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ROBUSTNESS OF ESTIMATORS ON STATIONARY
OBSERVATIONS

By P. PAPANTONI-KAZAKOS AND ROBERT M. GRAY!
University of Connecticut and Stanford University

Hampel’s general qualitative definition of robustness of sequences of
estimators on memoryless observation processes is generalized to stationary
ergodic processes by substituting the generalized Ornstein (or p) distance for the
marginal Prohorov distance as the measure of “closeness” of observations.
More general sequences of estimators are also allowed. The approach yields
results analogous to those of Hampel for the more general case considered,
often provides strict generalizations of Hampel’s results, and in some cases
yields simpler proofs.

1. Introduction. In his classic paper, Hampel (1971) introduced a definition of
robustness in parameter estimation that accurately reflected the intuitive notion
that a sequence of estimates of a parameter was robust for an observation process y
if another process » that was “close” to p yielded a “close” distribution on the
parameter estimates. Hampel considered memoryless or independent, identically
distributed (i.i.d.) observation processes and measured their “closeness” by the
Prohorov distance on the marginal probability measures. As he considered i.i.d.
processes, his underlying parameter depended implicitly only on these unknown
marginals. Hampel then proved that weak* continuous functionals on the space of
probability distributions defined robust sequences of estimators under his assump-
tions. He also showed his results could be adapted via an alternative notion of
robustness to weakly dependent observations, in particular observations that were
close to memoryless in a Prohorov sense.

A critical part of his derivation was the fact that if two i.i.d. processes p and »
are close in a marginal Prohorov sense, then one could construct a pair process p
having p and » as coordinate processes and such that under p the sample
distributions of two coordinate n-tuples x” produced by u and y” produced by »
were close in a Prohorov sense with high probability. During the past few years, a
generalization of Ornstein’s 4 distance of ergodic theory (called the p, “rho-bar,” or
generalized Ornstein distance) has been shown to provide a similar control for
sample distributions for general stationary and ergodic processes and, largely as a
result, has found several applications in information theory (see, e.g., Gray,
Neuhoff and Shields (1975), Gray, Neuhoff, and Omura (1975)). In this paper we
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show that using the p distance as a measure of closeness of the observation
processes, there is a natural qualitative definition of robustness for all stationary
ergodic processes, that a weakened version of Hampel’s weak*-continuous estima-
tor sequence implies robustness, and that all of Hampel’s results have analogs in
this more general case. Our formalism does not quite contain Hampel’s in the case
of ii.d. processes and parameters depending only on the marginal probabilities, but
is a strict generalization in some cases such as when the metric on the observation
alphabet is bounded or when the class of probability measures considered is
constrained to have a finite second moment (see Lemma 2.1).

We also note that we need not confine estimates to take values in R* as Hampel
does, but instead we only require that the parameter alphabet be a complete,
separable metric (Polish) space. Hence function valued parameter spaces are
allowed.

As a side result, some easy generalizations of the convergence of sample
distributions (Parthasarathy (1967)) for stationary and ergodic processes are devel-
oped.

2. Preliminaries. Let (2, %B) be a measurable space such that £ is a complete,
separable metric space (or Polish space) with metric p and B, is the Borel o-field
generated by the open sets under p. Since © is separable, there is a countable
collection of sets §o = {G;;i =1,2,- - - } such that By = 0(3p), that is, By, is
the o-field generated by §;,. Let Q" be the space of n-tuples with coordinates in
and Q2 the space of sequences w = (-, w_, Wy, @y, " * ), w; €  all i. Let B,
be the o-field of subsets generated by all rectangles of the form x72}B,, B, € B,
(since & is Polish By = o(9g), the o-field generated by rectangles with B, € §,,).
© Let B be the o-field generated by all rectangles of the form B = {w : w, € B, n
<i<m}, B, € Bgy. Let p be a probability measure on the measurable space
(Q%, Bg) yielding a probability space (2%, B, ). The sequence of coordinate
functions X, : @*° — @ defined by X,(w)=w, n=:--,-1,0,1,- -+ on
(Q%®, B, w) forms a random process and is denoted either by [2, p, X] to empha-
size alphabet {2, measure p, and name X, or simply by u to emphasize measure, or
by {X,} to emphasize name.

Let T : Q° — Q® denote the shift transformation defined by X,(Tw) = X, ,(w).
The process p. is stationary if u(TF) = u(F) for all F € B¢ . The process is ergodic
if TF = F implies w(F) = 0 or 1.

Denote (wg, * * -, w,_;) by w” and define X" : 2% - Q" by X"(w) = (X(w),
X (@), * + +, X,_1(w)) = w". Let u" denote the restriction of p to (", ®2%), that is,
if F € By, then u"(F) = wW(X") " (F) = m(w : 0" € F).

Let 9N, denote the class of all stationary processes with alphabet Q and let 9N,
denote the class of all stationary and ergodic processes with alphabet Q. To avoid
confusion we will often use different names with different measures, e.g., typical
members of M, are [Q, u, X] and [, », Y].
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A process [2, p, X] is said to be iid. if for every rectangle B = x"2}B,
B; € Bg, we have p"(B) = 11724 n'(B;). Let I, denote the collection of all i.i.d.
or memoryless processes and note that I, c M, c .

Given two processes u, » € I the generalized Ornstein distance or p distance
between p and » can be defined as follows: for x”, y” € Q" set

pa(x", y") = n= 121 200(x;, ¥:)
and define P (p”, »") as the set of all measures p” on (" X Q", B X PBp) having
" and »" as coordinates, that is, p"(2" X F) = »™(F), p(F X Q") = u"(F), all
F € Bg. Define the nth order distance

(21) l_)n( :u'"’ p") = infpe@’(n", V")E;Jpn
and the p distance by
(22) p(p, v) = sup,p,(p", »").

If with a slight abuse of notation we also let X” and Y” denote coordinate
functions on Q" X Q" so that if z = (x",y") € Q" X Q" then X"(z) = x", Y"(»)
= y”", then (2.1) also can be written
ﬁn(“n’ Vn) = infpefz?(u", v")Eppn(Xn, Yn)

Thus p,(p”, »") measures the smallest possible expected “distortion” between X"
and Y" over all stochastic links preserving the probabilistic description of each. We
note p, is the Vasershtein-distance between the random vectors X”* and Y”
described by p” and »" (Vasershtein, (1969)). The following are some useful
properties of p for later use.

Properties of p (Gray et al., (1975)):

() lim,_, p,(n", »") exists and equals sup,p,(p", »").

(ii) If p and » are iid., then p(u, ») = p,(u', »").

@iii) p(p, ») < p(p, m) + p(n, ») (triangle inequality).

(iv) The distance can also be defined as follows: let P (u, ») be the collection of
all stationary pair processes with coordinate processes p and », that is, all measures
pon (% X Q% BF X DY) such that p(Q* X F) = »(F), p(F X Q®) = u(F), all
F € B X B (where we use T to denote the shift on 2* X Q* as well as on
2%). In a similar fashion let ?,(u, ») denote the class of all stationary and ergodic
pair processes with p and » as coordinates. Define the coordinate functions
(X, ¥,) 1 @2 X Q% 5@ X @ by (X, Y,)(x,») = (X,(x), Y,(») = (x,,y,)- We
have that

(23&) l_)( M, V) = infpe@’,(u, v)Epp(XO’ YO)
and if p, » € 9N,
(2.3b) p(p, v) = infpeg’,(n, V)Epp(XO’ YO)'

We note that (2.3b) follows from (2.3a) via the ergodic decomposition of stationary
processes (see Oxtoby (1952) or Rohlin (1949)).
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Another important property of p is that it is the closest that generic (typical,
regular) sequences of pu and » (those sequences whose sample averages converge to
expectations of enough functions to determine the measure) can be made to each
other in a limiting p, sense (Gray et al. (1975)). In the next section we develop a
result for sample distributions similar to that of Hampel and Parthasarathy: the
existing p result is not directly useful here because it involves a different type of
sample average. The basic idea is that p closeness of two processes will imply that
with high probability the process will produce close sample distributions.

Hampel used the Prohorov metric between p' and »' to measure the distance
between i.i.d. processes p and ». We can define a Prohorov distance between
processes using a generalization of Moser et al. (1975) and this distance can be
easily related to p by using the Strassen-Dudley form for the Prohorov distance
(Strassen (1965), Dudley (1968)): Define the nth order Prohorov distance

(24) I,(p" »") = inf,cgeun omyinf{y : p(x", y" : p,(x", ¥") >v) <7},

which is the Prohorov metric between u” and »” with respect to the metric p,
(which generates the product topology).

It is known (Strassen (1965), Dudley (1968)) that a p, achieving the infimum
exists. We have immediately using Chebychev’s inequality (as in Dobrushin (1970))
that if p” achieves p, (ie., £ p,p, = p,; in the Appendix it is shown that the
infimum is a minimum for Polish alphabets), then

p(x"y" o, (x",y") >€) <Ep"p,/e < (0" ¥")/¢
and hence choosing p,(u", »") = € yields
pn(xn’yn :p,(x" y") > B,(n", pn)|/2) <p,(p" pn)l/z
whence
(2.5) IL,(u", »")* < B,(u", »")
<p(p,»), all n,

so that closeness in p is stronger than closeness in Prohorov. In some cases the two
distances generate the same topology, however, as the following easy lemma shows.

LemMa 2.1. (a) If ,
(2:6) P(X0s Y0) < Pmax < 0, all X, ¥
then
Pu( s ) < IL(1" »")(1 + pryay)-

(b) If there exists an a* so that
(2.7) E,p(X,, a*)’ < p* < oo,
(2'8) Eyp(YO’ a*)2 < p* < co,
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then
" n n n n n n 3
pu(p" v") <IL(p" ") + 2(p*I, (1", v™))?2.
PrROOF. (a) Let p” yield II,,, then
(1" ¥") < Epup, (X7, Y") < IL, (0" ") + p"(x", »" 2 p,(x", y")
> I"(1", #™))Prmax
= IL(p" ") (1 + ppay)-
(b) As in (2.9) we have that
p.(p" ") <IL(n" »") + [odp"(x", y")p,(x", »"),
where
G={x"y":p,(x"y") > (", »")}.
Let 1 be the indicator function for G. Let E denote expectation with respect to p”.
Since p, is a metric, we have from the triangle inequality and the Cauchy-Schwarz
inequality
Pa( ) < Ep, (X", Y7") <IL(p" »") + E p(X", a*")1g + E p,(Y", a*")1,

1 1 1 1
< Hn(ﬂ'n’ Vn) + (E Pn(Xn, a*n)Z)z(E 11&)2 + (E p"(Y", a*n)Z)z(E 11&)2.
Applying the Cauchy-Schwarz inequality for sums and (2.7) yields
Ep, (X", a*")* = E{n™'S120p(X,, a*)}" < E,{n~'1Z4p(X,, a*)*} < p*
and hence

1 L 1 1

P v) <IL,(u" #") + 2(0*)*(P,(G))? = T, (1", »") + 2(p*)>(IL,(p", »"))>.

Lemma 2.1 and (2.5) imply that if 9T is a space of processes for which either (a)
the metric is bounded, or (b) there is an a* such that (2.7) holds for all wE I,
then p, and II,, generate the same topology on nth order distributions.

We use p as our distance measure on processes primarily since it permits a
simple demonstration that close processes likely produce sample functions with
close sample distributions (as in the next section). Hampel’s Prohorov approach
worked in the i.i.d. case because he was able to produce an i.i.d. pair process p with
the correct coordinate processes by simply taking the product measure with
marginal yielding II,(p', »"). If p and » were not i.i.d., p constructed in this way
would not have p and » as coordinates. The p-distance avoids this problem since it
has an equivalent definition in terms of processes.

An additional advantage of the p-distance is that it is often amenable to explicit
evaluation or bounding.

Even though p is the distance measure used on processes, the Prohorov metric is
quite adequate as a measure of distance of random variables, and hence for many
intermediate steps we will use the weaker Prohorov distance in order to follow
Hampel’s basic approach where possible.
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3. Sample distributions. Hampel (1975) following Parthasarathy (1967) consid-
ers only marginal sample distributions of the following kind: Given an n-tuple
x" € @, define the measure p.. on (2, Bg) by assigning probability n ™' to each x;,
i=0,1,---,n—1 (f, say, k of the x; are identical, this point gets probability
k/n). This assignment gives a measure p'. on (, By), via

pin(F) = Ei:x,EFn-.l'
Parthasarathy (1967) proves that for an i.i.d. process p,

@3.1) 0(pln p') =0 asn— oo, p-a.e.
We shall wish to consider more general processes and parameters depending on the
whole process and not just the marginal u'. Hence we wish to estimate more than
just the marginal ! from x”. Given an n-tuple x” € Q" form an estimate of the
entire underlying process as follows: form the periodic string X =
(-, x", x", x",+--), that is, X, = x4, Define the measure p_. on
(Q%, BF) by placing probability n~! on each string T, i=0,1,---,n—1
(grouping together identical strings as before), that is,
(32) per(F) =2, rzepn” !,  all F € B,
The -rocess is periodic as defined by Parthasarathy (1961) since p .(Fn T"F) =
pe( . all F e BF. It is also easily seen to be stationary from (3.2). Further-
more, if 7G = G and hence T~ !G = G, then if T’ € G for any i, TVx € G
for all j; hence p,(G) = 0 or 1 and the process is ergodic. The process p, . has
restrictions pf which assign measure n~! to each k-tuple obtained by viewing
k adjacent symbols within x"” or an “overlap” k-tuple constructed by
(X s Xy X * s Xggi—n)si=n—k+1,- -+, n— 1 In particular, pl. is
" the same as the Parthasarathy marginal sample distribution. Note that only if
k < n are the sample distributions “trustworthy,” but it is in fact the sample
distributions pf%., n > k, that will be most important.

Given a stationary and ergodic source [, u, X], then the ergodic theorem
implies that for any fixed k

(3.3) lim,, I (pf, u*) =0, p-ae.
If, in addition, there exists a reference letter a* such that (2.7) holds, then for any
fixed k (3.3) and Lemma 2.1 imply :

(34) lim,_, . pi( 85, p¥) =0,  p-ae.

One might hope that a stronger result would hold to the effect that p(p,», p) — 0,
p-a.e. That p(p,~, w) — 0 is impossible, however, even for general finite alphabet
processes since in that case with p being the Hamming (discrete) metric conver-
gence in p (in this case called 4 and being Ornstein’s distance) implies convergence
in entropy (Shields (1975)), yet periodic processes have entropy zero and hence
cannot converge in p to a process with nonzero entropy. Roughly speaking, sample
distributions can describe the kth order restrictions of a process to arbitrary
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accuracy as n — oo and any fixed k, but they cannot approximate the kth order
restrictions for all k simultaneously. This observation leads to some of the defini-
tions generalizing those of Hampel to stationary ergodic processes.

4. Sequences of estimators. A sequence of estimators {S,} is a sequence of
measurable mappings S, : @" > A, n = 1,2, - -, where the parameter space A is
a Polish space with metric d and %, is the Borel o-field of subsets of A. Unlike
Hampel, we do not consider S, to depend on its argument x” only through p..;
that is, S,(x") is not assumed to be invariant under permutations of x”". In
addition, A need not be R* with the Euclidean metric as in Hampel, allowing more
general function spaces. In some cases there will exist a “true” value S(pu) of the
parameter of the process p being estimated by the sequence {S,}. Analogous to a
special case considered by Hampel, if S : 9, — A is the mapping giving the
“true” parameter, one candidate for the sequence of estimators is S,(x") = S(p,»),
the parameter associated with the periodic process obtained from the sample
n-tuple. Examples are the sample mean (S,(x") = n~'Z7_}x,) and sample correla-
tion (S,(x") = 7~ "2720X; mod n¥ i+ rymoda ») Which are simply the mean and correla-
tion of the process p, .. Certain results analogous to those of Hampel will be proved
for this special case.

DEFINITION. (i) A parameter S : 9g — A is said to be weakly continuous at p
with respect to the p distance if given &€ > 0 there exists a § > 0 such that
p(p, v) < 8 implies d(S(p), S(v)) < e.

(ii) A parameter S : Mg — A is said to be strongly continuous with respect to
the p distance if given & > 0 there exists a-positive integer k¥ and a § > 0 such that
if p,(u%, v*¥) < 8, then d(S(p), S(»)) <e.

(iii) A parameter S : Mg — A is said to be, simply, strongly continuous (or
strongly continuous with respect to the Prohorov distance) if given & > O there
exists a positive integer k and a & > 0 such that if II,(u*, »*) <§, then
d(S(w), S(»)) <e.

It follows from the properties of the distance that strong continuity = strong
continuity with respect to the p distance = weak continuity with respect to the p
distance. '

The strong notions of continuity are required when considering sample distribu-
tions, as there the conditions of I[, or p, being small can be met, while the
condition of small p in general cannot.

If under p a sequence of estimators {S,} converges in probability (under p) to a
value S (), that is, if for alle > 0 '

(4.1) lim,, o, p(x : d(S,(x"), Sx(n)) >¢€) =0,
then we say {S,} is consistent for S (u) under p. As pointed out by Hampel,

S (1) need not be the same as the “true” parameter value S(u), but in such a case
S (1) might be a better definition of the “true” parameter given the S,,.
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A sequence of estimators {S,} on a process p induces a family of probability
measures u"S,”! on (A, B,) defined by
(4.2) p"S,”"'(F) = p"(S,'(F)), all FeR,.

From (3.4)-(3.5) we have that if S : 9 — A is either (i) a strongly continuous
parameter at u € 9N, or (i) a strongly continuous parameter at p € M, with
respect to the p distance and there exists a reference letter in the sense of (2.7), then
the sequence of estimators {S,} given by S,(x") = S(p,») is consistent for S at p.

Lastly, let II, denote the Prohorov distance between measures on (A, B ,) with
respect to the metric d.

5. Robust sequences.

DEFINITION.  Given a collection of processes M C IM,, a sequence of estima-
tors {S,} is robust for N at a process p if given € > 0 there is a 8 > 0 such that
for all n and all processes v € M
(5.1) (A)o(p, v) <8=T,(p"S, ", »"S, ") <e.

The definition is intuitively the same as Hampel’s: a robust sequence is one for
which close observation processes imply uniformly (over n) close estimate distribu-
tions. Hampel defines robustness only at i.i.d. processes and only for 9N, the class
of all i.i.d. processes. In the case of 9N, (A) is equivalent to p(u, ») = p,(p!, »"),
the marginal distance, being small. Since II,(¢', »")? < p,(p!, »"), robustness at an
ii.d. process for M, in our sense is slightly weaker than Hampel’s robustness. If p
is bounded or we add the constraint to 9N, that there exist a reference letter as in
Lemma 2.1, then for 9T, the two notions for robustness at an i.i.d. process are

equivalent.
The following auxiliary definitions will prove useful.

DEFINITION. (i) A sequence of estimators {S,} is asymptotically robust for a
collection M C MM, at p if given ¢ > O there is a § > 0 and an n, such that for all

n > ny and processes » € I (A) holds true.
(i) A sequence of estimators {S,} is small sample robust for a collection
M c M, at u if for any integer n, and any & > 0 there is a § > 0 such that (A)

holds foralln =1,2,- - - , n, .
Obviously if a sequence {S,} is both asymptotically robust and small sample

robust for 9N at p, then it is robust for I at p.

DErINITION.  Condition (B) is said to be asymptotically satisfied for a sequence
of estimators {S,} and a process p if given ¢ > 0, 7 > 0 there exist positive integers
k and ny and a 8§ > 0 and for all n > ny a set F, € B2 such that

(52) p(F)>1—19
and if x” € F,, y" € ", and
(5'3) Hk( ”":”, ”yli') < 8,
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where II,, is the Prohorov distance with respect to p, as in (2.4), then
(54) d(S,(x"), S,(»™)) <e.

If we forced ny = 1, then the above condition would be identical to Hampel’s
except for the fact that we allow a general k (which may depend on & and n) while

he requires k = 1. Hence our condition is weaker (his condition (B) implies ours,
but not conversely). The following is analogous to Hampel’s Lemma 1.

LemMMA 5.1. If p € O, and {S,} asymptotically satisfy condition (B), then {S,}
is asymptotically robust at .

ProOOF. Choose ¢ as in (A). For (B) use the same ¢, set 1 = ¢/2 and let k, 8, ny,
F, be the promised objects for n > n,. Choose § = min(d, £2/4). Analogous to the
construction of the coordinate sample distribution p.%, define

px",y"(F) = 2i: T(X,7)EF n_l’ F e %S‘? X %?lo’

where 5 = (- - - ,y" "+ -+ ), and its restriction p’ = ps ,» to B x BE. By
construction p’ € P (pk., wh) and p’ places probability n~! on each of the first n
k-windows in (X, ). We therefore have that

5( T f"yk") < E,p, = n =1 0ok (x5 »F)
+n 2 (s X X Xpgicn—1)s
XY s Vn—vVo """ ’yk+i—n—l))
= n"'S125p(x5 ) = pu(x"5")

for all k (and hence p(p,n, ) is small'if p,(x", y™) is). Let p be the stationary
process yielding E,o(Xo, Yo) = p( 1, ). We have from (5.5) that

(5.6) - Ep(pke 1) < Ey(n™'Z1200(X,, Y1) = p(ms ¥) <6,
and hence from Chebychev’s inequality
— 1 1
p(x,y s B b k) > 82) < 87,
whence
p(x,y : M(nk wt) > 85) < p(x,y (b, wh) > 87') <82
and
p(x,y tx" an,Hk(an,uy"n) <8)>1—1- 87> 1 —e/2—¢/2=1—¢,
which from (B) implies that with probability 1 — e-d(S,(x"), S,(»")) <e and
hence II,(u"S,” ", »"S, ') < ¢, completing the proof.
‘The following definition is a weakened version of one of Hampel’s correspond-
ing definitions.
DEFINITION. A sequence of estimators {S,} is continuous at u if given & > 0,
there exist positive integers k, ny, and a 8 > 0 such that if n, m > ny, x" € Q",
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y™ e Q" and

(5.7) e pk, u*) < 8
(' n*) <8

then

(5.8) da(s,(x"), S,,(»y™) <e.

If a single kK works for all ¢, we say {S,} is continuous of order k at p (or
continuous at p*).

Hampel’s definition of continuity of an estimator sequence is what we call
continuity of order 1 (or at u'). Hampel essentially restricts his estimator sequence
to depend only on the marginal properties of the process. Analogous to our strong
continuity of parameters, we allow the estimator sequence to depend on higher
order properties, but for a given &€ > 0 there must be a finite kK such that matching
sample distributions of order k to the underlying p* forces the estimators to match
up for long observation sequences.

Analogous to Hampel’s special case, if a parameter S : M, — A is strongly
continuous, then the sequence of estimators {S,} defined by S,(x") = S(p,~) is
continuous.

The following lemma is a strict generalization of Hampel’s Lemma 2 since our
continuity notion for {S,} is weaker than his.

LEMMA 5.2. If {S,} is continuous at p € ON,, then, under u, {S,)} is consistent for
some S (), that is, for any § > 0
lim, o p(x @ d(S,(x"), Se(n)) >8) = 0.

Proor. For a sequence ¢|0 choose §,/0 and n1co such that the continuity
condition is fulfilled for n, m > n; (for each i). Define for positive integers k, n and
& > 0 the set

B,(k, §) = {x" (ks p*) < 8}
and note from (3.3) that for fixed &, §
(5.9 lim,_, p"(B,(k, 8)) = 1.
From the continuity condition, if x” € B,,(k,., 8), y™ € B,(k;,9,), n,m > n, then
d(S,(x"), S,,(»y™)) < &; and hence the set

(5.10) G = Uusn Usres,k,5)Si(x") C A

has diameter diam(G;) < 2¢;. Defining the set S,(B,(k;, 8)) = U rep k, 5)S.(x")
(5.10) can also be written

G,' = Un>n,Sn(Bn(ki’ 8:‘))‘

Define the set
A= nJi'-lGj = nji'-l Un)mSn(Bn(kj’ 81))
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and let 4; denote the closure of 4] (4; will play the role of Hampel’s 4;). The 4, are
closed and monotone decreasing since 4; > A4,,, and diam 4; < 2¢]0. Further-
more, the sets 4; are nonempty as can be seen as follows: for fixed i and n > n,, we
have from (5.9) that

Bx S, (x") € 4) > u(x 1 S,(x") € A7) > p(x : S,(x") €GeS, (B,(K, 8)))
>p(x:x"€ni.,B,(k,8))>1 asn— oo

and hence 4; cannot be empty. Since A is complete and the 4; are closed,

monotone decreasing, and nonempty, from the Cantor intersection theorem, there

exists a single point, say S_(u), such that 4, S, (p). Coupled with (5.11), this

proves the lemma.
The lemma immediately yields the following.

COROLLARY 5.1.  Given {S,}, u, S.(p) as in Lemma 5.2, given ¢ > O there exists
a §, k, ny such that if n > ny and

(s p*) <8,
then d{S (1), S,(x™)) <e.

The following theorem is the main result of this paper and is the analog to
Hampel’s theorem for stationary and ergodic processes and the general sequence of
estimators here considered. We show that continuity of {S,} implies asymptotically
robust and that continuity of the S, considered as point functions implies small
sample robust.

THEOREM 5.1. Let a sequence of estimators {S,} and a p € O, be such that

(i) S, is continuous as a point function on Q" for every n, that is, given n, x" € Q",
e > 0, there exists a 8 = 8(n, x", € such that p,(x",y") <& implies
A(S,(x"), S,(»") <e.

(ii) {S,} is continuous at p, p stationary and ergodic.

Then {S,} is robust for O, at p.

ComMEeNTs. Condition (i) might appear different from that of Hampel since we
use p,(x", ") = n”'1p(x, ») and he uses p(x", ") = max,p(x,y,). These
metrics generate the same (product) topology, however, and hence the notions are
equivalent. Recall also that (ii) is weaker than Hampel’s corresponding assumption
and the observation processes are far more general, but that our conclusion is in
general slightly weaker. We also note that for large n our proof parallels Hampel’s
by proving condition (B). For small n, however, robustness is proved directly from
(ii) and our proof is simpler than Hampel’s.

Proor. First choose € > 0, n > 0 for property (B). From Lemma 5.2 and its
corollary and (3.3) there exists S, (u), 8, > 0, ny > n,, k such that for n > n,

(5.12) M(pk, n*) < 28,= d(S (1), S,(x") < e/2.
p(x s e(pfs n*) > 80) <m.
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For n > n, define F, = {x" : I[,(pf, u*) < 8} so that if x" € F, and II,(pu%, m)
< 8, then
e %, %) < TL( B, i) + I uk, p*) < 28,
Hence, from (5.12), d(S (1), S,(»")) < &/2 and therefore
d(S,(x"), 8,(y™) < d(S,(x"), Seo((B)) + d(S (1), S,(¥™) <,
proving condition (B) is asymptotically satisfied and hence by Lemma 5.1 {S,} is

asymptotically robust at u. Next, given ¢ > 0 as before and any n, there exists from
Parthasarathy ((1967), Theorem 3.2, Chapter 3) a compact set K, such that

p'(K,) > 1—¢e/4,v"(K,)>1— ¢/4.
Since S, : @" — A, it is uniformly continuous on K, and hence there is a 8, such
that for x",y" € K, p,(x", ™) < §, implies a(S,(x™), S,(»™) <e&. Choose 8 so
that § < min(8%i=1,---,nye*/4) and let p € P, (p, v) yield p(p,») =
E,p(Xo, Yo) < 8. We have using the Chebychev inequality that

p(x,y : d(S,(x"), S,(»™) >¢) < p™(K7) + »"(K;)
+p(x,y : p(x", ") >8,) <e
and hence
IL(p"s, ", »"S, ") <e,
so that {.S,} is also small sample robust.

The only point in the preceding development where ergodicity was required was
in the use of (3.3) in Lemma 5.2 ensuring sample distributions of the process ©
converged to the actual distribution of u. The resulting consistency of {S,)} at
was then in turn used to prove asymptotic robustness at u. In particular, if the
process p is ergodic and we allow the processes » of Theorem 5.1 to be stationary
but not necessarily ergodic, then the entire proof goes through as before giving the
following.

COROLLARY 5.2.  Given the conditions of Theorem 5.1, then {S,} is robust for 9N
at p.

That robustness for the class of ergodic processes implies robustness for the class
of stationary processes also can be seen from the ergodic decomposition theorem of
Rohlin (1949). The theorem states, roughly, that every stationary nonergodic
process is a mixture of ergodic processes, that is, can be viewed as nature first
selecting an ergodic process (unknown to the observer) and then sending a sample
function from the ergodic process. Thus, if » is stationary, the observer will actually
see some unknown ergodic component, say »,, of » and hence robustness for
ergodic processes will ensure robustness for stationary nonergodic processes.

COROLLARY 5.3. Let S: W, — A be such that S is strongly continuous at
p € O, and S,(x") = S(,») is a continuous mapping from Q" to A. Then {S,} is
robust for N, at p.

Note that if S is strongly continuous for all p, then S,(x") = S(p..) is automati-
cally continuous as a point function from (2.5).
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Analogous to Hampel’s Lemma 3 and corollary we have the following:

LemMA 5.3. If {S,} is robust at p. € OV, and consistent for S (p) at all v € O
in a p neighborhood of ., then S (1) is weakly continuous at p.

COROLLARY 5.4. If {S,} is robust and continuous for all . € O, then S (p) is
weakly continuous at all p.

6. Discussion and applications. Our approach allows the construction of robust
estimators for parameters included in the kth order (K finite, fixed) restriction
(@K, BE, u¥) of an ergodic stationary process [, p, X]. Such parameters are the
moments of order less than or equal to K.

The M-estimation S () of a scalar parameter S included in (2%, ®§, u*) will
be now the solution (if it exists) of the expression (Huber (1964), Huber (1972))

(6'1) f%{{ ‘l’(xl’ U X Soo([-"))HK(dxl’ T de) =0.

As in the iid. case, the sequence of estimators {S,} defined by y
(S, : ="2f(x, - - -, x4k S,) = 0) is robust if the solution in (6.1) is unique and
¢ is bounded. For example, a solution exists if ¢ is such that the mapping
S [ P(xy, s 0 0, X s)uX(dx,, - - -, dx,) is bijective and has a continuous inverse.

For the robust estimation of a location parameter, in particular, M-estimators,
L-estimators or R-estimators, can be used again (Huber (1972)), where the first
order restriction [Q', Bg, p'] of the ergodic stationary process [2, p, X] is consid-
ered. For the M-estimators, we may use the Kth restriction [2%, B&, pX] instead

and recover the estimate from the expression:
fqa,g lIJ(Xi - Soo(“‘)’ s Xgp T Soo(.“‘))l"‘K(dxl’ R de) =0.

The asymptotic distribution of the estimate S (u) can be found by methods
similar to the ones used by Huber (1964).

New estimators determined through new functionals of the data may be consid-
ered, where the properties of the functionals may be determined through the
conditions in Theorem 5.1.

APPENDIX

Equations (2.1) and (2.3a) are actually minima. (The proof is due to P. C.
Shields.)

Since @ and hence Q* are complete, separable metric spaces, any measure y on
(Q®, BF) is tight, that is, for any ¢ > 0 there is a compact set F such that
w(F) > 1 — ¢ (Parthasarathy (1967), Theorem 3.2, page ‘29). If one has a family of
measures such that given ¢ there is a compact set F such that all members of the
family place measure at least 1 — ¢ on F, then the family is compact in the weak
topology (Parthasarathy (1967), Theorem 6.7, page 47). Given p, » choose compact
F € B such that wW(F) > 1 — ¢/2, »(F) > 1 — ¢/2; then if p € P (p, »), p(F X
F) > 1— eand F X Fis compact. Thus ? (pu, ») is compact in the weak topology
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and a sequence p, € P.(pu, ») such that
E, p(Xo, Yo) < p(p,») +1/n

will have a subsequence—say p, — that converges in the weak topology to a
limiting p. The limit p € P (p, ») and E,p(X,, Y,) = p(u, »), completing the proof.
The same argument applied to (R, Bg) shows that p, is also actually a minimum.
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