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LARGE DEVIATION THEOREMS FOR EMPIRICAL PROBABILITY
MEASURES

By P. GROENEBOOM, J. OOSTERHOFF AND F. H. RUYMGAART

Mathematisch Centrum,
Vrije Universiteit and Katholieke Universiteit Nijmegen,

Some theorems on first-order asymptotic behavior of probabilities of large
deviations of empirical probability measures are proved. These theorems extend
previous results due to Borovkov, Hoadley and Stone. A multivariate analogue
of Chernoff’s theorem and a large deviation result for trimmed means are
obtained as particular applications of the general theory.

1. Introduction. Let S be a Hausdorff space and let B be the o-field of Borel
sets in S. Let A be the set of all probability measures (pms) on % ; the abbreviation
pm(s) is used in analogy with the notation df(s) for distribution function(s). For
P, O € A the Kullback-Leibler information number K(Q, P) is defined by

K(Q, P)=/sqlogqdP ifQ<P
=00 otherwise,

where ¢ = dQ/dP. Here and in the sequel we use the conventions log 0 = — oo,
0:(x00) =0 and log(a/0) = oo if a > 0. If £ is a subset of A and P € A we

define
K(Q, P) = inf, coK(Q, P).
By convention K(2, P) = oo if  is empty.
Throughout this paper X, X,, . . . is a sequence of i.i.d. random variables taking
values in S according to a pm P € A. For each positive integer n the empirical pm
based on X, -, X, is denoted by P, ie, P,(B) is the fraction of Xs,

1 < j < n, with values in the set B € B.
Let S = R and let A, be the set of pms on (R, %), endowed with the topology p

induced by the supremum metric
(1.1) d(Q, R) = sup, x| Q((— 0, x]) — R((— o0, x])|, O, R EA,.
Then we have the following theorem of Hoadley (1967) specialized to the “one-

sample case.”
Let P € A, be a nonatomic pm. Let T be a real-valued function on A, uniformly

continuous in the topology p. Define
2,={0 €A :T(Q) >r)
for each r € R. Then, if the function t - K(Q,, P), t € R, is continuous at t = r and
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{u,} is a sequence of real numbers tending to zero,
(12) lim,  n"'log Pr{T(P,) > r + u,} = —K(R,, P).

In Section 3 it will be shown that Hoadley’s theorem can be generalized in three
different directions simultaneously:

(i) the set A; may be replaced by the set A of pms on a Hausdorff space S;

(ii) the uniform continuity of the function 7T can be weakened to continuity (in

a convenient topology which is finer than p if S = R) and the range space
of T may be different from R;

(iii) P € A may be an arbitrary pm, not necessarily nonatomic.

Stone (1974) has given a simpler proof of Hoadley’s theorem, but under the
original strong conditions. His proof can easily be adapted to cover the case of
d-dimensional random variables, but other generalizations are less obvious.

A related theorem in the spirit of Sanov (1957) has been obtained by Borovkov
(1967):

Let P € A, be a nonatomic pm. Then, if Q is a p-open subset of A, and
K(cl,(R), P) = K(Q, P) (where cl, denotes closure in the topology p),

(1.3) lim,_n"'log Pr{, € Q} = —K(®, P).

By this theorem the uniform continuity (in p) of the functional T in Hoadley’s
theorem can be weakened to continuity, but Borovkov relies in his proof on rather
deep methods of Fourier analysis of random walks in Borovkov (1962) for which
generalization to more general pms seems to be difficult.

In this paper the approach to large deviations based on multinomial approxima-
tions is systematically developed. It turns out that a natural topology on the set A
of pms on (S, B) is the topology 7 of convergence on all Borel sets, i.e., the
coarsest topology for which the map Q — Q(B), Q € A, is continuous for all
B € %. In this topology a sequence of pms {Q,} in A converges to a pm Q € A,
notation Q, —,Q, iff lim, , [sfdQ, = [sfdQ for each bounded % -measurable
function f : § — R. The closure and the interior of a set £ C A in the topology 7
will be denoted by cl () and int, (£2), respectively.

With this notation we shall prove (Theorem 3.1).

Let P € A and let Q be a subset of A satisfying

(14) K(int_(2), P) = K(cl,(R), P).
Then (1.3) holds true.

This is a generalization of Theorem 4.5 of Donsker and Varadhan (1976) who
obtained some related inequalities under stronger conditions. In particular they
assumed that S is a Polish space and that the set  is either open or closed in the
weak topology. By the weak topology (also called the vague topology) we mean the
topology with subbasis elements {Q € A : |[fdQ — [fdQ,| <&}, Oy EA, fE
C4(S); we avoid the name “topology of weak convergence” since S is merély a
Hausdorff space (and hence weak convergence in A may not be properly defined
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because limits are not necessarily unique). The functions f appearing in this
definition are bounded and continuous; therefore the weak topology is coarser
than the previously defined topology 7.

In the particular case S = R the topology 7 is finer than p (Lemma 2.1) which in
turn is finer than the weak topology. Hence any p-continuous (weakly continuous)
functional 7: A; - R is a fortiori 7-continuous and our results on 7-continuous
functionals 7 imply the corresponding (weaker) results for p-continuous (weakly
continuous) functionals. In fact, by this line of argument the generalized form of
Hoadley’s theorem mentioned above easily follows from Theorem 3.1.

After some crucial lemmas in Section 2 the basic theorems are obtained in
Section 3. The theory includes theorems of Borovkov, Donsker and Varadhan,
Hoadley, Stone and Sethuraman as particular cases and thus provides a unified
approach to these results which.were obtained by rather different methods. In
Section 4 a large deviation result for linear functions of empirical pms is proved.
This result yields a multivariate analogue of Chernoff’s (1952) celebrated large
deviation theorem as a particular case. Section 5 is devoted to this subject. Finally
we prove in Section 6 a large deviation theorem for a class of linear combinations
of order statistics (L-estimators). This leads to a large deviation theorem for
trimmed means under minimal conditions.

In this framework Chernoff-type theorems are derived from Sanov-type theo-
rems. In a very penetrating paper Bahadur and Zabell (1979) go the other way.
They first obtain very general Chernoff-type theorems for sample means taking
values in open convex sets and then, as an application, derive a result of type (1.3).

Recently Sievers (1976) proved (1.3) under conditions essentially different from
ours. Since Sievers’ methods are based on a likelihood ratio approximation, his
results cannot be fitted into our framework.

2. Preliminaries. In this section some notation is introduced and a few pre-
liminary results are proved which will play an essential role in the subsequent
sections. By a partition ¥ of the Hausdorff space S is meant a finite partition of S
consisting of Borel sets. Such partitions are the starting point of the multinomial
approximation on which the proof of Lemma 3.1 in Section 3 is based. For
P, Q € A and a partition ® = {B,,- - -, B, } of S define

(2.1) Ke(Q, P) = 27.,0(B))log{ Q(B))/ P(B))},
and for aset @ C A
K@(Q, P) = ianenK@(Q, P).
Without explicit reference the relation
2.2) K(Q, P) = sup{K4(Q, P) : @ is a partition of S }

(see, e.g., Pinsker (1964), Section 2.4) will repeatedly be used. We shall say that a
partition 9 is finer than a partition R iff for each B € P there exists a C € R

such that B c C.
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For each partition ¥ = {B,,- - -, B,,} of S the pseudometric dgy on A is defined
by
d@’(Q9 R) = max1<j<le(Bj) - R(B;)l’ Q’ R €A

The topology 7 of convergence on all Borel sets of S is generated by the family
{dg : @ is a partition of S}. A basis of this topology is provided by the collection
of sets {R € A:dy(R, Q) <8) where Q €EA, § >0 and ? runs through all
partitions of S. Note that this collection is a basis and not merely a subbasis of 7.

LEMMA 2.1. Let S = R® Then the topology p induced by the supremum metric
d(Q, R) = sup, c el O((— 0, x]) — R((— o0, x])|, Q, R € A, is strictly coarser than
the topology .

PrROOF. Since convergence in p of a sequence of pms does not imply conver-
gence on all Borel sets (a sequence of purely atomic pms may converge in p to a
nonatomic pm), it must be shown that p C 7.

Let ¢ > 0 and let Q be a pm on R. Then there exists a finite (possibly empty) set
of points with Q-probability >1e. Hence there exists a partiton & =
{By,: -, B,} of R consisting of singletons B; such that Q(B,) > ¢ and open or
half open intervals B; such that Q(B)) < Je. If R is a pm on R such that
dy(Q, R) <& /m, then d(Q, R) < &, which proves the lemma for pms on R.

Next suppose that Q is a pm on R? (d > 1). Let Q,, 1 <i <d, be the
one-dimensional marginals of Q. For each Q; there exists by the previous para-
graph a partition {B; ,,- - -, B, ,,} of R consisting of singletons B; ; with Qi(B, )
>1e and open or half open intervals B, , with Qy(B, ) <3e/d. Let 9 be the
partition consisting of the product sets B, ; X - -+ XB, ,, 1 <j; <m;, 1 <i<d,
and let m = max, ;. ,m;. The implication

d9(Q, R) <ie/dm=d(Q,R) <e
proves the lemma for § = R? []

A function T defined on A will be called 7-continuous if it is continuous with
respect to the topology 7 on A and the given topology on the range space. The
definition of r-(lower, upper) semicontinuity is similar. The topology of the ex-
tended real line R is the usual topology generated by the sets [— oo, x), (X, %],
x € R.

LeMMA 2.2. Let P € A. Then the function Q — K(Q, P), Q € A, is r-lower
semicontinuous. :

ProoF. Let P, Q € A and let ¢ be an arbitrary real number such that ¢ <
K(Q, P). By (2.2) there exists a partition ? of S such that Kg(Q, P) > c. Clearly
there exists a § > 0 such that

dg(R, Q) < 8= K(R, P) > Ko(R, P) >c,

proving the lemma. []
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A collection T of pms in A is called uniformly absolutely continuous with respect
toapm P € A if for each € > 0 there exists 8 > 0 such that for each Q € I' and
each B € B, P(B) <6= Q(B) <e.

In the next lemma some topological properties are established of a class I' Cc A
with uniformly bounded Kullback-Leibler numbers.

LeMMA 23. Let P €A and let T ={Q € A: K(Q, P) < c} for some finite
¢ > 0. Then

(@) T is uniformly absolutely continuous with respect to P;

(b) T is both compact and sequentially compact in the topology .

Proor.
(@) Let ¢ > 0. Let & > 0 be such that 1e log(3¢/8) > ¢ + e~ Then, for each

Q €T and each B € B satisfying P(B) <9,
Q(B) = [pqdP = an{q<§./s}qu + fnn{q>%¢/a}qdp

<1ed~'P(B) + (log(%e/ﬁ))_lfnn{DEI,/,,}q log gdP
<ste+(c+ e")(log(%e/&))—l <e,

where ¢ = dQ/dP (note that the inequality x log x > — e~! provides an upper
bound ¢ + e~! for the integral [.q log gdP for any set C € B).

(b) Let M be the collection of all set functions p : B — [0, 1] endowed with the
topology 7, of setwise convergence (note that 7 is the corresponding relative
topology on A). Using the property that a Hausdorff space is compact iff each

" ultrafilter converges, we first prove that M is ,-compact. Consider an ultrafilter
Q =(U,:a €I} on M. For each B € B the image of U under the map
p— w(B) is an ultrafilter on [0, 1] and hence converges to a (unique) point, say
cg €E[0,1]. Let py € M be defined by py(B) =cz B € B. Since py €
Naercl, (U,), the ultrafilter A converges to p,, proving 7,-compactness of M.

In order to show that T is 7-compact it suffices to prove that I' is a 7,-closed
subset of M. Let p €cl, (T). Clearly p is an additive set function. To prove
s-additivity consider a sequence {B,} of disjoint Borel sets. Fix ¢ > 0. By part (a)
there exists § > 0 such that B € B, P(B) < 6= Q(B) <e for each Q €T.
Choose k so large that P(U;.,B,) = 2., P(B,) <4. Since p € cl, (T) it follows
that

]

(U2 8) - nB) = (U, 8) <e
implying that w(U2,B,) = 2., i(B,). Hence p € A. Now Lemma 2.2 implies

p €T and thus T is r-compact.
Finally T is also sequentially compact in 7 since by Theorem 2.6 of Ginssler

(1971) the notions “compact” and “sequentially compact” coincide for the topol-
ogy 7. [I
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Lemma 2.3 is closely related to the information-theoretical proofs of convergence
of a sequence of pms {Q,} to P under the condition K(Q,, P) — 0, as n — oo (see
Rényi (1961) and Csiszar (1962)). In fact, if K(Q,, P) — 0 then {Q,} converges to
P in the total variation metric (cf. Pinsker (1964)), which is a stronger type of
convergence than convergence in 7 (the convergence has to be uniform on all Borel

sets).
Let P,Q €A and let ¥ = {B,,---,B,} be a partition of S. Then the

P p-linear pm Q' corresponding to Q is defined by
(2.3) Q'(B N B) = P(B n B)Q(B;)/P(B) if P(B) >0
= Q(B N B) if P(B;) =0,
i=1---,m; B € B. The usefulness of this concept lies in its property
K(Q', P) = Kg(Q’, P) = Kg(Q, P).
The device of & -linear pms was, as far as we know, first used in large deviation
problems by Sanov (1957) for pms on R. It was also used by Hoadley (1967) and in

the more general form of the preceding definition by Stone (1974).
The next lemma generalizes relation (2.2) and plays a crucial role in the next

sections.

LEMMA 24. Let P € A and Q C A satisfy

(2.4) K(cl(R), P) = K(2, P).
Then
(2.5) K(Q, P) = sup{Kg(Q, P) : @ is a partition of S }.

PROOF. Let a = sup{Kg(f2, P) : & is a partition of S} and suppose (2.5) does
not hold, i.e., there exists an n > 0 such that a + 7 < K(£, P) (see (2.2)). Put
I'={Q €A:K(Q, P) <a+ n}. The set of all (finite) partitions &P, ordered by
P > Q iff &P is finer than R, is a directed set. Choose for each partition ¥ a pm
Qs € Q satisfying Kg(Qg, P) < a + 7. Let Q4 be the &P p-linear pm corresponding
to Qg. Then

K(Qg P) = K9(Qg, P) <+
and hence Q4 €T for each partition . Since I' is compact in the topology 7 by
Lemma 2.3, there exists a Q €T such that Q is a cluster point of the net
N = {Qs: P is a partition of S}.

Consider the open neighborhood {R € A : dg(R, Q) <e} of Q. Since Q is a
cluster point of the net 9 there exists a partition § > P such that de(Q%, Q) < e.
If B € 9, then

; Q4(B) = ZAE‘S',AcBQ‘ﬂ'(A) = erﬂ',Ach‘:'T(A) = Qg(B).
Hence dg(Qs, Q) = dg(Q4, Q) < &, implying that Q is also a cluster point of the
net {Qgy : P is a partition of S}. Since Qg € Q for each &, Q € cl (). However,
Q ET=K(Q,P) <a+n <K, P) in contradiction to (2.4) and so (2.5)
follows. []
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REMARK 2.1. Lemma 2.4 is in fact a minimax theorem since in view of (2.2) the

result (2.5) can also be written as
supginf, o Kg(Q, P) = inf, cosupgKge(Q, P).

REMARK 2.2. The following example shows that (2.4) is not necessary for (2.5),
even if K(Q, P) < co. Let S =[—1,0) CR, let &, = {Q € A : [(xdQ(x) > 0}
and let P, O, € A be defined by P({—1}) = P({0}) =2 and Q,({—1}) =1, re-
spectively. Define @ = @, U {Q,}. It is easily seen that K(Q,, P) = supyK«(,, P)
= o and hence by (2.2) K(2, P) = K(Q,, P) = log 2 = supgyKg(Q,, P) =
supgKg(Q2, P). Obviously P € cl,(R2) and therefore K(cl (R2), P) = 0. Thus (2.4) is
violated but (2.5) holds true.

REMARK 2.3. Let scl (£2) denote the sequential closure of , i.e., @ € scl () if
there exists a sequence {Q,} in & such that Q, —,Q. We show that (2.4) in Lemma
2.4 cannot be replaced by K(scl (22), P) = K(R, P). Let Q be the set of all pms on
R with countable carrier and let P be a nonatomic pm on [R. Then
sup{ K@, P) : @ is a partition of R} = 0, but K(2, P) = K(scl,(R), P) = oo since
Q = scl (R). In' this case ¢l () = A, = the set of all pms on R. This shows that
there are pms in A, which can be “reached” by nets in £ but not by sequences in .

By convention the support supp(Q) of a pm Q € A is the set of points x € S
such that each neighborhood of x has positive Q-probability. Note that
Q(supp(Q)) may be smaller than one. However, we shall say that Q € A has finite
support {x;,- -, %} if Q{x}) >0, i=1,---,k and 2% ,0({x;}) =1 In
general, let us call a pm Q Lindeldf inner regular if Q(B) = sup{Q(V): V C B, V
Lindelof} for all open sets B C S (a set is called Lindelof if each open cover has a
countable subcover). A pm with this property assigns probability one to its support
by a line of argument similar to the proof of Lemma 2.3 in Bahadur and Zabell
(1979). This regularity condition is certainly satisfied if S is second countable.

LemMa 2.5. Let P € A. Each pm which has finite support contained in the
support of P belongs to the weak closure of {Q € A : K(Q, P) < x}.

ProOF. Let Q, € A and supp(Q) = {x;, " * + , %} C supp(P). We prove that
each weakly open neighborhood V of Q, contains a pm Q,, such that K(Q,,, P) <

o0. Let
V={Q€A:|[fdQ - [£dQ)| <ej=1---,]},

where f), - - -, f; € Cy(S). Choose neighborhoods Uj; of x; in S such that x € U
=|[fi(x) — fi(x)| <ei=1---,k; j=1,---,J, where for each j the sets
Uy, - - -, Uy are disjoint. Now put U, = NJ_,U;, i = 1,- - -, k, and define Q), €
A by

Q,(B) = =¢_,0({x})P(B n U)/P(U), BESB.
Note that P( 17,.) > 0 because x; € supp(P). Obviously K(Q,, P) < oo. Moreover,
Q, EVsinceforj=1,---,J

|[5dQy — [£dQol < Ziailf (S — £(x))dQy| <e. 0
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This lemma does not continue to hold if the weak closure is replaced by the
r-closure since the 7-closure of {Q € A : K(Q, P) < «} does not contain any pm
which is not absolutely continuous with respect to P. This illustrates the difference

between the weak topology and the topology 7.

3. Basic results. In the sequel we discuss probabilities of events of the form
{13,l € @}, & C A, where the empirical pms {ﬁ,,} are induced by the sequence
X1, Xy, - - - . The problem of which events {ﬁ,, € O} are B"-measurable for all n
is (at least partially) solved by

PROPOSITION 3.1. Let S be a completely regular space. Let A denote the set of
pms in A with ftmte support and rational point masses. Then {P € SZ} € B" for all
ne€Niff QN A € S, where A is the o-field induced by U on A and U is the
Borel o-field on A generated by the weak topology.

Proor. For n € N let A(n) denote the set of pms in A with finite support and
point masses which are multiples of n~! and let W (n) denote the o-field induced
by U on A(n).

We first prove that {P, € )} € B" < Q N A(n) € U (n). Consider the map
ﬁ,, : §" > A(n) where ﬁ,,(x,, -+ +,x,) is the pm assigning mass n~! to each x,
i=1,---,n(since the x;’s need not be distinct, there may be less than n different
point masses). Let % (n) denote the o-field on A(n) induced by the surjection ﬁ,,.
Obviously {P, € 2} € B" QN A(n) € B (n). We show that B (n) = U (n).

B(n) is a Borel o-field generated by the topology with basis elements
Vxd -, x) = {P(xp, ., x)ix, €E UKD, i=1,---,n} where
x0,---,x% € S"and U(x?), - - -, U(x?) are neighborhoods in S of x?, - - - , x7,
respectively, which are disjoint for distinct x”s. On the other hand, sets
V(Qoi fio + 1) = (@ € A() : |[£dQ — [£dQo| <e,j=1,- - ,J}, where O,
€ A(n)and f,, - - -, f; € Cg(S), are basis elements of the (relative) weak topology
on A(n). If the neighborhoods U(x?) are small enough, V(x?,---,x% c
V(Qo; fis* * * » f;). Conversely, for given U(x?), - - -, U(x?) choose Q, € A(n)
such that Qy({xy,- - -,x%}) =1 and let for i = 1,- - - , n the continuous func-
tions f, satisfy 0 < f, < 1, £(x) = 1 and f(x) = 0 if x & U(x?); such functions
exist since S is completely regular. Let 0 <e < n~!. Then Q € A(n), |(f,dQ —
[£dQ| < &= Q(U(xD) > Qo({x?)). Since this implication holds for all J, it follows
that V(Qg; fi»* * * »f,) € V(xP, - - -, x%. Hence the topologies generating % (n)
and %0 (n) coincide.

It remains to prove @ N A(n) € W(n) forall n =L N A € 9. The implication
<« is trivial. To prove =, let 2, € U be such that @ N A(n) = 2, N A(n), n € N.
Fixme N.If thepm Q € A n Q°, then Q € A(s) N Q€ for some s € N, 1mply1ng
Q & Q,,. Hence N2,Q,, N A c  and thus U®_, n,_ISZ,,,, NnAc@n A Con-
versely, U®., N2, N AD uZ_,2Nn A(m) =2 N A. It follows that 2 0 A
€ 9 and the proof is complete. []
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The collection of sets 2 C A satisfying @ N A € W is quite rich, much richer
than U . Henceforth it will be assumed without explicit reference that Pr{ £, € Q}
is well defined for all » € N. However, in Remark 3.1 we briefly return to this
matter.

Our large deviation results concerning probabilities Pr{ﬁn € Q} have as a
starting point Lemma 3.1 which exploits multinomial approximations to the distri-
butions of the empirical pms {ﬁ,,}. It is easily seen that the lemma remains valid
for arbitrary sets S and arbitrary o-fields 8 containing all singletons.

LEMMA 3.1. Let P € A and let Q be a subset of A. Consider the conditions

(A) K(Q, P) = sup{Kg(Q, P) : @ is a partition of S},
(B) K@, P) = K(int,(2), P).

If (A) is satisfied,

(3.) lim sup,_,.n " 'log Pr{ P, €2} < —K(Q, P);
if (B) is satisfied,

(32) lim inf, ,n"'log Pr{ P, € 2} > —K(Q, P).
Hence, if both (A) and (B) are satisfied,

(3.3) lim, . n"'log Pr{ P, € 2} = —K(Q, P).

Proor. To prove the lemma it is first shown that condition (A) implies (3.1).
Let ¢ < K(2, P). By condition (A) there exists a partition % of S such that
Kg(Q, P) >c.Let P = {B,,- - -, B,} and let p; = P(B), 1 <j < m. Then

Pr{ P, € Q) < Pr{Ky(P,, P) > K4(, P)}
=3*n!/ {(nz,)! - - - (nz, )} Iiw pon
= Z*n! {T (2, )1}~ T2
-exp{ —nZi. 2, log(z, :/p)},

where 3* denotes summation over all (z, ;, - - -, z, ,,) such that
2z, =1L,  z,,20, nz,,€Z 1<i<m
and
2712, 0g(z,,:/P)) > Kg(, P).
The number of points (2, , - - * , 2, ) satisfying the first condition is equal to
(" ;"_’; 1) = exp(O(log n)), asn— 0.

Moreover, by Stirling’s formula, as » — oo,
nl/ {(nz, )! - - - (nz, )} < exp{—nZ7.z, logz,; + O(log n)}.
Hence Pr{B, € ) < exp{—nKg(Q, P) + O(log n)}, implying
n~llog Pr{ P, € @} < —Kg(R, P) + O(n"'log n),
as n — 0. Since ¢ < K(R, P) is arbitrary, (3.1) follows.
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Conversely we prove that condition (B) implies (3.2). Assume K(£2, P) < oo since
otherwise (3.2) is trivial. Fix ¢ > 0. In view of condition (B) int,(£) is not empty
and a pm Q E€int(Q) exists satisfying K(Q, P) < K(®, P) + ye. Since Q €
int (R), a partition ¢ = {B,,- - -, B,} of S and > 0 can be found such that
{R € A :dg(R, Q) <8} C Q. It follows that for all sufficiently large n there exist
pms Q, € A satisfying

@) nQ,(B)EZ 1<i<m;
(ii) d9(Q,, @) <, hence Q, € 2 and {R € A : dy(R, Q,) =0} C ©;
(iii) Kg(Q,, P) < Ko(Q, P) + 3¢ < K(Q, P) + 3¢ < K(R, P) + .
Put z, ; = Q,(B), 1 <i < m. Then for all sufficiently large n

Pr{#, € Q) > Pr{dg(?,, Q,) = 0}
= nl/ {(nz, )1 (nz,, W1} - T ((PBY)™,
where 3Lz, ;= 1,2,, > 0,nz, , € Z(1 <i < m) and
3n .z, log{z, ;/P(B)} < K(, P) + «.
Hence, again by Stirling’s formula, as n — oo,
Pr{ P, € Q) > exp{—n(K(Q, P) + ¢ + o(1))}
and (3.2) easily follows, which completes the proof. []

REMARK 3.1. If Q is an arbitrary subset of A, the event {P, € Q} is not
necessarily measurable. But the proof of Lemma 3.1 is based on the inclusion
{de(P,, 0,) = 0} C © C {Kg(P,, P) < K&(Q, P)} where the sets on the left and
right are measurable. Hence, if P”(P") denotes the outer (inner) measure corre-
- sponding to the product measure P” on S”, the proof of the lemma shows that
under the conditions (A) and (B)

lim, , n"'log P" { B, € Q) = lim,_, .n"'log P*{P, € Q} = — K(Q, P)
for any set @ C A. In this sense Lemma 3.1 continues to hold for arbitrary sets Q.
Similar remarks apply to all other results of this section.

Stone (1974) proves (3.3) under the conditions (in our notation)

(C1) K(2, P) < oo; ,
for each £ > 0 there are a pm Q € R, a partition ? of S and § > 0 such that

(C2) Kg(, P) < Ko(Q, P) < Kg(Q, P) + &;

(C3) {RE€A:dg(R,Q)<8} Cq

It turns out that if K(2, P) < oo these conditions are equivalent to conditions
(A) and (B) of our Lemma 3.1, implying that Stone’s theorem is in fact equivalent
to Lemma 3.1 if K(Q, P) < co.

To prove the equivalence suppose that conditions (A) and (B) are fulfilled and
K(Q, P) < 0. Fix ¢ > 0. By (B) a pm Q € int () exists satisfying K(Q, P) <
K(@, P) + 3e. Since Q € int,(R), there exists a partition J and 8 > 0 such that
{R € A:dg(R, Q) <8} C Q. By (A) there exists a partition ¥ which is finer
than 9 and satisfies K(Q, P) < K&, P) + 3¢ (note that Ks(R, P) < Kg(R, P)
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for each pm R if @ is finer than ¥). Hence
K9(Q, P) < Kg(Q, P) < K(Q, P) < K(Q, P) + 3¢ < Kg(2, P) + «.

Moreover, for small enough 6’ > 0 the implication R € A, dg(R, Q) <&'=
ds (R, Q) < é holds. It follows that conditions (C2) and (C3) of Stone are satisfied.
Conversely, suppose that Stone’s conditions (C1) to (C3) hold. Then by Lemma
2.3 of Stone (1974), condition (A) also holds. Let ¢ > 0. Let a pm Q €8, a
partition & of S and § > 0 satisfy (C2) and (C3) for this e. Let Q' be the & ,-linear
pm corresponding to Q (see (2.3)). Then (C3) implies @’ € int, () and (C2) yields

K(Q', P) = K9(Q’, P) = K3(Q, P) < Kg9(2, P) + ¢ <K(Q, P) + .

Thus K(int,(22), P) < K(, P) + ¢ for each ¢ > 0 and condition (B) follows.

The present metliod of proof of Lemma 3.1 is well suited to prove (3.3) under
weaker conditions. It can for example be shown by an elaboration of the proof that
Sanov’s (1957) condition that @ be F-distinguishable is indeed sufficient for (3.3).
(Some obscure points in Sanov’s (1957) paper have raised doubt as to the validity
of his Theorem 11, cf. Hoadley (1967), Bahadur (1971).)

Combining Lemma 2.4 and Lemma 3.1 we have

THEOREM 3.1. Let P € A and let Q be a subset of A satisfying
(34) K(int (), P) = K(cl,(R), P).
Then (3.3) holds.

Borovkov has shown (see (31) in Borovkov (1967)) that (3.3) holds if P is a
- nonatomic pm on R, £ is a p-open set and K(Q, P) = K(cl,(2), P). This is a
particular case of Theorem 3.1 in view of Lemma 2.1.

In their work on large deviations of Markov processes, Donsker and Varadhan
(1975, 1976) have shown that in the ii.d. case (3.1) (or (3.2)) hold under the
conditions that © be weakly closed (or open, respectively) and S be a Polish space.
Since the weak topology is coarser than the topology 7, their result is contained in
Lemma 3.1 together with Lemma 2.4.

REMARK 3.2. Suppose B C S is an arbitrary Borel set satisfying P(B) = 1. Let
Ag = {Q € A : Q(B) = 1} and let 75 denote the relative 7-topology on Ag. Then
Theorem 3.1 remains valid if (3.4) is replaced by the weaker condition

K(int, (2 N Ap), P) = K(cl, (2 N Ag), P).

This result is an immediate consequence of Theorem 3.1 (replace S by B, A by A,
and 7 by 75 and note that K(2 N A, P) = K(?, P) and Pr{ﬁ,, e} = Pr{ﬁ,l eEQ
N Ag}).

A convex set & c A will be called strongly t-convex if for each Q € cl,(f) and
each R € int,(2) it holds that {aQ + (1 — &)R : 0 < a < 1} C int,(2). If int, ()
= (&, convexity and strong T-convexity are equivalent.
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COROLLARY 3.1. Let P € A and let Q be a subset of A. Then (3.3) holds if one of
the following conditions is satisfied:
(i) Q is strongly T-convex and K(int (2), P) < o;
(ii) Q is weakly open, P(supp(P)) = 1 and K(2, P) = oo.

Proor. First suppose that condition (i) is satisfied. Fix ¢ > 0. Let Q € cl ()
be such that K(Q, P) < K(cl,(R), P) + ¢ and let R € int () be such that K(R, P)
< 0. Define @, = aQ@ + (1 — )R, 0 <a < 1. Then Q, € int (R) and the con-
vexity of the map Q' — K(Q’, P) implies

K(int,(@), P) < limgy,K(Q,, P) < limyy,{aK(Q, P) + (1 — 0)K(R, P)}
= K(Q, P) < K(cL(®), P) + ¢.

Hence K(int, (), P) = K(cl,(2), P). Application of Theorem 3.1 completes the
proof of this case.

Next suppose that condition (i) holds. By Lemma 2.5 the weak closure of
{Q € A: K(Q, P) < o0} contains all empirical pms with their (finite) support
contained in the support of P. Since P(supp(P)) =1, Pr{ﬁn € Q} =0 for all
n € N implying (3.3). [

Condition (i) of the preceding corollary cannot be replaced by the condition that
Q is r-open, convex and K(int,(R2), P) < o. To see this, let S = [0, 1], let P be
Lebesgue measure on S and let @ = {Q € A : Q((0, 3)) >%} U{Q €A:Q has
at least one point mass}. Then  is 7-open and convex and the events { P, € Q} are
measurable. Obviously Pr{ #, € @} = 1 for all n and lim,_, _n"'log Pr{P, €Q} =
0 although K(, P) =2 log 3 — log 2 > 0.

However, in the case that @ is weakly open and convex Bahadur and Zabell
(1979) have proved (3.3) assuming that S is a Polish space. Their proof is based on
a Chernoff-type theorem for sample means.

To determine the infimum K(2, P) appearing in the preceding results one
usually tries to find a pm Q € Q for which this infimum is attained. A sufficient
condition for the existence of such a pm Q is given in the next lemma.

LeEMMA 3.2. Let P € A and let Q be a nonempty t-closed set of pms in A. Then
there exists a pm Q € Q such that K(Q, P) = K(Q, P).

Proor. We assume K(Q, P) < oo since otherwise any Q € @ achieves the
equality. Let n > 0. Because  is 7-closed the set N {Q € A: K(Q, P) <
K(R, P) + n} is compact by Lemma 2.3. By Lemma 2.2 the map Q — K(Q, P),
Q € A, is r-lower semicontinuous. Since a lower semicontinuous function attains
its infimum on a compact set, the proof is complete. []

A similar result is proved in Csiszar (1975), where Q is required to be convex and
closed in the topology of the total variation metric.
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Next we specialize Theorem 3.1 by considering sets § induced by an extended
real-valued function 7 : A — R. For a fixed function 7 : A —> R, let

Q={Q€eA:T(Q)>t}, tER
We first prove a technical lemma.

LEMMA 33. Let PEA and let T: A—R be a function which is T-upper
semicontinuous on the set T = {Q € A : K(Q, P) < oo}. Then the function t —
K(Q,, P), t € R, is continuous from the left.

PROOF. Let k : R — R denote the function defined by t — K(R,, P), t € R. Let
{r,.} be a sequence in R such that r,,1r for some r € R satisfying k(r) < oo. Since
k is nondecreasing x(r,,) < k(r) < o for each m € N and lim,, _, x(r,,) exists. For
each m € N there exists by Lemma 3.2 a pm Q,, € @, such that K(Q,,, P) = (r,,)
(note that {Q € A : T(Q) > ¢ and K(Q, P) < M} is 1-closed for each r € R and
M > 0). Since K(Q,,, P) < k(r) for each m, Lemmas 2.2 and 2.3 imply the
existence of a subsequence {Q,,} of {Q,} and a pm Q € A such that ¢, —».0
and K(Q, P) < lim inf; , K(Q,,, P) < oo. It follows that 7(Q) > r since T is
upper semicontinuous on I' and since 7(Q,,) > 7,, for each j € N. Hence Q € Q,
and k(r) < K(Q, P) < limj_,wK(Q,,y, P) = lim,,_, x(r,,) < x(r). Thus lim,,_, k(r,,)
= k(r) follows.

The left continuity also holds for a point » € R such that k(r) = o0 and
k(r') < oo for all ¥ < r. For if {k(r,)}m-, is uniformly bounded for a sequence
{r,,} with r,,1r, then by the preceding line of argument there exists a pm Q € Q,
satisfying K(Q, P) < oo in contradiction to k(r) = co. []

- THEOREM 3.2. Let P € A and let T : A — R be a function which is T-continuous
at each Q €T ={R € A: K(R, P) < ). Then, if the function t— K(%,, P),
t € R, is continuous from the right at t = r and if {u,} is a sequence of real numbers
such that lim,_, u, = 0,

(3.6) lim, . n"'log Pr{T(B,) > r + u,} = —K(Q, P).

(Note that the continuity property of T is stronger than the property “T is continuous
onT.”) ‘

PrROOF. Again define the function x by k(z) = K(,, P). Since k is nondecreas-
ing it has at most countably many discontinuities. It is continuous from the left by
Lemma 3.3 and continuous from the right at ¢ = r by assumption.

Let K(2,, P) < co. Then there exists for each ¢ > 0 a § > 0 such that «(r) — ¢
<k(r — 8) < k(r) < k(r + 8) < «k(r) + &, where k is continuous at r — & and
r+ 6.

The continuity of T at each Q € T implies cl(2,) N T' = &, N T'. Hence

K(cl(2), P) = K(c1,(2,) N T, P) = K(2, N T, P) = K(Q, P).
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Moreover, if k is continuous from the right at ¢,
K(Q, P) = K&, T, P) = K(int,(2,) N T, P) = K(int,(2,), P),

since TN, c{QETl:T(Q) >t} cInint(2) for each y > 0. Hence by
Theorem 3.1

—k(r) — e < —k(r + 8) = lim,_n""log Pr{T(P,) > r + 8}
< lim inf,_ n~'log Pr{T(B,) > r + u,)
< lim sup,_,,,n " 'log Pr{T(B,) > r + u,)
< lim sup,_,,,n " 'log Pr{ T(B,) > r — 8}
= —k(r—8) < —«k(r) + e
Thus
ot Mog Pr{T(B,) > r + u,} = —k(r) = — K(Q,, P).

The case K(£2,, P) = oo may be dealt with along the same lines. The details are
omitted. []

lim,

REMARK 3.3. Theorem 3.2 continues to hold if T is an R%valued function and r
and {u,} are vectors in R?. The proof is quite similar.

ExampLE 3.1. Let ¥ be a class of continuous R%valued functions defined on
the Hausdorff space S and compact in the compact-open topology. Let P € A be
tight and assume that the one-dimensional marginals of Pf~! are nonatomic for
eachf € F. Let d(Qf !, Rf ') be the distance between Qf ~! and Rf ! defined in

Lemma 2.1.

Sethuraman (1964) proves (in the case that S is a Polish space) that for each &,
0<e<l,
3.7) lim,_, .n " 'log Pr{supfegd(ﬁmf", P > e} = —«(e),
where

x(e) = ming_ ¢, {(p + e)log((p + ¢)/p)
+(1—p—elog((1-p —¢)/(1-p)))}

Here we prove that the function T:A—>R defined by T(Q)= SUPseg
d(Qf !, Pf~Y) is r-continuous at each Q € T satisfying K(Q, P)< oo and hence
that (3.7) follows from Theorem 3.2.

Let Q € A satisfy K(Q, P) < oo and suppose that T is not continuous at Q.

Then there exists an ¢ > 0 such that for each 7-open neighborhood U of Q a pm
Qy € U and a function f,, € % can be found satisfying

(3.8) d(Qufs!, of5") > &

(Note that for all pms R, R" € A one has |T(R) — T(R')| < supseqs
d(Rf~', R’f~").) Let the set @ = {U: U is a t-open neighborhood of Q} be
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directed by U > V iff U c V. With this (partial) ordering on the set 9D, {fy : U
€ )} and {Q, : U € D} are nets in F and A respectively. Since ¥ is compact in
the compact-open topology, the net {f;, : U € 9D} has a cluster point f € ¥.

Let for x = (x®,- .., x?) €R? the norm of x be defined by |x| =
max, ¢, ,|x?| and let x < y iff x® < y®, 1 <i < d. Since P is tight and K(Q, P)
< o0, Q is tight and hence there exists a compact set K C S such that
Q(S \ K) <}e. The pm Qf ~! has nonatomic marginals since Pf~' has nonatomic
marginals and Q < P. Hence there exists an n > 0 such that

|Q{s € K:f(s) <x} — Q{s € K: fls) <y} <3¢
if ||x — y|| <. By Lemma 2.1 we can choose a T-open neighborhood U, of Q such
that d(Rf ', Of ™!) <1ie and R(S \ K) <ieif R € U, Since fis a cluster point of
the net {f,, : U € 9} there exists a T-open neighborhood U C U, of Q such that
sup, e x|l f(s) — f(s)|l <n. Because @, € U C U, one has

d(Qufy’s Of") < max{Q(S \ K), Qu(S \ K)}
+5Up,cre| Qu{s € K : fs) < x} — Q{s € K: fy(s) < x}]

< sup,epilQu{s € K1 f(s) <x} — Qs €K : f(s) <x}| +3¢

<d(Quf~\, 0f ') +3e<e.
This contradicts (3.8) and hence T is T-continuous at Q. Let &, = {Q € A : T(Q)
> ¢} for 0 < e < 1. It has been shown by Hoeffding (1967) that K(£,, P) = x(e)
and that k is continuous in & for 0 < & < 1. Thus (3.7) follows from Theorem 3.2.

For one sample Theorem 1 in Hoadley (1967) is a particular case of our
Theorem 3.2. In Hoadley’s theorem S = R, P is a nonatomic pm on R and T is a
real-valued uniformly continuous function with respect to the topology p.

Actually Hoadley (1967) proves a more general theorem where T is not merely a
function of one but of several empirical pms. This setup is of interest in problems
concerning k samples. The results obtained so far in this section can also be
generalized to the k-sample case. We briefly indicate how this works out.

Let X, ,,- - -, X, , beiid. random variables taking values in S according to a
pm P, € A, 1 < i < k, and assume that the sample sizes », tend to infinity in such a
way that limy_,n,/N = v, where N = Z%_,n, and », > 0, 1 <i < k. (We remark
in passing that the condition n,/N — », = O(N ~'log N) in Hoadley (1967) is
unnecessarily restrictive.) The empirical pm of the ith sample will be denoted by
ﬁ,., n 1 <i<k. Ais endowed with the topology 7 and A* is given the product
topology.

Let P=(P, -+ ,P)EA and v = (v, - -, %) € (0, 1]* where Z¥_;», = 1.
Let ? =P, X -+ - XP, be a partition of S* consisting of product sets B, ;
X+« XBy, where B; ; belongs to a partition P, of S for 1 <i < k. Then we
define for Q = (Qy, - - * , @) € A* and a set @ C A*

L(Q, P) = 2Ii<=l"i1<(Qi’ P), L(Q, P) = ian el (Q, P)
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and
I, 9(Q, P) =Z4_nKg(Q, P), 1, 9(R P) =infycql, 3(Q, P).

By making small changes in the proofs of Theorems 3.1 and 3.2 one obtains the
following corollaries.

COROLLARY 3.2. Let P = (P,,* * - , P,) € AF and @ C A* satisfy

L(int(), P) = L(cl(R), P).
Then
limy_, N ~'log Pr{(B, ., -, P ,) €Q} = —L(Q, P).

COROLLARY 3.3. Let P= (P, -+, P) € A, let T: A* — R be continuous at
eachQ €T ={R €A : [(R,P) < o} and let @, = {Q EA*: T(Q) >}, t €
R. Then, if the function t — I,(Q,, P) is continuous from the right at t = r and if
{uy} is a sequence of real numbers such that uy — 0,

limy_ N "'log Pr{T(P, . -+, P ,) > 1+ uy} = —1(Q, P).

4. Linear functions of empirical probability measures. Several important statis-
tics are in fact linear functions of empirical pms. For example, if § = R, the sample
mean n~'27_,X; may be written as T(P,), where T is defined by

T(Q) = [rxdQ(x)

for all Q € A with bounded support. Note that T is a linear function, ie.,
T(a@ + (1 — @)R) = aT(Q) + (1 — a)T(R),0 < a < 1. Although T is not 7-con-

tinuous at any pm Q, T is T-continuous on each set {Q € A : Q([— M, M]) = 1},
where M is a fixed positive number. This property suggests that large deviation
theorems might be obtained by first truncating the underlying pm and subse-
quently taking limits, letting the carrier of the truncated pm tend to S. It turns out
that this kind of truncation is more convenient than truncation of functionals T.
Slightly different truncation arguments are systematically used in Bahadur (1971)
and Hoadley (1967).

For the purpose of truncation we introduce conditional pms. If B C S is a Borel
set and Q € A satisfies Q(B) > 0, the conditional pm Qp is defined by QB(C)
Q(C|B), C € @3 ForT c A and B € % with P(B) > 0, we write Pr{P, € T|B}
to denote Pr{P, €T|X; € B, 1 <i < n}.

The following lemma explains why truncation is a useful approach.

LeMMA 4.1. Let P € A and let B, C B, C - - - be an increasing sequence of
Borél sets in S such that lim,,_,  P(B,) = 1. Let A* = {Q € A: Q(B,) = 1 for an
m € N}. Then, for each subset Q of A*

lim,,_,,K(2, P5 ) = K(@, P).

m—»oo
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Proor. Fix & > 0. Let my € N be so large that |log P(B,,)| <e. Write P,, =
Py , m € N. Then

K(Q,P)<K(Q,P,) +¢e foralQ € Aandm > m,
The inequality is trivially true if K(Q, P,) = oo and is a consequence of K(Q, P)

- K(Q, P,) = — log P(B,) if K(Q,P,) < oo. It follows that K(, P) <
lim inf,,_,  K($2, P,). To prove the lemma it still must be shown that conversely
4.1 K(Q, P) > lim sup,, , K(2, P,,).

The inequality is obvious if K(f2, P) = co. Hence assume K(Q, P) < o and let
Q € Q satisfy K(Q, P) < K(R2, P) + &. Since Q € A*, there exists an m;, € N such
that Q(B,,) = 1. Hence

lim sup,, , K(2, P,) < lim,, ,  K(Q, P,) = K(Q, P) <K(R,P) + ¢
implying (4.1). ]

THEOREM 4.1. Let P € A, let E be a real Hausdorff topological vector space and
let BjC B,C--- be an increasing sequence of Borel sets of S such that
lim, . P(B,) =1 Let ¥,={Q €E€A:Q(B,) =1} for meEN and let A* =
Up_1¥Y,.. Let T:A*— E be a function whose restriction T|¥,, is linear and
T-continuous at each Q € ¥, such that K(Q, P) < o, for each m € N.

If A is a convex subset of E with closure A and interior A° satisfying

K(T~Y(4%, P) < 0, then
42) lim,_,.n " 'log Pr{T(B,) € 4} = — K(T~'(4), P).
PrOOF. Assume without loss of generality that P(B,) > 0. Let P, = Py ,me
‘N. By Lemma 4.1 K(T ~'(4%, P) = lim,,_,  K(T ~'(4°, P,). Hence we may also
assume without loss of generality that K(7T ~!(4°), P,) < o for each m € N. We
shall first prove
(4.3) K(T~'(4%, P,) = K(T~'(4),P,) foreachm € N.

Fix ¢ > 0 and m € N. There exists a pm Q € T ~'(4) which satisfies K(Q, P)
<K(T~'(A),P,) +¢ and a pm R € T~'(4% such that K(R, P,) < co. Let
Q,=aQ+ (1 —-a)R,0<a<1.Since Q,R € ¥,, Tislinear on ¥,, and E is a
topological vector space, Q, € T ~'(4° for each a. Proceeding as in the proof of
Corollary 3.1 one obtains (4.3).

Let @ = T7'(4), let ¥ ={Q €Y, : K(Q, P) < 0} and let 7,, denote the
relative 7-topology on ¥,,, m € N. Since the restriction of T to ¥, is 7,,-continu-
ous at each Q €¥}, one has ¥41NT ' (A)D¥hNnec, @NY,)D¥EN
int, (@ N ¥,)D ¥ N T7'(49. Hence, by (4.3)

(44) K(c, (2n¥,),P,) =K(nt, (2N ¥,),P,) foreachm e N.

Let y =limsup, n~' log Pr{T(P) € A} and let k €N be such that
k~'log Pr{T(B,) € A}> y — e. Since lim,_, Pr{T(P,) € 4|B,}=Pr{T(P,) €A}
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there exists m, € N such that
k~'log Pr{T(B,) € A|B,} >y —2¢ forallm > m,
Hence for m > my
(4.5) lim sup,_,n"'log Pr{T(B,) € 4|B,,}
> lim,_, (k) ~'log(Pr{ 7(Z,) € 4|B,})’
= k~'log Pr{T(B,) € 4|B,} >y — 2.

The first inequality in (4 5) follows from the convexity of 4, the linearity of T on
¥,, and the property P =3 ,Pk ;» where n = jk and Pk ; is the empirical pm

of the random variables X;_ 1y 415+ * 5 Xy, 1 < <.
By (4.4), Theorem 3.1 and Remark 3.2

n~'log Pr{T(P,) € 4|B,,}

= lim

n— o0

lim,
n~'log Pr{P, € B, } = = K(Q, P,).
Lemma 4.1 and (4.5) now imply
y — 2¢ < lim,,_,lim,_ n~'log Pr{T(P,) € 4|B,,}
= —lim,,_, K(T~'(4), P,) = —K(T~'(4), P).

Thus y < — K(T ~'(4), P).
Conversely, for any m,n € N

n~Yog Pr{T(B,) € A} > n~'log Pr{T(P,) € A|B,,} + log P(B,,).
Hence, by the first part of the proof and Lemma 4.1
lim inf,_, ,n~'log Pr{T(B,) € 4}
> lim,, , [lim inf,_,n~'log Pr{T(P,) € 4|B,} + log P(B,,)]
= lim,,_,, — K(T~'(4), P,,) = —K(T~'(4), P). 0

m— o0

n—oo

COROLLARY 4.1. In Theorem 4.1 let T|¥, be linear and weakly continuous for
each n € N. Then (4.2) holds for each subset A of E and P € A satisfying one of the
following conditions:

() A4 is convex and K(T ~'(A°), P) < oo;

(ii) A is open, P is Lindelif inner regular and K(T ~'(A4), P) = o

(iii) A is open and convex and P is Lindelof inner regular.

ProOF. Under condition (i) the result follows from Theorem 4.1 since weak
continuity implies 7-continuity of T'|¥,. Since condition (iii) implies either (i) or

(ii), it remains to consider condition (ii).
Suppose A4 is open and K(T ~!(4), P) = c. Assume without loss of generality
P(B,) > 0. For each m € N let P, be the conditional pm Py . We first show that

P,(supp(P,)) = 1.
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Let 4,, = B,, N (supp(P) \ supp(P,,)). Since P(supp(P)) = 1 by the inner regu-
larity of P, it suffices to prove P(4,,) = 0. For all x € 4,, let U, be a neighborhood
of x in S such that P,(U,) = 0 and put U = U, U,. Fix ¢ > 0. Again by the
inner regularity of P there exists a Lindelof subspace V' c U satisfying P(V) >
P(U) — e. Since V may be covered by countably many sets U,, it is seen that
P, (V) = 0 and hence

P(4,) < P(UN B,) = P(U\V)N B,) <,
implying P(4,,) = 0

Next we prove that T ~!(4) does not contain pms with finite support in
B, N supp(P,), implying Pr{ T(ﬁ,,) € A|B,} =0 for all m,n €N and hence
Pr{ T(ﬁn) € A} = 0 for all n € N in accordance with (4.2).

Fix m €N and let Q, € A have finite support supp(Q,) C B, N supp(P,,).
Suppose T(Q,) € 4. The weak continuity of 7'|¥,, implies that there is a weak
neighborhood ¥V of Q, such that T(V N ¥,,) C 4. By Lemma 2.5 (with P replaced

P,) the set V contains a pm Q, such that K(Qy, P,) < . It follows that
Q, € ¥,, and hence K(T ~'(4), P,) < o, in contradiction to K(7 ~'(4), P,) =
K(T~'(4), P) = . Therefore T(Q,) & 4, as required. []

Consider the particular case that S is a locally convex (Hausdorff) topological
vector space. Bahadur and Zabell (1979) have shown that for each convex open set
AcCS
(4.6) lim,_,,n~'log Pr{n~'S7_,X, € 4}
exists and is equal to — K(M(A), P), where M(A) C A is the set of pms with
expectation in A (their Theorems 2.1, 2.3 and 3.3). This result, together with other
methods to evaluate the limit, is derived under the condition that the pm P and its
convolutions satisfy certain inner regularity conditions.

Another version of their result can also be deduced from Corollary 4.1. For this
purpose integrals of functions taking values in vector spaces are needed. Let E be a
copy of the locally convex topological vector space S, let E’ be the dual of E (i.e.,
the space of continuous real-valued linear functionals on E) and let E’* be the
algebraic dual of E’ (i.e., the space of real-valued linear functionals on E’). For
Yy EE,y €E,y* € E™ write {y,y') = y'(y) and {y"*, y") = y"*(y"). Finally,
let B be a compact subset of S, let ¥, be the set of pms on the Borel o-field of B
and let C(B) denote the space of continuous functions f : B — E. Then the integral
of f € C(B) with respect to a pm Q € ¥, denoted by f pJdQ or [f(x)dQO(x), is
an element of E’* defined by the relation

<fodQ’ )”> = fB<f(x)’ y’>dQ(x)
for each y’ € E’ (cf. Bourbaki (1965), pages 74-82).

Let £ be the completion of E induced by the uniformity compatible with the
topology on E. Each element y € E can be identified with an element of E’* by
iSlentifying » with the linear form y’ — <y, y’> on E’ (where E’ is identified with
E’).
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With this identification we have the following two fundamental properties of the
integral for each f € C(B): (a) the closure of the convex hull of f(B) in Eis equal
to the set {[zfdQ: Q € ¥;}, and (b) the map ¢ : Q — [pfdQ is the unique weakly
continuous linear mapping from ¥ into E such that ¢(Q) = Sk f(x)Q({x;)) for
each pm Q with finite support {x,, - - + , %} (cf. Bourbaki (1965), loc. cit.).

Now suppose P € A is tight. Then there exists an increasing sequence of

compact subsets B; C B, C - + - of § such that lim, ,_ P(B,) = 1. In the notation
of Theorem 4.1 define 7 : A* — E by
4.7 T(Q) = [, xdQ(x), Q ev¥y,meN.

Since [z {x,y'>dQ(x) = [5<{x,y'>dQ(x) if Q(B,)= Q(B,) =1, the value of
T(Q) does not depend on the choice of B,,. Moreover, by property (b) mentioned
above, T(ﬁ,,) = n~!37_:X; and T|¥, is linear and weakly continuous for each
n € N. Hence Corollary 4.1 implies that (4.6) exists and is equal to
— K(T~'(A), P) under the conditions (i), (i) or (iii). Apart from pms with
noncompact support, the set T ~1(4) coincides with the set M(A) appearing in the
result of Bahadur and Zabell (1979).

Note that we required that §' = Eand Pis tight. If in addition P is convex-tight,
i.e,, sup{ P(K): K compact and convex} = 1, then by property (a) above T can be
defined as a function T : A* — E (instead of E) since the sets B, can be chosen
compact and convex in this case.

Thus we have proved

COROLLARY 4.2. Let S be a locally convex (Hausdorff) topological vector space
and let P € A be convex-tight. Then the Ilimit (4.6) exists and equals
. —K(T ~'(A), P), with T defined by (4.7), if A € B and P satisfy one of the following
conditions:

@) A4 is convex and K(T ~'(4%, P) < oo;
(i) A is open, P is Lindelof inner regular and K(T ~'(A), P) = o
(iii) A is open and convex and P is Lindelof inner regular.

5. A d-dimensional Chernoff-type theorem. Consider d-dimensional i.i.d. ran-
dom variables X, X,, . .. taking valuesin S = R?(d > 1). Let A* = {Q € A: Q
has compact support}. In this section the map 7' : A* —» R? is defined by T(Q) =
[rexdQ(x), @ € A*. In Chernoff (1952) the following large deviation theorem was
proved for the case d = 1

lim, ,n~"log Pr{n~'S7_ X, > r} = —sup,,o{tr — log fRe”‘dP(x)}
forany r € R and P € A, (as was noted in the previous sectlon, the sample mean

n~137_ X, is equal to T(P,)). With the help of Corollary 4.2 we shall generalize
this ‘theorem to the case d > 1.

Related results about limits of the form (4.6) have been obtained by Lanford
(1972) who considered open convex sets 4 C R? and more recently by Bartfai
(1977) who assumed 4 C R? to be open and the moment generating function of X,
to be finite in a neighborhood of the origin.
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Our results are in a certain sense complementary to those of Sievers (1975), who
gives sufficient conditions to reduce limits of the form lim,_,n~'log Pr{T, € 4},
ACRY, A€R to limits of the form lim, ,n " 'log Pr{TMsx,, - - - , TDxx,},
where the #’s are either > or < and T, = (TY, - - - , T) is a random variable
taking values in R?. Here we shall give explicit expressions for the latter limits in
the case that 7, is the sample mean.

We introduce the following notation. The ith component of a vector x € R? is
denoted by x® and the inner product of two vectors x,y € R? by x’y. The
following ordering relations on R? will be used: x > y iff x® > y?(1 < i < d) and
x >y iff x@>yP1 <i <d). Furthermore R% = {x € R?: x > 0}. We denote
the complement of a set A C R by A¢, its interior by 4°, its closure by A and its
boundary by 94 (always in the Euclidean topology). For Q € A* the integral
[rexdQ(x) denotes the vector of marginal means of Q. To avoid confusion, the
letters a, B, v, 8 and ¢ will always denote real numbers.

For r € R and P € A we define

2, = {Q € A*: [pixdQ(x) > r)
and

Ap = {s €R?: K, P) < x}.
With these notations the following theorem will be proved.

THEOREM 5.1. Let P € A and r € (04p)°. Then, for each sequence {u,} in R4
such that lim,_, u, = 0,

(5.1 lim, ,n~'log Pr{n~'S"_ X, > r + u,} = —K(Q,, P)
and
(5.2) K®,, P) = sup,eni{t’r — log fRde""dP(x)}.

Moreover, the supremum on the right-hand side of (5.2) is achieved if r € AD.

Theorem 5.1 generalizes Chernoff’s theorem to d-dimensional vectors, but does
not cover the case r € 94,. Relation (5.2) extends results by Hoeffding (1967) and
Csiszar (1975, Theorem 3.3) who both considered sets 2, of the type {Q €
A : [rexdQ(x) = r} assuming finiteness of the moment generating function of P in
a neighborhood of the origin.

The following example demonstrates that (5.1) may fail if » is a boundary point
of Ap. ’

EXAMPLE 5.1. Let d =2 and define the pm P by P({a}) = P({b}) =2, where
a=(1,0)and b = (0, 1). Let r = (3, 3), hence r € 34,. Since Pr{n~'27_ X, > r}
n
=1, 272 for n even and = 0 for n odd, the limit in the left-hand member of
2
(5.1), with u, = 0, does not exist in this case (the limes inferior is — oo, the limes
superior is 0). It is easily verified that K(%,, P) = 0.



574 P. GROENEBOOM, J. OOSTERHOFF AND F. H. RUYMGAART

The next theorem provides some more information about the exceptional case
r € 34,. It asserts the existence of a supporting hyperplane through r of the
support of P with some special properties.

THEOREM 5.2. Let P € A and r € 04p. Then there exist a hyperplane Hy(r) =
{(x ER?:s'x = s'r} through r and a corresponding half-space H*(r) = {x €
RY: s'x > s'r}, where s € R and s + 0, with the following properties:

(i) P(H¥(r)) = 0 and P(H¥(p)) > O for each p <r;
(ii) if r € Ap N 0Ap, then P(H,(r)) > O;
(iii) if r € A5 N 94, and P(H(r)) = O, then (5.1) and (5.2) hold;
@v) if P(H,(r)) = P({r}) > O, then (5.1) and (5.2) hold provided u, = 0 for all
large n € N.

Consider the case d = 1. If r € 04, then the hyperplane H,(r) of Theorem 5.2
reduces to the point {r} and either (iii) or (iv) is satisfied. Hence Theorems 5.1 and
5.2 together contain the original one-dimensional theorem of Chernoff.

If P is absolutely continuous with respect to Lebesgue measure on R?, case (ii) of
Theorem 5.2 cannot occur and (iii) holds. Hence Theorems 5.1 and 5.2 yield

COROLLARY 5.1. Let P € A and suppose P is absolutely continuous with respect
to Lebesgue measure on R®. Then (5.1) and (5.2) hold for each r € R? and each
sequence {u,} in R? tending to the zero vector.

Henceforth the sets B, c R? and ¥,, C A for m € N are defined by
B,={x€R:|x|]<m1<i<d}
. and
v, ={Q €A:Q(B,) =1}
For any m € N and Q € A such that Q(B,,) > 0 the conditional pm Q,, is defined
by 0,(B) = O(B|B,), B € B.
Before proving the theorems we first establish two lemmas.

LEMMA 5.1. Let P € A. Then Ap is convex and the function s — K(,, P),
s € RY, is convex and hence continuous on Aj.

Proor. This is an easy consequence of the convexity of the function a —
a log a, a > 0 and the linearity of the function Q — [RrxdQ(x) on A*. []

LeMMA 5.2. Let T be a nonempty convex subset of A* and let p € R®. Consider
the system of d inequalities '
(5.3) f IR‘,,och(x) >p.
Theri either there is a solution Q € T of (5.3) or, alternatively, there exists t € R%,
t = 0, such that
(5.4) UfpexdQ(x) < tp  forallQ €T.
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ProoF. This is Theorem 1 in Fan, Glicksberg and Hoffman (1957), specialized
to the present situation. [J

PROOF OF THEOREM 5.1.  Since any pm on the Borel sets of R? is tight, Corollary
4.2 implies that (5.1) is satisfied if » € 4% and u, = 0 for all » € N. By a similar
argument as we used in proving Theorem 3.2, more general sequences {,} may be
dealt with. If » € (4,)° then obviously K(R,, P) = c0. Moreover, choosing r° € A
such that r + u, > r° for all large n, Pr{n~'S"_ X, > r + u,} < Pr{n~'37_,X, >
r°} and another application of Corollary 4.2 (invoking condition (ii)) yields (5.1) in

this case too.
We proceed to prove (5.2). First consider the case that r € 49. Let Q € Q,,

K(Q, P) < o0, ¢ = dQ/dP and t € R“.. Following Hoeffding (1967), we note that
by Jensen’s inequality
K(Q, P) > K(Q, P) + ¢(r — [pixdQ(x))
= 1'r — [,>olog{e”/q(x)}dQ(x)
> t'r — logfge"*dP(x)
and hence
K(Q,, P) > sup,cpe {#'r — log [gee"dP(x)}.
It still must be shown that conversely
(5.5) K(,, P) < sup,cpe {'r — log [gee"dP(x)}.
First suppose that P has compact support, i.e., P(B,,) = 1 for sufficiently large

~m € N. Since ¥, is 7-closed and the restriction of T to ¥, is r-continuous,
?, N ¥, is 7-closed and hence, by Lemma 3.2, there exists a pm Q € {2, such that

(5.6) K(Q, P) = K(®,, P).
The supporting hyperplane theorem, the convexity of the function ¢t — K(R,, P)
and its monotonicity in each argument ¢ imply the existence of s € R% such that

(5.7) K(Q, P) > K, P)+s(t—r) forallt € 4,.

Let B(s) = [gee**dP(x) and let the pm Q be defined by its density ¢ = dQ/dP
given by g(x) = e**/B(s), x € R?. Then

(58) K(Q, P) = 5'[paxdQ(x) — log B(s).
Application of (5.6) and (5.7), with ¢ = [gaxdQ(x), yields -
(5.9) K(Q, P) > K(Q, P) + s'(JgexdQ(x) — ).
Since

K(Q, P) — K(Q, Q) = [rdog q(x)dQ (x) = §'[gaxdQ (x) — log B(s)
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we have by (5.8) and (5.9)

(5.10) K(Q, Q) = K(Q, P) — §'[paxdQ (x) + log B(s)
= K(Q, P) — K(Q, P) + 5'(JpuxdQ(x) — [gexdQ (x))
< s'(r — fraxdQ(x)) < 0.

It follows that K(Q, Q) = 0, hence Q = Q and therefore

(5.11) K(,, P) = K(Q, P) = s'r — log [gee*"dP(x).

This proves (5.5) for P with compact support. (We note in passing that, by (5.10),
5O > 0 implies [raxPdQ(x) = r®.)

There is also another line of argument to reach this conclusion. One first proves
that the function ¢ — ¢'r — [ge *dP(x) attains its supremum on the set R% for
some s € R%, defines Q with this s as before and shows by considering partial
derivatives that Q € @, and finally by Jensen’s inequality that (5.11) is indeed
satisfied. However, the present proof seems to be more direct.

Now let P € A be arbitrary. For each m € N such that P(B,) > 0and r € A,?m
there exists by (5.7) s,, € R% satisfying

sr/n(t - r) < K(Q,, Pm) - K(Qr’ Pm)
for each ¢ € 4, . Hence in view of Lemma 4.1
lim sup,,_,.s,,(t — r) < K(Q,, P) — K(Q,, P)

- for each t >r, t € Ap, implying that {s,,} has a convergent subsequence {s,, }. Let
lim,_, s, = s. By Lemma 4.1, (5.11), and Fatou’s lemma

n—>00”m,
K(Q,, P) = lim,_,  K(2,, Pm")
= lim,,_m{s,’,,"r — log [geexp(s,, nx)den(x)}
< 5'r — log [greexp(s’'x)dP(x).
Thus (5.5) is proved in this case too and (5.2) follows for r € A43.
It remains to prove (5.2) in the case r € (45)°. Let p € (45)% p <r. Apply
Lemma 5.2 with T = {Q € A* : K(Q, P) < c}. Since (5.3) does not hold, there
exists s € R%, s # 0, such that

(5.12) s’ [rixdQ(x) < s’p  forallQ €T.
It follows that (with the notation of Theorem 5.2)
(5.13) P(HX(p)) = 0.

For suppose that (5.13) does not hold. Let 4 be a compact subset of H¥(p) such
that P(4) > 0, and let Q be the conditional pm defined by Q(B) = P(B|A),
B € ®. Then K(Q, P) = — log P(4) < o and s'[gaxdQ(x) > s'p, in contradic-
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tion to (5.12). Hence
sup,cgs {'r — 10g [gee"*dP(x)}
> lim,_,, — log freexp{as’(x — p) + as’'(p — r)}dP(x)
= o0 = K(Q,, P)
and the proof of Theorem 5.1 is complete. ]

PROOF OF THEOREM 5.2. Let r € 04, and put I' = {Q € A* : K(Q, P) < o}.
Applying Lemma 5.2 with p = r, (5.3) is obviously not satisfied and hence there
exists s € R%, s % 0, such that

s’ [raxdQ(x) <s'r  forallQ €T.
It will be demonstrated that for this vector s, H(r) and H¥*(r) have the required

properties.

(i) The proof of P(H*(r)) = 0 is similar to the derivation of (5.13) from (5.12).
Let p <r, hence p € A3. Then P(H*(p)) > 0. For otherwise every pm Q €T
would satisfy s’ [graxdQ(x) < s'p, in contradiction to the existence of a pm Q € T

with the property [raxdQ(x) > p.

(ii) Suppose r € Ap N 0Ap. In that case a pm Q €T exists such that
[rexdQ(x) > r. Hence Q(H,(r) U H}(r)) > 0 and therefore, as a consequence of
Q < P and (i), P(H,(r)) > 0.

(iii) Let r € Af N 94, and P(H,(r)) = 0. In this case K(,, P) = co since
r € A§. Moreover, since P(H¥(r) U Hy(r)) =0,

SUP, e e {t’r —log f ,Rde""dP(x)}
> —lim,_ log freexp{as’(x — r)}dP(x) = o
by dominated convergence and (5.2) is proved. Finally, by Markov’s inequality, for
any ¢t € R% and u, € R?,
Pr{n™'Si\ X, > r+ u,} < Pr{Z7_0'X, > nt'(r + u,)}
< Eexp(Si,/'X;) /exp{nt'(r + u))

= (Jaeexp(r(x — 1 — u)}dP(x))"
Hence, if lim,_, u, = 0,
n~og Pr{n~ 'S\ X, > r + u,}
< —sup,cps(—log [peexp{#(x — r)}dP(x)) = — o0
and (5.1) is established. :

(iv) Let y = P(H,(r)) = P({r}) > 0. Since in this case Q € ' n &, iff Q({r})
=1, K(,, P) = — log y. It is also readily seen that Pr{n~'S7_,X, > r} = Pr{X,
=r,1<i<n}=y"and hence lim,_,n"'log Pr{n~'S}_,X; > r} = log v, prov-
ing (5.1) for u, = 0. By dominated convergence

sup,cge { £'r — log [gpe"dP(x)}

> —lim,_ log freexp{as’(x — r)}dP(x) = —logy.

lim,

‘n— 00
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The reverse inequality is obtained by Markov’s inequality, as in the last lines of the
proof of (iii). Thus (5.2) is also established and the proof of the theorem is
complete. []

6. Linear combinations of order statistics. In this section X, X,,- - - are
real-valued ii.d. random variables with distribution function (df)F. Instead of A,
the set of pms on (R, B ), we shall consider the set D of one dimensional df’s. If
G € D, the corresponding pm in A; will be denoted by Pg;. A set of df’s 4 in D
will be called T-open (or p-open) if the set of pms {P; € A, :G € A} is open in
the topology 7 (or p) defined on A,. The topologies 7 and p on D are defined by
these r-open and p-open sets respectively. Obviously all results on large deviations
for pms on R lead to corresponding results for df’s on R, so we freely use the
theory of the preceding sections.

For convenience of notation we write K(G, F) instead of K(Pg, Px) and simi-
larly we write K(2, F) to denote inf; coK(Pg, Pp) if  is a subset of D. For G € D
the inverse G ~! is defined in the usual way by G ~'(4) = inf{x € R : G(x) > u}.

Suppose J : [0, 1] > R is an L-integrable function, ie., [3|J(u)|du < c0. We
consider linear combinations of order statistics of the form

(6.1) T(F,) = [ (u)F,” (w)du,

where £, denotes the empirical df of X,, - - - , X,, or in a perhaps more familiar
notation

(62) T(ﬁn) = 2':= lcn, i‘Xi tn

where ¢, ; = [, {,/f 1y/nJ(#)du and X; ., is the ith order statistic of X, - - - , X,,. These

, statistics are sometimes called L-estimators, cf. Huber (1972). For a more recent
- discussion we refer to Bickel and Lehmann (1975).
Related to the statistics T(F,) are the sets

(63) @, ={Ge€D: [((J(w)G (wau >t, [}|J(4)G ~(u)|du < w0},

where t € R.
The following large deviation theorem is a consequence of the preceding theory.

THEOREM 6.1. Let F € D, let J : [0, 11— R be an L-integrable function and let
[a, B] be the smallest closed interval containing the support of J. Then, for each
sequence {u,} of real numbers such that lim,_, u, = 0,

(6.4) lim,_,n~"log Pr{T(F,) > r + u,} = —K(Q,, F)
if J, F and r € R satisfy the conditions '

(i) t—> K(Q,, F), t € R, is continuous from the right at t = r,

(i) —o <sup{x ER: F(x) <a} < inf{x ER: F(x) > B} < 0.

Moreover, (i) is certainly satisfied if one of the following pairs of conditions holds:

(@) J > 0on an interval (v, 8) and [3J(u)du > 0,

(b) F is continuous;
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or
(c) the support of J is an interval, J > 0 and [{J(u)du > 0,

(d) F is continuous at r, = r/[sJ(u)du.
Finally, if r, is a discontinuity point of F then (6.4) holds provided conditions (ii)
and (c) are satisfied and u, < O for all large n € N.

ReEMARK 6.1. Condition (ii) of Theorem 6.1 is satisfied if P, has compact
supportorif 0 <a < B8 < 1.

REMARK 6.2. The second part of Theorem 6.1 illustrates a phenomenon known
from proofs of asymptotic normality of linear combinations of order statistics: with
strong conditions on the underlying df F only weak conditions on the score
functions are needed and vice versa.

PROOF OF THEOREM 6.1. Let A = [a, B], let B be the smallest interval contain-
ing the support of P, and let 1, and 1, denote the indicator functions of 4 and B

respectively. Then

T(F,) = [oJ()15(E7 (W) B, (u)adu
with probability one. Define the function 7 : D — R by
(6.5 T(G) = [} J(u)15(G ~(u))G ' (w)au, G € D.
The function T is p-continuous. For a proof consider a sequence of df’s { G, }, such
that G, —»,G for a df G € D. Then G, ' > G ™! except perhaps on a countable
number of discontinuity points of G ~!. Together with condition (ii) this implies
that the functions 15(G,” )G, !- 1,, n € N, are uniformly bounded on the interval
[0, 1]. Hence lim,,_, ,7(G,) = T(G) by dominated convergence implying that T is
" p-continuous. The proof of (6.4) is now completed by an application of Theorem
3.2, since p-continuity implies T-continuity.

In the proof of the other statements of the theorem we may assume that
K(Q,, F) < oo, since otherwise condition (i) is trivially satisfied. Let G € {, satisfy
K(G, F) = K(Q,, F). The existence of G is assured by Lemma 3.2 and the fact that
a p-closed set is also 7-closed. -

First suppose that conditions (a) and (b) are satisfied. Since P; < Pg, G is
continuous. Let (y, §) be an interval satisfying condition (a) and let vy, and ¢ > 0
be numbers such that v, € (y, §) and ¢ < min{y, — v, 8 — v,;}. Let c = G~ (y),
d=G7!(8), ¢, = G!(y,) and let the df G, be defined by its P;-density g, =
dPg /dPg given by

g&X)=(ri—v—9o/(y1i— ), x €(c,¢y)

=0 -7, +¢/6 - v, x €[c, d)
=1 ’ , elsewhere.

Then G,"'(u) > G~ '(u), u € (v, 8) and G,”' = G ! elsewhere. Note that G, is
derived from G by moving some probability mass of P to the right on the interval
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(c,d). Since J(u) >0 for u € (y,8) and [3J(wdu >0, [SJ(u)G, "(w)du >
f3J(w)G ~'(u)du. Hence T(G,) > T(G). Since lim, (K(G,, F) = K(G, F), (i)
follows.

Next suppose that conditions (c) and (d) are satisfied. Without loss of generality
assume [oJ(u)du =1 and hence r, = r. Let again G € Q, satisfy K(G, F) =
K(Q,, F) < . First suppose that G ~!(a + 0) < G ~!(B). Then there exists y €
(a, B) such that G~(y + h) > G~ !(y) for each A > 0. Let ¢ = G ~(y) (hence
0< G(c) =y < 1) and let for 0 <& < min{y, 1 — y} the df G, be defined by its
P;-density g, = dPg /dP; given by

g(x)=(y —o/y , x<c

=1-v+¢/d-17), x >c.

Then G,~! > G~ ' and G,”'(4) > G ~!(u) for each u in a left-hand neighborhood of
v. Hence [iJ(u)G,”(v)du > [oJ(u)G ~'(u)du for each & > 0. Since lim, (K(G,, F)
= K(G, F), condition (i) follows.

It remains to consider the case that G ~'(a + 0) = G ~!(8) = b, say. Then
J4J(u)G ~Y(u)du = b > r since G € Q,. Suppose r is a continuity point of F. Then
P; < P, implies P;({r}) = 0 and hence b > r, since b is a discontinuity point of
G. It follows that K(Q,, F) = K(,, F) for all ¢t € (r, b), implying (i).

Now suppose that r is a discontinuity point of F and that b = r. Note that
G(r — 0) < « in this case. If G(r — 0) > 0 we proceed as follows. For 0 <& <
G(r — 0) define the df G, by its density g, = dP; /dP; given by

8(x)=(G(r — 0) — &)/ G(r — 0) , x<r
=(1-G(r—0)+¢/(01—-Gr—-0), x>r

Then G,(r — 0) = G(r — 0) — ¢ < @ — ¢, hence G, € {,. Considering the partition
P = {(—o0, r), [r, )} of R it follows immediately that there is a 7-open neigh-
borhood of G, contained in Q,. Hence K(int,($2,), F) < K(G,, F), for each ¢ > 0.
Since lim,,K(G,, F) = K(G, F), we have K(int(,), F) < lim,(K(G,, F) =
K(@®Q,, F), i.e., K(int,(2,), F) = K(R,, F). The r-continuity of 7 implies that Q, is
7-closed and hence Theorem 3.1 yields that (6.4) holds provided u, = O for all large
n € N. The left continuity of the function ¢ — K(Q,, F) (Lemma 3.3) implies that
(6.4) also holds if u, < 0 for all large n € N (consider a sequence {z,,} in R such
that ¢,,1r and t — K(R,, F) is continuous at ¢,, for each m € N).

Finally suppose G(r — 0) = 0. Let the df G’ be defined by P;(B) = P{(B N
[r, 0))/ Pr([r, o)), for each Borel set B. Then G’ € Q, and K(G’, F) < K(G, F),
hence K(G, F) = K(G', F) = — log Pi([r, «)). Since Q, is r-closed, Lemma 2.4
implies that condition (A) of Lemma 3.1 is satisfied. Hence lim sup,_ n"'-
log Pr{f‘,, € Q,) < log Pe([r, ©)). It is clear that conversely lim inf, n~':
log Pr{ﬁn € Q,) > liminf, ,_ n"'log Pr{X,., » r} = log P(r, ©)). Thus (6.4)
holds provided u, = O for all large » € N. By the same argument as before (6.4)
also holds if u, < O for all large n € N. []
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REMARK 6.3. The continuity of a function which is essentially equivalent to the
function T in (6.5) has been pointed out by Bickel and Lehmann (1975). In fact
there exists an interesting link between robust statistics and the theory of large
deviations, since robustness of statistics 7' (ﬁn) may be defined by continuity of the
corresponding functionals 7 on D with respect to some suitably chosen topology
and since large deviations of these types of “continuous” functionals of empirical
df’s can be tackled by the methods of this paper. Note that Hoadley’s (1967)
Theorem 1 would not suffice to prove (6.4) since T is in general not uniformly
p-continuous (and F is not assumed to be continuous).

In applications the weight function J appearing in the definition of the statistic
T(ﬁ,,) may also depend on n. In this case Theorem 6.1 is not immediately
applicable, but the next theorem may be of use.

THEOREM 6.2. Let F € D, let J, (n € N) and J be L-integrable functions defined
on [0, 1] and let [a, B] be the smallest closed interval containing the support of J and
the support of each J,. Let Q, be defined by (6.3) for t € R. Then, for each sequence of
real numbers {u,} such that lim,_ u, =0,

(6.6) lim,_, ,n~'log Pr{ (4, (W) F, (w)du > r + u,} = —K(Q,, F)
if J, F, a and B satisfy conditions (i) and (ii) of Theorem 6.1 and if the sequence {J,}
satisfies

PrOOF. The proof proceeds by a truncation argument. In accordance with
Section 5 we write B,, = [—m, m] and denote by G, the conditional df defined by

P (B) = P;(B|B,,), Be%®B, if G € D and Pg(B,) > 0.

"Let D* = {G € D : Py(B,) = 1 for some m € N}. By condition (i) there exist
for each n >0 a 8 >0 and a df G € @, ; satisfying K(G, F) < K(Q,, F) + 1.
Since G, € Q, for large m and lim,,_,  K(G,, F) = K(G, F), it follows that
K(Q,, F) = KR, n D*, F). Hence by Lemma 4.1 lim,,_,  K(Q,, F,) = K(Q,, F).
Fix ¢ > 0. Then there exists N, = Ny(m, ¢) such that for all n > N,

67)  1foJu() ] (wdu — 137 (w) B (w)du] < mfglJ,(u) — J(w)ldu < e
if ﬁ,,‘ '(w) € B,,, u € (0, 1). For convenience of notation we shall write
Pr{F, € A|F,7(u) € B,,u € (0,1)} = Pr{F, € 4]B,}
if Pr(B,,) > 0. With this notation we have for each large m € N:
lim inf,_  n " 'log Pr{f(‘,J,,(u)ﬁ,,"(u)du >r+u,} ‘
> lim inf,_, ,n~'log Pr{ [/, (u)F, "(u)du > r + u,|B,} + log Px(B,)
> lim inf,_, ,n~'log Pr{8J(u)E;” (u)du > r + Le|B,,} + log Px(B,)
> —K(ﬂr+e’ Fm) + lOg PF(Bm)
The last inequality holds by Theorem 6.1, since we may choose a continuity point
1, € (r + &, r + ¢€) of the function t — K(,, F,,).
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Since lim,, K, ,., F,,) = K, .., F), we have
lim inf,_, n~'log Pr{f},J,,(u)ﬁ,“(u)du >r+u} > —KQ.. F)

Hence by condition (i)

(6.8)  lim inf,_,n'log Pr{ /8], (W) E (w)du > r + u,} > —K(Q,, F).

Next we show that conversely

(69) lim sup,_.n"'log Pr{ (3], (W) E, (w)du > r + u,} < —K(Q,, F).

Fix e > 0. There exists an m € N such that for all n € N, Pr{ﬁ,,"(a +0) & B,}
< ¢"and Pr{F,(B) & B,} <&” (this may be seen for example by an application

of Chernoff’s theorem to the binomial representation of the probabilities
Pr{£ Y (a + 0) & B, } and Pr{£,”'(B) & B,,}). Hence for large n:

Pr{f},J,,(u)f',,"(u)du >r+u,}
< Pr{f(',./,,(u)ﬁ;,“(u)du >r+u,and £'(u) € B, u € (a, B)} +2¢"
< Pr{f(',J(u)ﬁ',,"(u)du >r—e}+ 2"
since (6.7) holds again for large n if ﬁ,,‘ Y(w) € B,, for u € (a, B). This result

implies (6.9) by Theorem 6.1 and Lemma 3.3 (also if K(Q,, F) = ) and the
present theorem follows from (6.8) and (6.9). []

For 0 < a <3, the a-trimmed mean of X, - - - , X, is defined by
(6.10) T, = (n—2[an]) 'Szl X, nEN,

where [x] denotes the largest integer < x. As an application of the previous
- theorems we prove the following large deviation result for a-trimmed means.

THEOREM 6.3. Let r ER, let F € D be continuous at r and let T, be the
a-trimmed mean given by (6.10). Then, for each sequence {u,} such that lim,_,  u, =
0,

(6.11) lim,_  n~'log Pr{T, > r + u,} = —K(Q, F),
where ‘
@={GeD: G (wdu> (- 2a)r}.
If F is discontinuous at r, then (6.11) continues to hold provided u, < 0 for all large
neN.

PrOOF. We write the statistic T, in the form [3J,(w)E,~'(u)du with J, = n-
(n — 2[an])~'1, , where 4, = (lan]/n, 1 — [an]/n). Let J = (1 - 20)7" 1y gy
If F is continuous at 7, then (6.11) follows since in this case (c) and (d) of Theorem
6.1 and hence the conditions of Theorem 6.2 are fulfilled.

Now suppose that F is discontinuous at r. Let G € @ satisfy K(G, F) =
K(Q2, F) (uch G exists!). It was shown in the course of the proof of Theorem 6.1
that the function ¢ — K(Q¢, F) is continuous at r (and hence the above proof
remains valid) unless G " (a +0) = G~ '(1 —a)=r.
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It remains to consider this exceptional case. Fix ¢ > 0 and let @, , = {H €
D: (3, (w)H '(u)du >r}, n € N. For 0 < § < 1let G5 € D be defined by Gs(x)
= (1 — 8§)G(x) if x < r and Gg(x) = (1 — 8)G(x) + § if x > r, implying Gs(r — 0)
<a—68a and Gg(r) > 1 — a + 6a. Note that K(Gs F) < K(G, F) + ¢ =
K@, F) + ¢ if 6 <9, say. Moreover, 4, C (¢ — da, 1 — a + 8a) and hence
G €EQ ,ifn> (ad)™!. Let @ denote the partition {(— oo, r), {r}, (, 0)} of R.
Choosing appropriate 8, € (38,, 8,) it follows that there exists a sequence {G,} =
{Gs,} such that for all n > (a8,

(1) nG,(r — 0) € Z and nG,(r) € Z;

(@ G,€Q,,and (H € D : dg(Py, Pz) =0} CQ, ,;

(3) K4(G,, F) < K, F) + «.

Hence, if u, < O for all large n, the same arguments that were used in the last part
of the proof of Lemma 3.1 yield

Pr{T, >r+u,) > Pr{F, €9, ,} > Pr{dg(P;, Pg) = 0}
> exp{ —n(K(Q, F) + & + o(1))}
as n — oo, implying
n~og Pr{T, >r + u,} > —K(Q, F).

On the other hand (6.9) continues to hold in the present case, with @ in lieu of &,
since the second part of the proof of Theorem 6.2 does not use condition (i). This
completes the proof of the last statement of the theorem. [J

lim inf

n—o0

The actual computation of the infimum K(Q2, F) in (6.11) is not easy. We shall
derive a more explicit expression for K(Q, F) under the assumption that F is
- continnous. In this case any df H such that K(H, F) < oo is also continuous and

J1=eH ~Yu)du = [4xdH(x)

where a = H Ya), b= H (1 — a) and —o0 <a <b < oo. We also assume
F(r) < 1 since otherwise K(§2%, F) = oo.

The minimization procedure is performed in two steps and is closely related to
the proof of (5.2) in Theorem 5.1. Let

Q%(a,b)={H € D: (1 —2a) 'foxdH(x) >r, H(a)=a, H(b)=1-a}
for —o0 <a < b < . In view of the continuity of F
(6.12) K(92, F) = inf{ K(2(a, b), F) : 0 < F(a) < F(b) < 1, F(b) > F(r)}.

Consider the function ¢ — tr — log [2e™dF(x), ¢t > 0. This function achieves its
maximum on [0, co) at a point s = s(a, b) defined by

s=0 if [2xdF(x)/(F(b) — F(a)) >r

=¢~!(r) otherwise,

where &(f) = [2xe”dF(x)/[%e”dF(x), t > 0. Note that in the second case the
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equation ¢(f) = r has a unique positive root s since ¢(0) < r, lim,_, () > r and
¢'(f) 2 0forallz > 0.
Let G € D be defined by its density g = dP;/dPy given by

g(x)=a/F(a) » x<a
=(1 — 2a)e**/[2e”dF(x), a<x<b
=a/(1 — F(b)) , x > b.

Then G € Q%(a, b) and
K(G, F) = 2alog a + (1 — 2a)log(l — 2a) — a log F(a) — a log(1 — F(b))
+ (1 = 2a)sr — (1 — 2a)log [5e**dF(x).
Let H € Q%(a, b), K(H, F) < o and h = dPy/dP,. By Jensen’s inequality
sr — log{(1 — 2a) ' fbe™dF(x)}
< sr —log{(1 - 2a) " fPexp(sx — log h(x))dH(x)}
<s{r—(1=20)7"BxdH(x)} + (1 — 2) 7' f4log h(x)dH(x).
Hence |
[tlog h(x)dH(x) > (1 — 2a){sr + log(1 — 2a) — log[;e”dF(x)}.

Similarly, by Jensen’s inequality,

1% Jlog h(x)dH(x) > H(a)log{ H(a)/ F(a)} = a log(a/F(a))
and

[log h(x)dH(x) > (1 — H(b))log{(1 — H(b))/ (1 — F(b))}

= alog{a/ (1 - F(b))).
Thus
K(H, F) = [glog h(x)dH(x) > K(G, F),
implying K((a, b), F) = K(G, F).
Now define the functions
f.(a, b) = (1 — 2a)s(a, b)r — a log F(a) — a log(1 — F(b))
— (1 — 2a)log f2exp(s(a, b)x)dF(x)
and
g(a) =2aloga + (1 — 2a)log(1 — 2a).

Then, by (6.12) ‘
(6.13) K(Q2, F) = g(a) + inf{ f(a, b) : 0 < F(a) < F(b) < 1, F(b) > F(r)}.

REMARK 6.4. We briefly indicate another route to the result (6.11). Let T, be
defined by (6.10) and let n, = n — 2[an], for each n € N. Then we may write

E exp(n,tT,) = E(E{exp(:=728 X, . ) Xian) : ns X [an)+1 in})-
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Suppose that F has density f with respect to Lebesgue measure. If f satisfies certain
smoothness conditions, it follows from this representation that

(6.14) lim,_  n"'log E exp(n (T, — r))
= —inf_ 4 scpcnl{(l — 20)tr— a log F(a) — a log(1 — F(b))

— (1 — 2a)log fsexp(1x)f(x)dx}.
By Theorem 1 of Sievers (1969) (see also Plachky (1971) and Plachky and
Steinebach (1975)):

(6.15) lim, , n~'log Pr{T, > r} = —inf,  lim,_n " 'log E exp(n (T, — r)),
provided the sequence of moment generating functions E exp(n,#(7, — r)) enjoys
certain convergence properties.

By (6.13) the expression on the right-hand side of (6.14) is equal to — K(5;, F)
(note that the infima over ¢ and a, b are interchanged). Although this alternative
approach requires stronger regularity conditions it may lead to evaluation of higher
order terms in an expansion of large deviation probabilities of the trimmed mean.
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