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APPROXIMATIONS OF THE EMPIRICAL PROCESS
WHEN PARAMETERS ARE ESTIMATED

By M. D. BURKE!, M. CsORG®?, S. CSORGS® AND P. REVESZ

University of Calgary, Carleton University, Szeged

University and the Mathematical Institute, Budapest
Almost sure and in-probability representations of the empirical process by
appropriate Gaussian processes are obtained when unknown parameters of the
underlying distribution function are estimated. As to the method of estimation,
we consider maximum likelihood and maximum likelihood-like estimators and
construct the above-mentioned representations under a null hypothesis. Similar
results are obtained also when using Durbin’s more general class of estimators
under a sequence of alternatives which converge to the null hypothesis. The
resulting Gaussian processes depend, in general, on the true value of the

unknown parameters.

1. Introduction. Let X, X,, - - - be a sequence of independent and identically
distributed (i.i.d.) random variables with distribution function F. Let F,(x) denote
the proportion of the X; (1 < i < n) which are less than or equal to x, x € R. F, is
the empirical distribution function based on X, X,, - - - , X,. The empirical pro-
cess based on X, X,, - - -, X,, is defined by

(1.1) a,(x) = n?[F(x) - F(x)], x€R.

Beginning with Breiman (1968) and Brillinger (1969), there has been much work
done on approximating a, almost surely by sequences of Brownian bridges. Kiefer
(1972) was the first to obtain a strong (almost sure) approximation of a, in terms of
a Gaussian process in both x and n. Csorgd and Révész (1975) obtained similar
results with a new method for the multivariate empirical process when F is the
uniform distribution function on the d-dimensional unit cube. We will quote the
result with the best rates, obtained by Komlos, Major and Tusnady (1975). They
formulated this result in the case when F is the uniform-(0, 1) distribution function,
but their theorem can be extended easily to arbitrary F (cf. Remark 1 of S. Csorgd
(1978)).

Received July 29, 1976.
Research supported by a Canadian N. R. C. Scholarship at Carleton University and a University of

Calgary research grant.
2Research partially supported by a Canadian N.R.C. Grant and a Killam Senior Research Scholar-

ship at Carleton University.

3Work done while this author was on leave from Szeged University and a Visiting Scientist at
Carleton University, supported by Canadian N. R. C. operating grants of D. A. Dawson and J. N. K.
Rao.

AMS 1970 subject classifications. Primary 62E20, 62H15, 60F15, 60F05; secondary 62G99, 60G15.

Key words and phrases. Empirical processes, parametric estimation, strong approximations, Kiefer
process, composite goodness-of-fit hypotheses.

790

[ ,f'»’;
| 5
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%

The Annals of Probability. RIKOIN

www.jstor.org



ESTIMATED EMPIRICAL PROCESSES 791

A Kiefer process K, defined on [0, 1] X (0, ), is a separable Gaussian process
with mean EK(s, y) = 0 and covariance function

EK(s, y,)K(t, y;) = min(y,, y,){min(s, 1) — st}.
For fixed y >0, y_%K(s, ) =4 B(s), a Brownian Bridge defined on [0, 1]. We have

THEOREM A (Komlds, Major and Tusnady (1975)). If the underlying probabil-
ity space is rich enough, one can define a Brownian bridge {B,(s); 0 < s < 1} for
each n and a Kiefer process {K(s,y); 0 <s < 1,0 <y < oo} such that

SUP_ oy ool (%) — BL(F(x))| =,,0{n"7log n)

and

SUP_ o xcool7 0,(X) = K(F(x), m)| =,,0 {loghn},
where a,, is defined by (1.1).

REMARK 1. By the phrase “if the underlying probability space is rich enough,”
we mean that an independent sequence of Wiener processes, which is independent
of the originally given i.i.d. sequence {X,}, can be constructed on the assumed
probability space. Throughout this paper, it will be assumed that the underlying
probability spaces are rich enough in this sense.

From a statistical point of view, Theorem A is useful to construct confidence
intervals for an unknown distribution function F and also to construct goodness-
of-fit tests for a completely specified F. Most goodness-of-fit problems arising in
. practice, however, do not usually specify F completely, and, instead of one specific
F, we are frequently given a whole parametric family of distribution functions
{F(x;0); 8 € £ C R?}. From a goodness-of-fit point of view, the unknown
parameters § are a nuisance (nuisance parameters), which render most goodness-of-
fit null hypotheses composite ones. There are many ways of “getting rid of 8 so as
to reduce composite goodness-of-fit hypotheses to simple ones. As far as the
empirical process is concerned, one natural way of doing this is to “estimate out 8
by using some kind of a “good estimator” sequence {én}, based on random
samples X, X,, - - -, X, (n=1,2,- - - ) on F(x; ).

Concerning the classical Cramér-von Mises and Komogorov-Smirnov statistics,
Darling (1955) and Kac, Kiefer and Wolfowitz (1955) investigated their asymptotic
distributions when the unknown parameters of a specified distribution function
were to be estimated first. Durbin (1973a) considered the more global question of
weak convergence of the empirical process under a given sequence of alternative
hypotheses when parameters of a continuous unspecified distribution function
F(x; 0) are estimated from the data. The estimators themselves were to satisfy
certain maximum likelihood-like conditions. Durbin (1973a) showed that, for such
a general class of estimators, the estimated empirical process converges weakly to a
Gaussian process, whose mean and covariance functions he also gave.
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In this article, we are going to use the recently developed strong approximation
methodology of Kiefer (1972), Csorgo-Révész (1975) and Komlos-Major-Tusnady
(1975) to study the problem of obtaining asymptotic in-probability and almost sure
representations, in terms of Gaussian processes in both x and n, of the empirical
process when parameters are estimated. This approach has already been demon-
strated in the preliminary drafts of Csorg6-Komlos-Major-Révész-Tusnady (1974)
and Burke-Csorgd (1976). In this exposition we follow the same road (correcting
also previous oversights while going along), but we also weaken substantially the
regularity conditions under which these representations will hold. As to the type of
estimation of the parameters § € R? of F(x; @), we follow Durbin (1973a) and, as
mentioned above, in addition to his weak convergence, we obtain explicit repre-
sentations of the limiting Gaussian process in a straightforward way.

In Section 3 we formulate and prove the above mentioned two-parameter
representation theorems under the null hypotheses. Section 4 illustrates how a
maximum likelihood estimation situation can fit into our methodology. In Section
5 the results of Section 3 are extended to also cover a sequence of alternatives.
While going along we point out how the results of Durbin follow from ours. In
Section 6 the in-probability representation result of Section 3 is extended to the
estimated multivariate empirical process. )

In connection with our work in Sections 5 and 6, we should also mention that
convergence in distribution of the Cramér-von Mises functional of the multivariate
empirical process under contiguous alternatives when parameters are estimated was
also studied by Neuhaus (1974, 1976).

The theorems in this paper can also be stated using a sequence of Brownian

. bridges instead of the Kiefer process. However, the approach of working with
Gaussian processes defined in terms of Kiefer processes gives one a process in both
x and n, while a corresponding construction in terms of Brownian bridges B,
would only give a Gaussian process in x, for each n.

Using the strong approximation results of Csorgd and Révész (1978), the sample
quantile process when underlying parameters are estimated can be handled simi-
larly to the empirical process in this paper.

Using the strong approximation results of S. Csorgd (1978) for the empirical
characteristic process, the parameter estimated empirical characteristic process is
investigated by S. Csorgd (1979).

2. Notation.
Q.1 The transpose of a vector ¥ will be denoted by V.

(22)  Thenorm || || on R? is defined by ||(y), - * + , »,)|| = max, ;. |y

23y  For a function g(x;@),” where 8 =(0,,0, - -,8,), Veg(x; ;) wil
denote the vector of partial derivatives ((3/968,)g(x; ),
(9/00)g(x; 8), - - -, (3/36,)g(x; 0)) evaluated at 6 = 6, Also

Vig(x; 8,) will denote the vector ((32/30})g(x; 9), - - -,
(0%/362)g(x; 0)) evaluated at 6 = 6.
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2.4 The matrix [(32/94, 086,)g(x; 0)]; ; will be denoted by gg(x, ).
2.5) For a matrix or vector ¥ = (v,), let |V| denote the matrix (|vy]), let [V
denote (fv,), and let V'® denote (v)).

3. Approximations of the estimated empirical process. For an ii.d. sequence
X, X,, - -+ from a family of distribution functions {F(x; 0); x ER, § € E C
R?}, let {6,} be a sequence of estimators of § based on X}, X,, - - - , X,. Consider
the estimated empirical process defined by

(3.1) &,(x) = ni[ F,(x) — F(x; 6,)],

where x € R and F, is the empirical distribution function.
First we list the set of all conditions which will be used in this section. We
emphasize that only subsets of it will be used at different stages in the sequel.

@) n%(é,, - 0y = n_%ngll(X}, 6, + ¢,,, where 6, is the theoretical
value of 8, I(-, 8,) is a measurable p-dimensional vector valued
function, and ¢,, converges to zero in a manner to be specified later
on.

(i) EI(X}, 8, = 0.

(i) M(8,) = E{I(X}, 8)/(X, 6y)} is a finite nonnegative definite matrix.
(iv) The vector V,F(x; §) is uniformly continuous in x and 6 € A,
where A is the closure of a given neighbourhood of 6,

(v) Each component of the vector function /(x, f,) is of bounded

variation on each finite interval.
(vi) The vector V4F(x, 6;) is uniformly bounded in x, and the vector
. V3F(x; ) is uniformly bounded in x and § € A, where A is as in
(3.2 @iv).
(vid) lim,.o(s log log 1/5)2|(F ~'(s; 80), bl = O
and
lim, ,,((1 — s)log log 1/ (1 = )= [1(F ~'(s; 8), )| = 0,
where F~!(s; 8,) = inf{x : F(x; ;) > s}.
(viii) s||(3/3s)I(F (s 8,), 8p)| < C, 0 <s <3
and
(1 = 9)II(d/8)I(F (s 6), 6| < C. 4 <5 < 1
for some positive constant C, where the vector of partial derivatives
of the components of I(F~!(s; 6,), 6,) with respect to s,
(3/3s)I(F ~'(s; 8y), 8,), exists for all s € (0, 1).
Thé estimated empirical process &,(x) of (3.1) will be approximated by the

two-parameter Gaussian process
(3.3)

G(x, n) = n~TK(F(x; 0,), n) — { [1(x, 85)d,n =2 K(F(x; 8), n)} VoF(x; 6,)",
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where K is the Kiefer process of Theorem A. G has mean function EG(x, n) = 0
and covariance function

EG(x, n)G(y, m) = min(n, m) - (nm) " { F(min(x, y); 8)
— F(x; 0)F(y; bo) — J(x)
(34) CVGE(y; 0)' = J(3) - V,F(x; By)'

+VoF(x; 0o) - M(6y) - VoF(y; 00)1}’
where M(8,) is defined by (3.2) (iii) and
J(x) = (% Uz, 0y)d,F(z; 8;).
(Here, of course, F(min(x, y); 6,) = min(F(x; 8,), F(y; 6,)), but for the sake of
later reference (the multivariate case, cf. Section 6) we use the former form.) Since
M(0,) is nonnegative definite, there is a nonsingular matrix D(6,) such that

(35) D) M()D(8) = ({ 9)

where [ is the identity matrix and rank / = rank M(6,). Hence G(x, n) of (3.3) can
be written as

(36)  G(x,n) = n"3K(F(x; 8y), n) — n~2W(n)- D ~(8) - VoF(x; by,
where W(n) = [I(x, 6,)d K(F(x; 8,), n) - D(6,) is a vector-valued Wiener process
with covariance structure: min(n, m) multiplied by (3.5).

Clearly we have for each n that

(3.7) G(x,n) =g D(x) = B(F(x; 60)) — {J(x, 86)d,B(F(x; 6;))} Vo F(x; 6;)",

" where = o stands for the equality of all finite-dimensional distributions and B(x) is
a Brownian bridge. Thus ED(x)D(y) = { }, where { } is the right-hand side factor
in (3.4).

THEOREM 3.1. Suppose that the sequence {0:,} satisfies (3.2) (i), (ii), (iil), and let
& = Sup—oo<x<ool&n(x) - G(x’ n)l‘
Then
(@) &, —,0, if conditions (3.2) (iv), (v) hold and ¢,, —,0;
(b) &, —,.,0, if conditions (3.2) (vi)—(viii) hold and ¢,, —, 0;
©) &, =,,0{max(h(n), n”°)} for some € > 0, if conditions (3.2) (vi)—(viii) hold
and ¢, =,,0{h(n)}, h(n) > 0, h(n) - 0. .

REMARK 2. Durbin’s (1973a) result (under his null hypotheses—Corollary 1 in
Durbin (1973a)), i.e., &,(F (-, ,)) >oD(F~!(-; 8,)), follows from part (a) of
Theorem 3.1, because of (3.7). Here —4, denotes weak convergence in the function
space DJ[0, 1]. (This will also be the case in Section 5 under his sequences of
alternatives. See also Remark 7 in Section 5 concerning Durbin’s original setup.)
We should point out that Durbin used conditions (3.2) (i)—-(iv), with ¢, —,0, to
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prove this weak convergence, but not (v). This slight regularity condition (3.2) (v)
(satisfied, sure enough, in each practical situation) is the only price we pay for
obtaining our in-probability representation of the limiting Gaussian process in both
x and n. Nevertheless, if one still would like to get rid of this condition, then the
use of Theorem A is still advantageous. As the proof of part (a) will show, we have
(without (v))

(3.8) sup,|&,(x) — Y,(F(x; 8,))| —,0, where

Y,(s) = n=2K(s, n) — {n~TS0_,[(X,, 0)} Vo F(F~'(s; 65); 6)".

In this way we could save a tightness-proof, since the tightness of {Y,} reduces to
the a.s. continuity of the Kiefer process. But one still has to prove the convergence
of the finite-dimensional distributions of Y, to those of D(-) in (3.7), which is, on
one hand, again easier than for &,, but, on the other hand, is essentially a repetition
of the proof of Lemma 3 in Durbin (1973a). We should also note, however, that,
unlike in Durbin (1973a), the continuity of F(x, ) in x is not used in Theorem 3.1.
Conditions (3.2) (iv) and (vi) can be satisfied without the continuity of F (example:
the binomial distribution).

ReEMARK 3. Conditions (3.2) (vi)—(viii) are the extra ones used to obtain our a.s.
representation (in case of part (c) with a rate sequence) of the limiting Gaussian
process in both x and n. These latter conditions are weaker than those in the
preliminary drafts of Csorgd et al. (1974) and Burke and Csorgd (1976). Commonly
used distributions such as the normal and exponential would satisfy these condi-
tions when maximum likelihood estimators are employed. Indeed, in the latter case
~I(x; @) of (3.2) (i) turns out to be proportional to V, log f(x; ;) (cf. Theorem 4.1
and Remark 5), with f(x; 8) = (d/dx)F(x; 8), and our extra requirements (3.2)
(vi)—(viii) hold true for all those density functions whose tail behaviour in the sense
of these requirements is similar to that of the exponential density.

Introduce the following
(3.9 &5,(5) = n%[Fn(F"(s; 85)) — s] — n~1K(s, n),
where K is the Kiefer process of Theorem A. We have

e, (F(x; 09)) = n3[ F,(x) = F(x; 8)] — n™ 2 K(F(x; b), n).

Our proof of Theorem 3.1 hinges on the following two lemmas.

LeMMA 3.1. Suppose that the vector function I(x, 8,) satisfies conditions (3.2) (iii)
and (V). Then, as n — oo,

L, = [I(x,80)d&;,(F(x; 65)) —,0.

PrOOF OF LEMMA 3.1.  Let Tj(x) denote the total variation of the jth component
[(-,8,) of I(-,8)) on the interval [—x,x], j=1,---,p, and let T(x) =
(T\(x), + * -, T,(x)). Clearly we can choose a sequence of positive numbers u,

1
tending so slowly to infinity that || T(«,)||n ™ zlog’n — 0. (If || T(n)| is bounded, then
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any u, —> oo sequence will suffice, while if ||7(n)|| » oo, then we take u, =
1
T ~!(v,), where v, / o so that v, = o{nz/log’n}, and T ~'(y) = inf{x : || T(x)||
> y}). With this u, then, consider
1 _1
L,= f|x|>u,,l(x’ 00)dxn2[Fn(x) - F(x; 00)] - f|x|>u,,1(x’ oo)dx” 2I('(F'('X; 00)’ n)
+f|x|<u,,l(x’ 00)dxe3n(F(x; 00)) = Lln - L2n + L3n’
Integrating by parts and using Theorem A one obtains
I Lsall < 11S% €30 (F(x; 80)) dl(x, Op)l + || &3,(F(x; 86))I(x, 8o) |- _, |

.0 {n~7logn }|| T(u,)|| 0.
If the components in L,, and L,, are denoted respectively by LY and LY,
j=1,---,p, then we have ELY), = ELY), = 0 and
(3.10) E(LY) = E(LY)’ = [ 1xi>u (%, 0p) dF(x; 6,)

= (Jecmu (% 86) AF(x; 80))" = (Juzu,4(x, 60) dF(x; 67))’.
Whence, by the Chebishev inequality, with ¢ > 0,

2
P{”Lln” + ||L2n” > 28} j lf|x|>u,,12(x$ 00) dF(x 00)
and this latter bound tends to zero by condition (3.2) (iii), since u, — oc. []

LEMMA 3.2.  Suppose that the vector function I(F ~'(s; 8,), 8) satisfies conditions
(3.2) (vii) and (viii). Then, as n — oo,

L,= f(l)l(F—'(S§ 8o), 00) des,(s) =,,.0{n""}),
' Jor some € > 0, where &,,(s) is again that of (3.9).

ProoF OF LEMMA 3.2. We have
L, = fle3,(s)(3/35)I(F (53 8o), B) ds.

This latter equality is correct provided the function e;,(s)I(F ~'(s; 8,), 8,) is almost
surely the zero vector at s = 0 and s = 1. This, in turn, is true by condition (3.2)
(vu) and by the fact that the Kiefer process K(s, n) and the empirical process
n2[F (F~(s; 8p)) — s] behave like (s log log l/s)2 and ((1 — s)log log 1/(1 — s))z
as s \y 0 and s 7 1, respectively.

Consider now

1 -1
L —fo ’ f:_%-'-fl—n 3+f}—n'%=L’l"n+L;n+L;n+L:n‘
2

By Theorem A and the first part of (3.2) (viii) we have almost surely
1,4 _
IL3,l < 0{n~zlogn} 2 11|(3/8s)I(F ~'(s; o), Oo)ll ds
< O{n'%logzn}ffl_?l s~ lds

- O{n‘%log3n}.
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Also,

1Ll < S3 Fla(F (53 00)] - 102/35)I(F 5 60), 0o)l ds

173K (s, )]+ 1(3/35)I(F (53 00), Bo) s
Since by (ii) of Theorem 3.1 in Csaki (1975) (cf. also (1.9) in Csaki (1977))
(A1) SupecycpHan(F (53 80)(s(1 = 5) 77| =,,0 {log’n},
and by (1.15.1) in Csorgb and Révész (1979),
(3.12) lim sup,_, ,Supo,1|K(s, n)[4ns(1 — s)log log(n/ (s(1 — s)))] _%] =,.1
we have by the first part of (3.2) (viii)
ILE| < O {logzn}fg_%(log log(n/s))%s'% ds, as.,
=..0{n"7}

The terms L}, and L, are estimated similarly and hence the lemma. []

REMARK 4. The fact that the proof of Lemma 3.2 gives a rate of convergence
O{n‘%} is only incidental. This rate is dependent on the way the stochastic
integral was broken into parts. For any specific O{h(n)} rate of ¢}, in (c) of
Theorem 3.1, one should try to make that of Lemma 3.2 better for the sake of ¢,, in

(c).

PrOOF OF THEOREM 3.1. Using the one-term Taylor expansion of F with respect
" to 6, we obtain

&,(x) = ni[F,(x) — F(x; 8))] — n2[ F(x; §,) = F(x; 6,)]

(3.13) n=1K(F(x; 85), n) — n2(6, — 65) Vo F(x; 0)" + e3,(F(x; 6;))

= n"IK(F(x; 8y)) — n3(6, — 80) VoF(x; 80) + e3,(F(x; ) + ean(x)
where &, is defined by (3.9), and by Theorem A
(3.14) SUp, [es, (F(x; 6,))| =0 {n ™ 3logn},
while [|0* — 8,]| < ||d, — | and
ean(x) = n3(6, — 0)(VoF(x; 8) — VoF(x; 67))".

It follows from (3.2) (i), (i) and (iii) that nzl(é,, — 8,) is asymptotically a normal
vector, and thus |6, — 6,/ —,0. Hence, using also (3.2) (iv), we have

(3.15) sup, [|e4,(x)[| —,0.



798 M. D. BURKE, M. CSORGO, S. CSORGO AND P. REVESZ

Also, by conditions (3.2) (i) and (i)
n%(én - 00) = n_%z_’;-ll(x}’ 00) + E1n
= [I(x, B)d, i F,(x) + &1,
(3.16) l
= [l(x, Bp)d.n2[ F(x) — F(x; )] + €1,
= [I(x, 6,)d,n" 2 K(F(x; 8;), n) + L, + e,

where L, is of Lemma 3.1. Since the vector V,F(x; ;) is uniformly bounded in x
by (3.2) (iv), part (a) of the theorem follows from (3.14), (3.15) and (3.16).

To prove parts (b) and (c) we use the two-term Taylor expansion of F with
respect to 6, in the second term of the first row in (3.13). Remembering Notation
(2.5) and applying also (3.16), we obtain

6,(x) = n"2K(F(x; 8p), n) — n~ (6, — 85)V,F(x; 8p)’
—1n=3(0, — 80 V3F(x, )’ + &5, (F(x; 6)))
= G(x,n) + (L, + &,,)VoF(x; 8,)"
—1n3(6, — 05)'V3F(x, 83)' + e3,(F(x; 65)),

where |0} — 8| < 16, — 0ol If €, —,,0, then it follows from (3.2) (i) that
9* —, .0, Hence the vector V;F(x; 8}) is almost surely uniformly bounded in x
and n, by (3.2) (vi). Because of (3.2) (iii) the law of iterated logarithm can be
applied componentwise for the partial sum sequence in (3.2) (). Whence we get
In3(6, — 69%Il =,,0{n"*log log n}, that is

sup, (6, — 86) VEF(x, %)’ =,,0 {n~Zloglog n}.
Thus, if (3.2) (i), (ii), (iii) and (vi) hold and ¢, —, (0, then
8,(x) = G(x, 1) =, ,5,(x) + O{n~2logln},

where &5,(x) = (L, + &,,) VoF(x; 8,)'. If (3.2) (vii), (viii) hold, then by Lemma 3.2
L, =,,0{n"*}. Whence by (3.2) (vi)

Sllpx|€5n(X)| _)a.s.O’
If, in addition, ¢,, =, O {h(n)}, h(n) > 0, h(n) >0, then
Supx"BSn(x)’ = a.s.O {max(h(n), n —e)-}- D

The limiting Gaussian process G of Theorem 3.1 depends, in general, not only on
F but also on 8, the true theoretical value of 6. Thus, in general, Theorem 3.1
cannot be used to test the composite hypothesis

Hy,:F € {F(x;0):0 € ECRF}.

In order to give an approximate solution to the latter problem, we define the



ESTIMATED EMPIRICAL PROCESSES 799

process G(x, n) by
(3.17) G(x,n) = n’ilK(F(x; 4,), n) — n~iW(n)- D7Y8,) V,F(x; 4,),

where M(8) (cf. (3.2) (iii)) is assumed to exist and is nonnegative definite for
0 € A, and D(0)'M(8)D(8) is assumed to satisfy (3.5). For W(n) see (3.6). We have

THEOREM 3.2. Suppose that the partial derivatives (0/ 801.)D_1(0) Vo F(x; 8Y,
1 < j < p, exist and are uniformly bounded on R X A. Then, under the conditions

(3.2) (i), (i), (iii) and (vi)
(3-18) SUP_ oo < xceol G2, 1) = G(x, )| = e

where g, —,0 if €, —,0, and e, =, , O(n~°) for some § > 0, if e, —, 0 as n — co.
Consequently,

Sup—oo<x<oo|&(x) - G(X, n)l = e;n

where €5, converges to zero like e, of (2) or (b) or (c) in Theorem 3.1, Gis defined by
(3.17) and ¢,, by (3.2) (i).

PROOF. Assume ¢;, —, 0, for it will be clear from the proof where to make the
obvious changes to arrive at the conclusion of Theorem 3.1 in the case when
€, =,0. We have

é(x, n) — G(x, n) = n_%{K(F(x; 0;), n) — K(F(x; 8,), n)}
—n=2W(n){ D~(8,) VoF(x; §,)' — D~"(8,) V,F(x; 8,)'}.
Csorgd and Révész (1979, Chapter 1) have shown:
(3.19) lim,,_,oosup0<,<,sup0<s<hny,,]K(t + 5, n) — K(t, n)| =,,1,

where v, = (2nh,log h,~ ')‘% and h, is a sequence of positive numbers satisfying
(log h, Y(log log n)™! 7 0.

On lettmg h, =n ;(log log n); we have vy, = {2(n log log n)210g[n 2(log
log n)~ 1]} > and hence using Taylor’s theorem,

n~2sup,| K[ F(x; §,), n] — K[ F(x; 6), n]|
= n~2sup,| K[ F(x; 8) + (6, — 8,) VoF(x; 8,)"
(3.20) +3(6, - 8)° V3F(x; 62)', n]
— K[ F(x; 6,), n]|
1 1 1
o {n'I(Iog log n)*(log n)f},

where ||6F — 6,| < ||0 — 0p||. The latter equahty of (3 20) holds by condition (3.2)
(vi) and the fact that ||0 — 0|l =.s O{n'i(log log n) }, if &y, >, 0.
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On letting Q(x, 6}) be the matrix of partial derivatives of D ~1(8) - V,F(x; )’
evaluated at § = 8%, we have

n W) [D7(6,): VoF(x; 6,)' = D76 VaF(x; )]
= n 2 W(m)[ (4, - 85)- Q(x, 82)]'

=,.0{n"loglog n},
by the law of the iterated logarithm for the Wiener process W(n) and for the partial
sum sequence of (3.2) (i), and the uniform boundedness of Q on R X A, where
16F — 6, < ||én — ;|- This, together with (3.20), implies e, =, , O(n %) for some
d > 01if ¢, >, .0, and hence the theorem. []

4. The maximum likelihood case. Maximum likelihood estimators often satisfy
(3.2) (i) with I(x, 8,) = V,log f(x, 8,) - I ~'(8,), where f is the density function of F
and I ~'(8,) is the inverse of the Fisher information matrix:

1(6o) = E(Vglog f(Xy; 00))” (Volog (X5 6p)),
and ¢, —,,0 or ¢, —,0. For illuminating comments regarding this matter (the
familiar Cramér-type conditions) we refer to Section 4 in Durbin (1973a). In
particular, we find ourselves in agreement with his suggestion that for any particu-
lar problem a maximum likelihood or other putative efficient estimator should be
first constructed and then the validity of (3.2) (i) should be checked directly.
Nevertheless, we are going to illustrate here that, under certain regularity condi-
tions, maximum likelihood estimators have a sum representation with
" €], —,5.0(n"°), for some € > 0, in (3.2) (i). Extending the technique for § one-di-
mensional by Ibragimov and Has’minskii (1973b), suppose that a vector 6 is
estimated by {f,}, a sequence of maximum likelihood estimators. Assume the
following conditions:
(1) F(x; 0) has a density function f(x; ),
(ii)) The parameter set = is an open cube (bounded or unbounded) in
R?,
(iii) The density f(x; @) is measurable with respect to X X §, where X is
the collection of Borel subsets of R and £ is a o-algebra of measur-
able subsets of Z,
@iv) If 8 # 8’, then [|f(x; 8) — f(x; 8")| dx > 0,
(v) There is a § > 0, such that .
supy||8 — GolI*1  f(x; 8)f(x; 89)]? dx < oo,
@.1 where 8, is the theoretical true value of 4.
(vi) All second partial derivatives of the function g(x, 8) = log f(x; )
with respect to the components of 4 exist.
(vii) First and second partial differentiation of [f(x; @) dx, with respect
to the components of 8, can be taken under the integral sign.
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(viii) The matrix E|gg(X;, 8)|'*? and the vector E|V,g(X,, 8)]**° have
bounded components, for some § > 0, on compact subsets of = (cf.
Section 2 for notation).
(ix) There exist a function H(x) and B8 > 0 such that || gg(x, 8,) —
go(x, 0)|| < H(x)||6, — 8,]|%, and EH(X)) exists for each § € E.
We note that (4.1) (i) to (v) correspond to conditions I and III of Ibragimov and
Has’minskii (1972). We have the following generalization of Theorem 1 in Ibragi-
mov and Has’minskii (1973b).

THEOREM 4.1. If the conditions (4.1) are satisfied, then for some ¢ > 0
Lep —1isn —e
nz(on - 00) : 1(00) —n 2 Vﬂg(‘Xj’ 00) =a.s.0(n )’
where V,g(x, 8,) =V ,log f(x; 6y).

REMARK 5. In view of the above theorem, under the conditions (4.1) and (3.2)
(vi) to (viii), the conclusion (c) of Theorem 3.1 holds with /(x, 8,) =V,g(x, ,) -
I17'(6y) and ¢,, =,,0{n"*} for some ¢ > 0. In this case, the covariance of G is
given by

EG(x, n)G(y, m) = min(n, m) - (nm)~* {min(F(x; 6), F(y; 6,))
(42) — F(x; 0)) F(y, 6p) — VoF(x; 6;)
171(8) - VoF(y; 00)'}'
Theorem 3.2 can be similarly adapted to Theorem 4.1.

~ Proor oF THEOREM 4.1.  Using the identity 37_, V,g(X), 6,) = 0 and the vector
form of Taylor’s theorem,

S, = n_%z_’;-l Vo8(X), 80) — ”_%2;=1[V08(Xj, én)]

1 3 n ”
= ”_’(00 - on) : 2j=1g00(x}’ ojn)’
where |6, — 6, < ||0:, — 0ol By adding and subtracting E [8s(X;, )] and
8(X;, 0,), and since E[ gg(X), 65)] = — 1(6,), we obtain
Lo A 1 7) n ” ”
S, = ”z(on - 00) 1(6y) + n 2(‘90 - on)zj-l{ goo(/\'}, 6,) — E[ gaa(Xj, 00)]}

-1 7) ” ”
+n 2(‘90 - 0n)27=1{ gn(X;, 0,n) — go(X, 00)}-
Denote the second and third summands in the above expression by J, and J;,
respectively. Then we may write

J= ”%_25(00 - én) : ”25'_12;;1{ gé;;(Xj, 00) - Egé;)(Xj’ 00)}-

By (4.1) (viii), each component of gg(Xj, f) possesses an absolute moment of order
1 + & for some 8 > 0, which implies that for 2e < 8(1 + 8)7/,

”25*12};1{ gé;;(Xj’ 00) - Egé@(x}’ 00)} =50,
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as n— o, in view of Marcinkiewicz’s Theorem (cf. Loéve (1963), 4° of Section

16.4).
It follows from Ibragimov and Has’minskii (1973a, page 86) that for any n > 0,

there exists an n, such that for n > ny, E ||n%(0:, — )| exists and is bounded in n.
Hence, by Markov’s inequality (cf. (2.11.1) of Rényi (1970)),

P{n%"h”éﬂ — 8|l > n"‘}
= P{n%”é,, — Gl >n‘}
< n~*E||n2(f, — 6;)|*.
By the Borel-Cantelli Lemma, on choosing k > &~ !,
P {lim sup,,_..nZ 2|6, — 8| > nt} =0,

that is, J, =, O{n"°}.

By (4.1) (vi) to (ix), we obtain ||J;]| <n‘%||§,, — 0p|'*FZ7_ | H(X)). By the
SLLN, 37_,n"'H(X;) >, EH(X}) < 0. In an argument similar to that used for
J,, we obtain for 2e < ,

P{ni||f, — 0I'"** >n=*} < n~RE{n2||f, — 85| +F*).
On choosing k so that k >¢~!, J; =, O{n"¢} and hence the theorem. []
Let n = 2m and

&,(x) = [ F(x) - F(x; 6,)],

where {#,} is a sequence of maximum likelihood estimators based on a randomly
"chosen half of X, X,, - - -, X,,, satisfying (3.2) (i), i.e.,

m3(8, — 85) = m™3Z7 (X, 8) + €1
with I(x, 8) =V,log f(x, 8)I ~'(#), and where F, is based on the full sample.
Durbin (1973b) points out that (under (3.2) (ii)-(v)) &, (F~'(-; 8,)) converges
weakly to a Brownian bridge (cf. also Durbin (1976)). This line of thinking was

initiated by K. C. Rao (1972), and the result was also treated in Csorgd et al. (1974)
and Burke and Csorgd (1976) in the manner of Theorem 3.1. Consider

€1 = SUP_ oo < <ol @,(X) — n™2K(F(x; 8p), n)],

where K is the Kiefer process of Theorem A. The proofs in the latter two papers
show that the problem of handling &,, rests in estimating‘né(F(x; 8, — F(x; 6,).
The latter, in turn, can now be handled by the method of proof of Theorem 3.1.
Hence we have ’

THEOREM 4.2.
(@) If conditions (3.2) (i)—(v) hold and ¢,, —,0, then &;, —,0;
(b) If conditions (3.2) (ii), (iii), (vi)—(viii) hold and €,, —, 0, then &;, —, 0,
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(¢) If conditions (3.2) (ii), (iii), (vi)—(viii) hold and e¢,, = O{h(n)}, h(n) > 0,
h(n) — 0, then &;, = O {max(h(n), n~*)} for some ¢ > 0.

Putting together the conditions of Theorem 4.1 and part (c) here, we get
&, = O{n"°} for some ¢ > 0.

S. Approximations under a sequence of alternatives. Suppose that the distribu-
tion function of the i.i.d. sequence is F(x; B, §), where 8 is a p,-dimensional vector
of parameters which is assumed to be known, and 4 is a p,-dimensional vector of
unknown parameters which is estimated by {0:1}, based on X, X,, - - -, X,.
Consider the null hypothesis

(5.1) Hy: (B, 8) = (By )

where 6, stands for the theoretical true value of 4. Let

(5.2) &,(x) = n2[ F,(x) — F(x; By 6,)] x € R,
where F, is the empirical distribution function. In addition to H,, we also wish to
study &, under a sequence of alternatives { H,} defined as follows:

Let { 8,} be a sequence of p,-dimensional (nonrandom) vectors satisfying the
condition
(53) By=Bo+ v n3,
where v is a given constant vector. Let A, denote the closure of a given neighbour-
hood of B, and let m = min{k; B, € A, for all n > k > 2}. Then, consider

(54) H, : (B, 0) = (B, o),
forn=m,m + 1, - - where B, satisfies (5.3). If we choose 8, = 3, for all n, i.e.,
v = 0, then H, and H, are identical.
Again we list all the conditions whose appropriate subcollections will be used in
this section.
(i) Under H,:
ni(6, — 85) = n=TS1_I(X,, By, B0) + Ay" + €,
where A is a given finite matrix of order p, X p,, / is a measurable
Pp,-dimensional vector valued function, and &g, converges to zero in
a manner to be specified.
(i) E{I(X;, By, 05)|H,} =0forn=0and n > m.
(i) E{I(X}, Bo 00)UX;, Bo, o) H,} = M(B,, 8,), a finite nonnegative
definite matrix for each n > m which converges to a finite nonnega-
tive matrix M = M( By, 8,) as n — oo.
(iv) The vector V4zF(x; B, 6;) is uniformly continuous in x and B € A,,
and the vector V,F(x; By, #) is uniformly continuous in x and
0 € A,, where A, is the closure of a given neighbourhood of 6,
(5.5) (v) Each component of I(x, By, 8,) is of bounded variation on each
finite interval.
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(vi) The vectors Vg F(x; Bo, 0p), VoF(x; By, 0p) are uniformly bounded
in x, while the vector V%F(x; B, 8,) is uniformly bounded in x and
B € A,, and the vector V3F(x; B, 8) is uniformly bounded in x
and 6 € A,.
(vii) Condition (3.2) (vii) holds for the vector /(F BRCHY AN AN
where F~(s; B, 8) = inf{x : F(x; B, 9) > s}.
(viii) Condition (3.2) (viii) holds for the vector /(F ~1(s3 By 00)s Bo» 90)-
The estimated empirical process &,(x) of (5.2), under the sequence of alternatives
{H,) of (5.4), will be estimated by the two-parameter Gaussian process

(5.6) Z(x, n) = G(x, n) — Ay" VoF(x; Bo, 05)" + ¥ VaF(x; Bo, 6,)",
with
G(x, n) = n~2K(F(x; Bo, 80), n)
- {fl(x’ :80’ oo)dxn—%K(F(x; :30’ 00)’ n)} VﬂF(X; :80’ 00)1'

This process G(x, n) is the same process as defined by (3.3). The mean of Z is
EZ(x,n) = —Ay' VoF(x; Bo, 8,)' + v VF(x; B 4,

and its covariance is given by (3.4), with the obvious changes in notation.
As in Section 3, on letting

Z(x,n) = G(x, n) — Ay' V,F(x; B, 6,) + v Vo F(x; Bo 4,

where G is defined by (3.17) (with the notation suitably modified), the results
corresponding to Theorem 3.2 continue to hold under the sequence of alternatives

{H,}.
THEOREM 5.1.  Suppose that conditions (5.5) (1)—(iii) hold, and let
€9y = SupxeR'&n(x) - Z(x’ n)l
Then, under the sequence of alternatives { H,},
(@) &, —,0, if conditions (5.5) (iv), (v) hold and &g, —,0;
(b) &, —,..0, if conditions (5.5) (vi)—(viii) hold and &g, —,0;
(©) &, =,,0{max(h(n), n"%)} for some ¢ >0, if conditions (5.5) (vi)—(viii) hold
and &, =, 0{h(n)}, h(n) > 0, h(n) > 0.

REMARK 6. Here the whole content (modified to the present situation) of
Remarks 2 and 3 in Section 3 can be repeated. Specifically, Durbin (1973a) proved
the weak convergence of &,(F ~'(-; Bo 0:,)), under {H,},-to a process that can be
represented by putting a Brownian bridge B(-) into the definition (5.6) of Z in
place of n"%K(-, n). He used conditions (5.5) (i)—(iv) (with &, —,0) to prove this
(he requires (5.5) (iv) in a slightly stronger form than ours), and the extra condition
that F(x; 8, #) is continuous in x for all (B, #) in some neighbourhood of ( By, 8o)-
If we want to prove this weak convergence (but not the two-parameter representa-
tion in (a)) without condition (5.5) (v), then the method proposed in Remark 2
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works again with
L _lan _
Y,(s) = n"2K(s,n) = {n" T3 [(X,, oy Bo) + Av'} VoF(F'(s; B, 00); Bov o)’

+vy V,gF(F_l(SZ Bos 90); Bo» 0o)t-
ReEMARK 7. Durbin (1973a) proves the weak convergence of
8,(s) = n%[ﬁn(s) - s], 0<s<,

where f‘,,(s) is the proportion of F(X,; By 8,), " - -, F(X,; By 8,) which satisfy
F(X;; Bos f,) < 5. The processes 5,, and 4, are asymptotically equivalent. In order
to see this we first note that §,(s) = &,(F ~'(s; By, 6,)), where now F ~'(s; By, 6) =
sup{x : F(x; By, 8) < s}. Secondly, if we assume that we have already carried out
the program of the last sentence of Remark 6, one can easily prove

sup,|d,(x) — Y,(F(x; Bob,))| =>,0,  asn—oo.
Hence on putting x = F ~(s; B, 67"), we have
sup0<s<[|<§,,(s) - Y,(s) -0, as n — oo,
which establishes asymptotic equivalence.

ProoF oF THEOREM 5.1. By adding and subtracting, we have under H,
&n(x) = an(x) + Q2n(x) - Q3n(x)’
where Q,,, Q,, and Q,, are defined respectively in the first rows of (5.7), (5.9) and

(5.10).
For the first term we have

Q1a(x) = n2[ F(x) = F(x; B,y 65)]
(5.7) = n"3K(F(x; B, 8), n) + &,(F(x; B, 6,)
= "_%K(F(’C Bos 80)s 1) + €10,(x) + &3,(F(x; B,, 65)),
where (cf. (3.14)) by Theorem A

1
supx|63n(F(x; Bn’ 00))! =a.s.0 {n - 210g2n},
and by the modulus of continuity (3.19) of the Kiefer process,

(58) sup,,|&;o,(x)| =a.s.0{n_8}’
for any § satisfying 0 < 8 < 3.
For the second term, when proving (a),

01,(x) = n2[ F(x; B, 85) — Fix; By 8p)]
(59) = n2(B, — Bo)VF(x; BE, 8y)'
YVBF(X§ Bo 00)t + £11,(%),
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where || BF — Boll < ||n‘%y||, and hence by condition (5.5) (iv)

sup,|e;1,(x)| = 0.
When proving (b) and (c),

Q24(x) = YV gF(x; Bo 85)" + €12,(x),
where, by condition (5.5) (vi),
1 _1
Sup,Je12,(x)| = sup,|n?(v?/n)V4F(x; BY, 6 = O{n~1}.
For the third term we can repeat, under H,, the proof of Theorem 3.1 to get
1 A
05,(x) = n2 [F(x; Bo 8,) — F(x; Bo, 00)]
{fl(x?ﬁo’ 00)dxn_%K(F(x; Bo 60), n) + AY’} VoF(x; By 6,)'

+e134(%),
where sup,|e;3,(x)| behaves like &, in (a), (b) or (c) in the formulation of the
theorem. Combining this behaviour with that of the second term, we have the
theorem since the first term was shown to behave always well. []

(5.10)

REMARK 8. If we assume that the function / possesses not only a finite second
(cf. (5.5) (iii)) but a finite absolute moment of order r, » > 2, then we can proceed
the following way. Let D(,, 8,) be the nonsingular matrix for which D(8,, 6,)" -
M(B,, 0,)D(B,, ;) satisfies (3.5). Then, by Komloés-Major-Tusnady (1976) and
Major (1976),

”2;= ll(‘Xj’ 180’ OO)D( IBn’ 00)—‘l - W(n)” =a.s.0(nl/r)’
where W(n) is a vector-valued Wiener process (cf. 3.6). If the underlying probabil-
ity space is still richer (if necessary), then there exists a Kiefer process K such that
W(n) = [I(x, By 00)d,K(F(x; By, ), mD(B,, 6p). Let ey, = sup,|d,(x) —
Z(x, n)|, where Z(x, n) has the same form as Z(x, n) in (5.6) with G(x, n) in place
of G(x, n), where

(5.11) G(x, n) = n~TK(F(x; By, 0o), 1)

- {fl(x; Bo» 00)dxn“%IZ(F(x; Bo> bo)s ”)} Vo F(x; B, 00)"-
The above proof shows the following. Under the rth moment condition and (only)
(5.5) ()—(iv) we have ¢4, —,0, if &5, —,0, while under the rth moment condition
and (only) (5.5) ())—(iii), (vi) we have ¢4, —, 0, if &, —, 0. Moreover, if in the
latter case &, = O {h(n)}, then &,, =,, O {max(h(n), n~ ")}, where 1 = min(J, A),
with A = (r — 2)/2r, and § is from (5.8). Naturally, the same type of “results” hold
in the simpler setting of Section 3, i.e., under H,, with 7 = A. These “results” are
entirely useless at the present stage, since we do not know anything about the joint
distribution of K and K in (5.11). Since ¢,,, — 0, it follows from Durbin’s weak
convergence theorem that G(+, n) converges weakly to D(-) of (3.7). The problem is
how to replace K by K in (5.11), so that we should not have to fall back to Durbin’s
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weak convergence theorem in order to make sense out of G(x, n). This was
achieved in Lemmas 3.1 and 3.2 by imposing (very mild) extra restrictions on /.
However, we conjecture that this should be possible without the latter restrictions.
It appears that the proof of this conjecture (under the rth moment condition and
only (5.5) (i)-(iii)) would require an extension of the proof of the Komlds-Major-
Tusnddy approximation to simultaneously approximate a, and 27_,/(X)).

6. An approximation of the multivariate empirical process when parameters are
estimated. Here the role of Theorem A will be played by the following strong
approximation result.

THEOREM B (Philipp and Pinzur (1978)). Let X, X,, - - - be a sequence of
independent k-dimensional random vectors with common distribution function F. Let
FE,(x), x € R* denote the proportion of the X;, 1 < i < n, which satisfy X, < x in the
usual partial ordering of R*, and let a,(x) = n%[F,,(x) — F(x)], x € R*, be the
multivariate empirical process. Then, if the underlying probability space is rich enough,
one can construct a Gaussian process Kg(x, n) such that

SUP, e pelty(x) — 172 Kp(x, m)| =,,0{(log )},
for some N > 0. The process Ky has mean EK(x, n) = 0 and covariance function
EKi(x, n)Kg(y, m) = (n Am){F(x \y) — F(x)F(y)},
where x ANy = (X; AV " > Xk AV X = (X, X5 * © + , %) and y =
Doy 20
In this section the setting will be that of Secton 3, i.e., alternatives are not

considered. If F belongs to some family F(:;#) of multivariate distribution
functions, then the estimated empirical process is

&,(x) = n3[ F,(x) — F(x; §,)], x € R%,
where 6, is a sequence of estimators satisfying (3.2) (i) with X, R*. We will

estimate this process by the Gaussian process (x € R¥, and F, stands for the
distribution function F(-; 6,))

Grl(x, n) = n‘%KFo(x, n) — {kal(x, 6,) dn‘%KFo(x, n)} V,F(x; ;).

EGg(x, n) =0, and the covariance of Gy, is given by the right-hand side of (3.4),
where the domain of integration in J(x) is now {y € R¥ : y <x}.

We will use the k-dimensional versions of conditions (3.2) (i)—(v), where in (v)
the word “interval” is now understood as a rectangle in R¥, parallel with the
coordinate axes. ’

Let a,(x; 6y) = n%[F,,(x) — F(x; 6,)], x € R*. The k-dimensional version of
Lemma 3.1 states that if (3.2) (iii) and (v) are satisfied, then

L, = [ged(x, 00)dx[a,,(x; 6,) — n‘%KFO(x, n)] —,0.
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If in the proof of Lemma 3.1 T;(x) means the total variation of (-, f,) over the
k-dimensional cube centred at the origin and having k-dimensional volume (2x),
and if u, is chosen so that || 7(u,)||(log n)~* — 0, then the proof remains valid,
provided that |x| >u, and |x| <u, are meant as |x;|,-- -, |x]| >wu, and
[x]s « + 5 [%| < u, (and also the inequalities x < — u,, x > u, are understood this
way, i.e., componentwise). The very reason for this is that the Kiefer measure
n‘%KFO(A, n) of a k-dimensional rectangle 4, parallel with the coordinate axes
(defined by the usual inclusion-exclusion procedure), has independent values for
disjoint rectangles 4, and 4,. Hence the k-dimensional variant of formula (3.10)
for computing the corresponding variance continues to hold. Thus the proof of part
(a) of Theorem 3.1 goes through, and we have

THEOREM 6.1. If conditions (3.2) (i)—(V) are satisfied, then
suprRkI&n(x) - GFO(X’ n)l —)1,0.
Let 4 be a functional on the space of real valued functions on R* endowed with

the supremum topology, and consider the Gaussian process Bg(x), x € R*, with
EBg(x) =0, EBr(x)Br(y) = F(x N\ y; 6o) — F(x; 0)F(y; 6,). Let

DFO(X) = BFo(x) - {fR*l(x’ ) dBFo(x)} VoF(x; 00)1,

the covariance function of which is given by { } of (3.4) with J(x) understood as
noted above.

COROLLARY. If h is continuous, then in each continuity point t of the limit
distribution function

lim,_,,P{h(&,()) <t} = P{h(Dg(")) <t}.

It would be perhaps also desirable to prove some analogues of parts (b) and (¢)
of Theorem 3.1 and to pursue the program of Section 5 for the estimated
multivariate empirical process.
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