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EXTENSION OF THE DARLING AND ERDOS THEOREM ON THE
MAXIMUM OF NORMALIZED SUMS’

By GALEN R. SHORACK
Australian National University and C.S.I.R.O.
The limiting distribution of max; ¢ ¢,S:/ k3 is derived via embedding.
The theorem also applies to partial sums of certain dependent rv’s. Thus the
proof of the Darling and Erdos result is brought into line with recent literature;

moreover, the scope of its applicability is greatly increased in regard both to
dependence and moment assumptions.

1. Normalized Brownian motion. Let {S(¢) : ¢ > 0} denote Brownian motion.
Let

S(s S(s
(1.1) m(1) = sup,<s<,—(l—Z and M(¢) = supKK,| (| ) .
52 52
We define normalizing functions b and ¢ by
(1.2) b(t)=(2 logzt)%
and
(1.3) c(t) = 2 log,t + 27 log,t — 27 "log(4)
for t > e®. Let E, denote the extreme value df defined by
(1.4) E (t) = exp(—exp(—1?)) for —oo <t < o0.

Note that the kth power E¥ of E, is the df of the maximum of k independent rv’s
" having df E,. Darling and Erdos (1956) prove that

(1.5) b()m(t) — c(t) >,E, as t—>o
and
(1.6) b()M(t) — c(t) »,E2 as t— .

If one makes the transformation X(f) = e~ ‘S(e*) for ¢ > 0, then X is the
Uhlenbeck process and

(17)  m(t) = SuPoc,crog X(s)  and M) = SUPoc,<a-tog } X (5)]

It was (1.7) that figured in the Darling and Erdos proof of (1.5); see their Lemmas
3.4 and 3.10 for (1.5). They did not prove (1.6), but it is implicit in their Theorem 2.
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2. The normalized partial sum process. Let X, X}, X,, - - - be ii.d. rv’s with
mean 0 and variance 1. Let §, =X, + - - - + X, for n > 1 with S, = 0. Define
the random function S on [0, o) by letting S(¢) = Sinyry for ¢ > 0, where int( )
denotes the greatest integer function. If E|X[**? < oo for some § > 0 then Major
(1976, equation (2')) shows that X}, X,, - - -+ and S can be defined so that

2.1) D) =|S() - S(t)l/t% =0(t"%as.ast— o0 for some & > 0.

Let X, X, X,, - - - be ii.d. with mean 0 and variance 1. Let
S(s S(s
(22) Yn,e = sup](s((log n)® I (l)l and Zn,e = sup(log n)*<s <n'l'_(_|')'l' .
52 52

We shall now show that for all big X > 0 and small ¢ > 0

(23) P(b(n)Y,,—c(n)> —K) < g(e) where g(e) >0 ase—0
provided n exceeds some Ny. The proof: by Lemma 1 of Shorack and Smythe
(1976)

| Sil k _
(24) Y, =max,caogm T < 2MAX g1 | =27, .

k2

S |

(and note that this lemma is also valid for all dependent rv’s). Thus (2.4) and
Kolmogorov’s inequality show that for all n exceeding some N,

P(b(n)Y, . — c(n) > —K) = P(Y, , > (c(n) — K)/b(n))
< P(Y,, > b(n) < P(Y,, > b(n)/2)
< 438!/ b

< 4e.
Thus (2.3) holds. Only finite variance was needed in this paragraph.

Now Philipp and Stout (1975) contains many cases where a partial sum type
process S on [0, o) satisfies (2.1). Also, (2.3) will hold in many dependent
situations, since the only really critical step in its proof is a version of
Kolmogorov’s inequality.

THEOREM 1. Let S denote any process on [0, ) that satisfies (2.1) and (2.3).
Then

(2'5) mn = Supl<s<n&_f) and Mn = supl<s<n IS(;Y)I
§2 ’ §2?

satisfy

(2.6) b(n)m, — c(n) —-4.E, a5 no>ow

and

2.7 b(n)M, — c(n) »,E> as n— co.
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Darling and Erdos prove (2.6) and (2.7) for the case of independent rv’s with
mean 0, variance 1 and uniformly bounded third moments; condition (2.3) is easy
and (2.1) follows from Theorem 7.1 of Phillip.and Stout (1975) in that situation.

Darling and Erdos prove their theorem by an invariance principle, but it does
not involve embedding. The present paper brings their result into line with recent
literature both in terms of methodology and of a greatly increased scope of
applicability.

An interesting related result involving the normalized empirical process and
normalized Brownian bridge is found in Jaeschke (1976).

3. Proof. Define Y, , and Z; , by replacing S by S in (2.2). A passage to the
limit in our proof of (2.3) shows that (2.3) also holds for Y, .. Note that (2.3) says
that b(n)Y, ., — c(n) and b(n)Y, , — c(n) are arbitrarily close to — co with proba-
bility arbitrarily close to 1. Thus

(3.1) b(mM, — c(n) = b(n)[ Y, .V Z,.] — c(n)
and
(3.2) b(n)M(n) — c(n) = b(n)[ Y, .V Z, ] — c(n)

will be controlled asymptotically by the Z, , and Z, , terms respectively.
However, (2.1) implies that for a.e. w we have D(¢) < ¢t~ for all ¢ exceeding
some T,. Thus D(f) < (some K, )¢~° for all # > 1. Thus

(3.3) b(n)|Z, . — Z,, .| < b(n)K,[(log n)*] ° > 0as.

Thus the asymptotic behavior of b(n)Z, , — c(n) will be the same as that of
b(mZ, . — c(n).

The consequence of (2.3) for Y, , together with (3.2) and (1.6) show that
b(n)Z, , — c(n) »,EZ2. Thus (3.3) gives b(n)Z, , — c(n) —,EZ. The consequences
of (2.3) for Y, , together with (3.1) thus show that (2.7) holds. The proof of (2.6) is
analogous.

Note that (2.1) does not require ¢°; all we require is enough for the conclusion
(3.3). Jain, Jogdeo and Stout (1975, Theorem 4.2, say) does not help us relax (2.1),
but it certainly suggests it is possible to get by with less than a 2 + § moment.

4. Examples. Now (2.1) was shown by Philipp and Stout (1975) to hold for
certain Gaussian, lacunary trigonometric and stationary ¢-mixing sequences. Thus,
in these cases, we need only show (see (2.4) and the display following it) that

(4.1) P(T, > b(n)) < g(e)  where g(e) »0ase—0
with

. . 1
4.2) T,=T,,=2max, c;cqogn|Zi=1j "2 X

We now state the hypotheses for these three cases precisely; since we’ve already
observed that (2.1) has already been shown in [5], we need only establish (2.3) or
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(4.1). (After seeing a preprint of this paper, Philipp and Stout communicated these
examples to me. The following quotation is essentially verbatim; I thank them for
their very generous permission).

ExaMpPLE 1. Let {X, : n > 1} be a stationary Gaussian sequence with 0 means
and EX,X, < n~2 Then (2.6) and (2.7) hold.

Proor. We may use g(e) = exp (— K/¢) for some K > 0 in (4.1) since Theo-
rem 2.5 of Marcus and Shepp (1972) shows that

P(T, > b(n)) < exp(— (1 — a)b*(n)/40*) forall a>0

where
2 ko -1y )?
g = maxl<k<(log,,)¢E(2j_|j 2Xi)

< sy 241
J

So( —f)"} < e logy n. i
ExampLE 2. Let {X, : n > 1} be a lacunary cosine series as in (3.1.1) of [5].
Then (2.6) and (2.7) hold.

PROOF. Apply Lemma 6.2.2 of [5] with a, = »~2. Then 4, = (S, ,a)?/2 <
1
(log k)2. Hence (6.1.2) holds. Set A = b(n)/2. By Lemma 6.2.2 we can choose
8(e) K ATUG . < (e log, n)?/b*(n) < €2 in (4.1). []

ExampLE 3. Let {X, : n > 1} be a stationary ¢-mixing sequence with 0 means
1
and E|X,**° < oo for some 8 > 0. Suppose =*_,¢$2(n) < oo, $(n)|0 and the o2 of
(4.1.3) of [5] is positive. Then (2.6) and (2.7) hold.

PrOOF. See Lemma 1.1.6 of Iosifescu and Theodorescu (1969). []

Though (2.1) holds in the strong mixing case of [5], the necessary maximal
inequality is unavailable.

Note the acknowledgement of Philipp and Stout earlier in this section.
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