,

where p, is some metric on € compatible with its topology.
According to Proposition 4.2, condition (i) of Proposition 6.1 is satisfied here.

Moreover, fori = 1,- - - ,d + 1, 7 — 7, pointwise as &0, so condition (ii) is also
satisfied. Thus it suffices to verify that
(6.2)
lim, o im sup y_,e P p((k, 789, - -, ) (T, e, 10,,))>8)}=0,8 >0
ForN=12---,0<e<j,andi=1,-- ,d+1,define T® : Qy > Z, U
{c0} by

T® = inf(n € Z, : X(n) & G(e)},

where G,(e) is given by (4.6), define T;:Qy —>Z, U {0} by (5.7), and let
(O™ : x € Ky} be the family of probability measures on (2y, IM™’) defined in
terms of y® by (2.1) and (2.2). Further, choose f, € C([0, 1]), » > 1, and N, > 1
as in the statement of Proposition 5.1. Then, using the inequality [tan~' u —
tan~!(u + v)| < v (4, v > 0) and the (discrete parameter) strong Markov property,
we obtain

PM{jtan™! 7 — tan~" 7| > 6}

< oM{|tan~(T®/N) — tan~(T;/N)| >8 - N '}
< Q’(‘N)'E[X{T(°)<°°}Qx(7~(e)){Ti/N S8 — N—l}]
< SUP, ek, nGle) PN {1', >8— N"}
< (8= N7 supsex,nger PV E[ 7]
< (6 = N"Y) " ' sup,ck, nae fo(x)
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foreach § >0, N >N, v8 ', 0<e<j,andi=1,---,d+ L Since f,(0) =
Jo(1) = 0, this implies (6.2) and completes the proof.

THEOREM 6.2. Let « be the identity map of Q into Q, and define
(% Tay " * s T@) : >R X [0, 0 by (2.14). Then, under the conditions of
Theorem 2.2,

(63) P)(c:,) ° (K, Tay © ° ° 'T(d))_l =>Px ° (K, Tay * * °» T(d))_l as N — o0.

PrOOF. Define { : Q2 X [0, o}**! - Q X [0, 0] by §(w, ¢y, -« -, tye) =
(@ iy * * 5 fap) Where gy, - -+, B4, are the order statistics based on the sample
Lyttt s tgyy (€8, Iy = min(ty, - -+, 4;,)). Clearly, { is continuous, so by (6.1),

1 . 1 .
P’Sg)°("’71"")7d+l) ol P oK, Ty 5 Tye) 08! as N o oo.

But observe that o (k, 7y, "« , Tgp)) = (K Ty " * * 5 Tq) PM-as. for N =
1,2,--- and P -as., so this is precisely (6.3).

COROLLARY 6.1. Under the conditions of Theorem 2.2,

limy ., POV-E[1f] = P-E[7}]
and
limy_, ., PN-E[7 fj)] = P-E[r 'fj)]
fori=1---,d+1,j=1,---,d,andk=1,2,---.

PrROOF. For j=1,:--,d, we note that 7, <7 + - - - +1,,, PM-as. for
N =1,2,. - - . Therefore, by Corollary 5.1, both 7 and 7, are uniformly integra-
ble with respect to {PM}y_y,... fori=1,---,d+1,j=1,---,d, and
k=1,2,-- - . Thus, the results follow from (6.1) and (6.3).

COROLLARY 6.2. Under the conditions of Theorem 2.2,

(6.4) limN_,w Pﬁg){’l’(!) < t, x('r(j)) (S Vil NnN+***N I/,j}

=P 1) <t x(rp) €V, n - NV}
Jorj=1,-++,d,0<t<o0,and 1<i<--- <i <d+ 1, provided that x &
Vij+1y (Where V4, 1 = D).

Proor. Fixj € (1,- -, d}, and define the map v, : @ X [0, 00]* > [0, o0] X
K by (@, b, * * 5 1) = (4, x()(@)). Then ¢ is P, © (k, 75, * * * , T4~ '-a.s. con-
tinuous, so by (6.3),

(6.5) P,(c:’) ° (T(j), X(T(j)))—l B d Px ° (T(j), X(T(j)))_l as N - o0.
Now fix0 <7 < wand 1 <i; < - - <ij <d+ 1. Then there is a closed set F in
Ksuchthat Vi, n F=V, n:-- NV and ¥V, NOF C V) s0

P { (¢ x(1(5)) € 3([0, ¢] X F)}
<P {7 =1} + P{x(r(;)) € Vj4n} =0
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by Propositions 4.3 and 4.4. Consequently, (6.5) implies that
limy_,,, PV {(7) x(7(»)) €[0, ] X F}
= P {(7 x(7¢)) €[0, ] X F},
and this is precisely (6.4).

REMARK 6.1. The special case of Corollary 6.2 in which d =1 and ¢ = o0 is
known ([9], page 260; [5]). A second special case of Corollary 6.2, that in which
d=1 and i, = 1, was proved by Guess [5] under the further condition that
0:[0, 1] R? is defined by g;(x) = s,;x + sp(1 — x), where s = (s;) is a real
symmetric 2 X 2 matrix satisfying s,, < 5;, < 5, = 0 (cf. Section 3). The question
of the necessity of this “directional selection” hypothesis provided the original
motivation for the present work.

REFERENCES

[1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
[2] DYNKIN, E. B. (1965). Markov Processes, 1. Academic Press, New York.
[3] ETHIER, S. N. (1976). A class of degenerate diffusion processes occurring in population genetics.
Comm. Pure Appl. Math. 29 483-493.
[4] Ewens, W. J. (1969). Population Genetics. Methuen, London.
[5] Gugss, H. A. (1973). On the weak convergence of Wright-Fisher models. Stochastic Processes Appl.
1 287-306.
[6] KiMURA, M. (1956). Random genetic drift in a tri-allelic locus; exact solution with a continuous
model. Biometrics 12 57-66.
[7] LiNDVALL, T. (1974). Limit theorems for some functionals of certain Galton-Watson branching
processes. Advances in Appl. Probability 6 309-321.
[8] LiTTLER, R. A. (1975). Loss of variability at one locus in a finite population. Math. Biosci. 25
151-163.
[9] NorMAN, M. F. (1972). Markov Processes and Learning Models. Academic Press, New York.
[10] Sato, K. (1976). Diffusion processes and a class of Markov chains related to population genetics.
Osaka J. Math. 13 631-659.
[11] SaTo, K. (1976). A class of Markov chains related to selection in population genetics. J. Math. Soc.
Japan 28 621-637.
[12] STROOCK, D. W. AND VARADHAN, S. R. S. (1969). Diffusion processes with continuous coefficients,
I and II. Comm. Pure Appl. Math. 22 345-400 and 479-530.

DEPARTMENT OF STATISTICS AND PROBABILITY
MICHIGAN STATE UNIVERSITY
EAsT LANSING, MICHIGAN 48824



