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MULTIPLE COVERAGE OF THE LINE

By JoserPH GLAZ AND JOSEPH NAUS
Rutgers—The State University of New Jersey

The probability of covering [0, 1) at least m times by N randomly placed
subintervals of length p is derived for all m, N, p.

1. Introduction. Whitworth [23] derives the probability that N randomly
placed subarcs each of length p will cover the unit circle. Votaw [19] derives the
probability that N random subintervals will cover the unit interval. More recently,
Flatto [6], Cooke [3], Kaplan [11] and others derive bounds and limit theorems on
the probability of covering the unit circle at least m times.

Feller ([5] pages 75, 187), Gilbert [8], Eckler [4], Wendell [2] and others detail
applications of covering the line, circle, and sphere at least once, to traffic
counters, periodgram analysis, destruction of targets, and covering of viruses by
antibodies. Applications of multiple coverage of the line include the complete
destruction of a hardened linear target; and the full utilization of at least m servers
in an infinite server system subject to random demands of constant duration.

The present paper derives the probability {(m, N; p) of covering the unit interval
at least m times by N randomly placed subintervals each of length p. The approach
is to partition the unit interval in particular ways that enable application of the
scanning-conditioning methodology used to derive cluster probabilities in [14], [9],
[21] and [10]. The adaptation of this methodology is suggested by the following
direct relationship between the cluster and coverage probabilities on the circle.

Given N points distributed at random over the unit circle, let P,(n, N; ¢q) denote
the cluster probability that there exists a subarc of the unit circle of length g that
contains at least n points. (The n points are said to “cluster” within the arc of
length q.) Let C(m, N; p) denote the coverage probability that the unit circle is
covered at least m times by N randomly placed arcs each of length p. The cluster
and circular coverage probabilities are related by the identity

1 C(m,N;p)=1—P(N—-—m+1,N;1—p).

To see this, view the N random points as the centers of N random subarcs of length
p =1 — q. Let N,(?) denote the number of random points that fall in (¢, # + p). If
N,(#) > m, then the coordinate (¢ + 0.5p) will be covered at least m times. If for all
¢t on the circle, Np(t) > m, then the circle is covered at least m times. Alternatively,
if for some #, N,(f) < m, then in the arc of length 1 — p that is the complement of
[¢, t + p), there are at least N — m + 1 points. This yields identity (1).
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The interval [¢, ¢ + p) as ¢t goes from zero to one is called the “scanning”
interval. Ajne [1] derives P,(n, N; 0.5). Rothman [16] derives P, (n, N; 1/L) for
integer L > 3, n > [N/2] + 1. Wallenstein [20] derives P (n, N; 1/L) for integer
L > 3,n>2N/L, and gives tables for N = 3(1)60, n = [N /3] + I()[N/2], L =
5(1)10, where [x] denotes the largest integer in x. These results imply m-coverage of
the circle probabilities for large subarc sizes (p = 1 — 1/L). This complements the
asymptotic results of Flatto [6] and others.

For any given m, N, p, {(m, N; p) < C(m, N; p). To see this, split the circle at
an arbitrary origin and observe that covering the resulting line implies, but is not
necessarily implied by, the covering of the circle. For small covering arcs (p
sufficiently small), m and N moderate, C(m, N; p) will be small, and thus be a
useful upper bound for {(m, N; p). For p small, N large, Flatto’s [6] asymptotic
result for C(m, N; p) can serve as an approximation for {(m, N; p); see Kaplan’s
[11] comment following his equation (8). For large covering arcs, the tabled results
for P,(n, N; 1/L) can be used to provide an upper bound for the probability of m
coverage of the line. However, for p large, {(m, N; p) and C(m, N; p) can-be quite
different. For example, {(8, 20; 2/3) = 0.04, while C(8, 20; 2/3) = 0.92. The next
section derives {(m, N; p) for all m, N, and p.

2. m-Covering the line. Let X, X,, - - - , Xy be independently and identically
distributed according to the uniform distribution on [0, 1). To each X, associate an
interval [a,, b,), where g, = max(0, X; — 1p), b, = min(l, X; + 3p) for p a constant,
O0<p<l

For each y in [0, 1) define C(y) =1 if a; < y <b,, zero otherwise, for i =
1,2, -+, N. Let My(y) = =¥ ,C(»). My(y) denotes the number of times that
the coordinate y is covered by the N subintervals of length p. Let D, , denote
inf, ,;My(y). We denote the m-coverage linear probability Pr(Dy, , > m) by
§(m, N; p).

Recall that N,(#) denotes the number of X’s that fall in [¢, ¢ + p). Letting ¢ go
from 0 to 1 — p “scans” the unit interval with a subinterval of length p. Huntington
[10] shows that the same argument can be used to find the probability that the
scanning interval sometimes contains at least » points and the probability that it
always contains at least m points. On the circle, the event that the scanning interval
always contains at least m points is equivalent to m-coverage. However, on the line,
the event that the scanning interval always contains m points only guarantees
m-coverage over [%p, 1- %p). For m-coverage over [0, 1) we require in addition at
least m points in each of [0, 2p) and [1 — 3p, 1).

Lemma 1. info o My(y) > m iff N, ,(0) > m, N, (1 — ip) > m,
and infoc,c1_,N,(1) > m.

PROOF. For 0 <t < 1— p, N(f) > m iff My(t + 1p) > m. Lemma 1 follows.
To derive the m-coverage probability {(m, N; p), it is convenient to treat three
separate cases. In what follows, L denotes the largest integer in 1/p.
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Casel. p=2/QL +1).

Since L =[1/p], then p/2 =1 — Lp. The interval [0, 1) is subdivided into
2L + 1 subintervals, [(i — 1)p/2,ip/2),i =1,2,- - - ,2L + 1. Let n; denote the
number of points in the /th subinterval.

THEOREM la. For p=2/QL+ 1), L=[1/pl,0<p< 1L, L>2,m>2,N >
(L + Dm,

2 §(m,N; p) = N! (p/2)N2Q1 det [1/¢;;!| det [1/d, !],
where

= S2L—2i+2 CDm— 1 l<i<i<L
3) G; =kt yea —(U—Dm—1), for 1<i<j<L,

= -3V + (i = pm=1), for 1<j<i<L;

and
=3l e — (G —)(m—1), for 1<i<j<L+],

W
I

ij
= -2 e+ (i —Hm—1), for 1<j<i<L+1
Q1 is the set of all partitions of N into 2L + 1 integers n; satisfying
4 me>mm+n,,>m for i=23,--,2L—1;ny,,>m
In determinants 1/x!=0if x <0, or x > N.

PrROOF. Abbreviate N,((i — 1)p/2) to Y(s), where i = 1,2, - - ,2L + 1, and
0 < s < p/2. Let B; denote the event

©) infoc,cp/a{m + mipy — Yi(s) + Yiya(s)} > m.

Condition on the »;’s and observe that conditionally {B,/i = 1,3,- - - ,2L — 1} is
independent of {B,|i = 2,4, - - ,2L — 2}. Find '

(6) Pr(DNp > m|{n, }) Pr( N 1==llB2i’{ni})Pr( n 1'L=1B2i~l|{ni})‘

Apply Barton and Mallow’s [2] corollary to a theorem of Karlin and McGregor
[12], letting Y ;4 (0 My — i1y a0d Z355%*'m, — (L — i)(m — 1) correspond
to their 4,(h), a;, and ¢, respectlvely, to find

(7 Pr( 0 [5'Byl{n}) = det [1/¢; NI iyt
Similarly,
(®) Pr( n ;'L=1B2i—ll{ni}) = det ll/d M Ry, !

Substitute the right-hand sides of equations (7) and (8) into the right-hand side of
equation (6), and average over the multinomial distribution of {#;} to find equation
).

Forp =2/QL + 1), L = 1, there are no B,;. We have the simpler result:
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THEOREM 1b. For m > 2, N > 2m,
®
t(m, N; 2) =1 Fy(2m — 1, N; 2) = 252, b(r, N; 2)Fy(m — 1,15 1)
—b(m — 1, N; 3){(N = 2m + DF(N = 2m,m — 1; 3)
—3(m = DF(N -2m - 1,m - 2; )}
where
b(n, N; p) = (I,Y)p”(l —p)N " Fy(n, N; p) =27 ob(i, N;p), for n<N
=1, otherwise.

ProoFr. Divide the unit interval into three parts: [0, 1), [3, 2), [3, 1). Let
ny, n,, ny denote the number of points in each part. Following the approach of the
proof of Theorem 1la,

(10) $(m, N; 2/3) = SN_mSN—m Pr(B\|n,, ny, n;) N'37Y /n,!ny\n,!

where

1/n,! I/(N—m+ 1)!
1/(m—1—-n,)! 1/n!
=1l—-nmn!/(m—1=—n)(N—m+ 1)

Substitute the right-hand side of equation (11) into equation (10), simplify and
make the change of summation to

N-=2 N—ny—
20,0 2 "

where n, = N — n; — n; to find equation (9).

(11) Pr(B,) = det n,!n,!

CasE2. p <2/QL + 1), where L =[1/p]. -
Let b= 1— Lp, where L is the largest integer in 1/p. For Case 2, b >p/2.
Subdivide [0, 1) into 4L + 3 parts:

[(G=1Dp, b+ (2i = 3)p/2); [b+ (2i — 3)p/2, (2i — 1)p/2);
[(2i = 1Dp/2, b+ (i — p);
[b +(i— Dp, ip);fori=1,2,---,L; [lp, b+ (2L - 1)p/2);
[6+ (L~ 1)p/2, L + 1)p/2); [QL + 1)p/2, D).
Let n; denote the number of points in the jth interval. The intervals alternate in

length: b — ;p for the odd numbered intervals (counting from left), p — b for the
even numbered intervals.

THEOREM 2. For p < 2/QL+1),L=[1/pl>1,m>2,N > (L+ )m,
(12)  $(m N;p) = SN (b — p/2)™(p — )" MIIL., det |1/,
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where
M= Ejz'f-:)rlnzjﬂ,
and for k = 1,2,3, 4
e, ® = G i — (= Dm—1), for 1<i<j<L,
= —SUAS S+ (= Hm = 1), for 1<j<i<L,

where L, = L,=L;=L+1,L,= L. Q2 is the set of all partitions of N into
4L + 3 integers n; satisfying:

(13) n+n,>mn+n +n,+n,,>m,
fori=2,3,---,4L — 1504, + N4y .3 > m.

PrROOF. Let I(j) denote the left endpoint of the jth interval. Abbreviate Ny (s)
to Y(s) where 0 < s <p — b for j even, 0 <s <b — %p for j odd. Define the
events B, forj =1,2,- - - ,4L — 1, as follows:

(14) B, = {infs{nj s — Yi(s) + Yj+4(S)} > m}°

Lemma 1 implies that

(15) ¢(m, N; p) = =, Pr( N £7'BI{n}) Pr({n}),
where
(16) Pr({n}) = N (b —1p)"(p — &)Y M /ILLT ).

The events B,;_, are conditionally (given the {#,}) independent of the events B,;_,,
for r #s; r,s = 0, 1, 2, 3. This implies that

(17) Pr( N 27'BI{n}) = i Pr( N fo By il{n}),

where for compact notation, define B, = B,.

The remainder of the proof evaluates Pr( N }“,,B4j_ «/{n;}) by applying Barton
and Mallow’s [2] corollary. For example, to evaluate Pr( N ;. B, _,|{n}), let
Yors1-jy+3()s Ny e1—p+ and S — (L + 1 — j)(m — 1) correspond
respectively to their 4,(h), a;, and a;.

CAsE3. p >2/Q2L + 1), where L =[1/p].

We first consider separately the subcase p = 1/L. Subdivide the unit interval
into 2L parts: [({ — 1)/2L,i/2L),fori =1,2,- - -, 2L. Let n; denote the number
of points in the ith part.

THEOREM 3a. Forp = 1/L, L an integer, L >2,m > 2, N > (L + Dm,
(18) §(m,N; 1/L) = N'(2L) V= 5, det [1/c;;!| det [1/d%!],

where c; ; is given by equation (3) with the n;s being the occupancy numbers for the
new partition. dY, is given by the formula for d;; of equation (3), with L — 1 replacing
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L:
(19) a4y =St o m—G—dm—1), forl<i<j<L;
= =31 et (- j)m—1), for1<j<i<L.

Q3 is the set of all partitions of N into 2L integers satisfying n; > m; n, + n; ., > m,
Jori=12, ---,2L—2;n,, >m.

ProoF. The proof is similar to that of Theorem la, except that here Y(s)
_ denotes N_y) /5, (s) fori=1,2,---,2Land 0 <s < 1/2L.

For p # 1/L, subdivide the unit interval into 4L + 1 intervals. Let b denote
1 — Lp. Here b < p/2. The subdivision is as follows: [(i — l)p, b + (i — 1)p);
b+ G- Dp, 2i — Dp/2); [2i — Dp/2, b + 2i — Dp/2); [b + @2i —
Dp/2,ip); fori=1,2,- - -, L;[Lp, 1). Let n, denote the number of points in the
ith interval.

THEOREM 3b. For p >2/QRL+ 1),L=[1/pl,p*1/L,L>1,m > 2, N >
(L + Dm,

(20) ¢(m, N; p) = EQ4N!bM(%p - b)N_MH“_l det [1/d,, "],

where M = 325 n,. . |, and d,® and d;® are respectively given by the same formula
as €, and e;® given by equation (12). For k = 1,2

@ d;® = S P — (G — (m = 1), for1 <i<j<L
= —SHEDPHIE n+ (i —j)m—1), forl<j<i<L.

Q4 is the set of all partitions of N into 4L + 1 integers n; satisfying n, + n, > m; n,
+n gt s>mfori=2,3,---,4L —3;n4 + n4y ., >m.

Proor. The proof follows closely that of Theorem 2 with the same correspon-
dences between A;(h), a;, a;, and Y(s), n; for k = 3, 4 cases. For k = 1, 2 corre-
spondence is similar except that we substitute L for L + 1. For example, for
k=2j=1, -, L, A(h) = Yoy _;+25), & = nag_j ) and o = Sy, —
(L =j)(m—1).

The above cases together give the probability distribution of the number of
subintervals, each of length p, required to cover the unit line m times. In general,
the formula are in terms of sums of products of determinants, where the sums
are over partitions of N into 2L, 2L + 1, 4L + 1 or 4L + 3 parts (depending
on the case), where L is the largest integer in 1/p. The cases where p = 1/L or
2/(2L + 1) involve the fewest parts.
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