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BROWNIAN MOTION AND ANALYTIC FUNCTIONS!

By BURGESs DAvis
Purdue University

This paper is mostly expository and is concerned with the connection
between two dimensional Brownian motion and analytic functions provided by
Levy’s result that, if Z,0 <t < o, is two dimensional Brownian motion, and
if f is analytic and not constant, then f(Z,), 0 < ¢ < oo, is also two dimensional
Brownian motion, perhaps moving at a variable speed. This can be used to
study Brownian motion via analytic functions and, conversely, to treat analytic
functions probabilistically. Recently several open problems in analytic function
theory have been solved in this manner. We will present some of Doob’s earlier
work on the range and boundary values of analytic functions, the probabilistic
theory of H? spaces due to Burkholder, Gundy and Silverstein, the author’s
results on conjugate function inequalities, and sketch probabilistic proofs of
Picard’s big and little theorems, and other theorems. There are some new results
related to Hayman’s generalization of Koebe’s theorem.

1. Introduction. A fundamental connection between two dimensional
Brownian motion Z, = X, + iY,, ¢t > 0, moving in the complex plane, and analytic
function theory, is Paul Lévy’s theorem that, if f(z) is analytic and not constant,
the process f(Z,), t > 0, is again Brownian motion, although perhaps moving at a
variable speed. This conformal invariance can be used to study Brownian motion
via analytic functions, by making a judicious choice of f(z). For example, let
Zy=0 and let a #b be complex numbers. Then (a — b)e% + b, t > 0, is
Brownian motion started at (a — b)e® + b = a. Clearly it never hits b, since e*
never vanishes. This proves the well-known result that the probability Brownian
motion ever hits a fixed point other than its starting point is 0. (Here Brownian
motion means two dimensional Brownian motion moving in the complex plane, the
mathematical description by Norbert Wiener of a physical process observed by,
among others, Brown).

Lévy’s result can also be used to study analytic functions probabilistically, the
principal subject of this paper. In this context it is usually applied to a collection of
functions. For example, it is proved in the next section that Brownian motion hits
each closed set of positive capacity with probability one. Thus, the range of each
nonconstant entire function cannot omit a closed set of positive capacity, since the
Brownian motion f(Z,) moves entirely in f(C). This argument is Doob’s.
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914 BURGESS DAVIS

Except for new material in the last section, this paper is an expository presenta-
tion of some of the applications of the conformal invariance of Brownian motion to
analytic function theory, including the recent solutions of several open problems.
Often probabilistic expressions can be written in classical terms, and the theorems
of probability can be brought to bear directly on nonprobabilistic problems. Other
expressions arise which do not seem amenable to such a translation, and in this
way intrinsically new tools arise, which, aside from their use in the study of
classical function theory, are sometimes interesting enough to deserve attention in
their own right, and are thus a source of new theorems and problems. Several of
the latter are given at the end of this paper.

Brownian motion is a very intuitive thing to work with, because at the back of
our mind is the corresponding physical process, or rather an idealized version of it,
which is only very briefly described at the beginning of the next section. A much
more detailed and very enjoyable physical and historical account of Brownian
motion can be found at the beginning of Edward Nelson’s book [33].

Although there is necessarily some overlap between the subject of this paper and
the better known probabilistic potential theory, no attempt will be made to treat
the latter systematically. See the book of E. F. Dynkin and A. A. Yushkevich [21]
for a very readable elementary introduction to the use of Brownian motion in
studying harmonic and subharmonic functions, and see [18] for more advanced
treatment.

For simplicity, the treatment here is usually restricted to entire functions and
functions defined on the open unit disc D. Extensions of the results here to more
general situations will often be immediate. Proofs are usually just sketched except
in the next section, where the foundations of the subject, up to and including some
basic theorems of Kakutani and a version of Lévy’s theorem, are rigorously
presented.

In Section 3 the author’s proof of Picard’s little theorem is sketched. This
theorem can also be proved using Brownian motion on Riemann surfaces and the
modular function, together with ideas of Kakutani (see Section 8). Here Riemann
surfaces are not used and the work of the modular function is done by a law of
large numbers, which is used to derive a result about Brownian motion paths
originally proved (via the modular function) by Ito and McKean. For another,
shorter, exposition of some aspects of this proof see P. J. Kahane [28].

In Section 4 some of Doob’s earlier work on the range and boundary values of
analytic functions is sketched. One sample of this has already been given. The
particularly close connection between Stoltz regions and Brownian paths is dis-
cussed here. See Burkholder [6] for related expository material.

The next topic is the theorems and techniques associated with the probabilistic
treatment of H” spaces of analytic functions, including the famous solution by D.
L. Burkholder, R. F. Gundy, and M. L. Silverstein of a long standing problem in
this area in [12], and some of Burkholder’s later work. The original proof, which
used martingales, is translated to enable use of Lévy’s theorem. This is the
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approach taken by Burkholder more recently. Karl Peterson has written a book,
[34], mostly devoted to presenting and explaining [12]. For another exposition of
[12], as well as a thorough treatment of modern H? theory, much of which was
inspired by [12], see Charles Fefferman’s paper [22]. Fefferman and E. Stein were
the first to give a nonprobabilistic proof of the Burkholder, Gundy, and Silverstein
result, in [23].

In Section 6 the author’s method of studying conjugate function and Hilbert
transform inequalities will be sketched. This provides a uniform approach to a
number of these inequalities and often gives the extremal functions and best
possible constants for them, some of which were found for the first time in this
manner. There are expository accounts of this method, applied to different prob-
lems than the one considered here, in J. P. Kahane’s paper [28] and D. L.
Burkholder’s paper [6]. Recently Albert Baernstein II has given nonprobabilistic
proofs of most of these results, as well as some very nice extensions, in [2].

The next to last section contains a new proof of Picard’s big theorem and new
results related to Hayman’s generalization of Koebe’s theorem to multivalent
functions. In the final sections some problems are posed and Brownian motion on
Riemann surfaces, including an early paper of Kakutani on the type problem for
Riemann surfaces, is briefly discussed.

2. Fundamentals. A very small particle suspended in a liquid can be seen to
move rapidly about, due to the bombardment of the particle by the molecules of
the liquid. If the position of the particle is projected onto a plane, a two
dimensional motion results. This is what would be observed if the particle was
watched through a microscope and it was impossible to discern the up and down
component of its position. In the 1920’s Norbert Wiener gave a mathematical
description of an idealized version of this motion. We will distinguish between
standard Brownian motion, supposed to describe the movement of a particle
suspended in a liquid of a certain unchanging temperature, and Brownian motion,
in which the temperature of the liquid, which influences the rapidity of the motion
of the particle, is allowed to vary.

Wiener constructed a family of random variables Z, = X, + i¥,, t > 0, on a
probability space 2, Z, representing the position of the particle at time ¢. For each
€>0,let o(e) = 7o =0, and if i > 1 define r,(¢e) = 7, =inf{t >7,_: |Z, - Z,_|
=¢}, and let A(e) =A, = Z, — Z . The process Z, satisfies the following
postulates. ’

(A) For almost every w € 2, the path Z(w), 0 < ¢ < oo, is continuous and

~ unbounded. :

(B) For each ¢ > 0, A}, A,, - - - are independent and each is uniformly distrib-

uted with respect to linear Lebesgue measure on {|z| = &}.

(C) Foreache > 0,7, — 7,_,, i > 1, are independent and identically distributed.

Furthermore E(7/(1) — 7,_,(1)) =3 (a normalization).
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Standard Brownian motion is defined to be a process satisfying these three
postulates, while Brownian motion is defined to be a process satisfying the first
two. It is not difficult to show that this definition of standard Brownian motion is
equivalent to the usual one. What we call Brownian motion might be given other
names elsewhere. Wiener’s construction of standard Brownian motion may be
found in [4], and there is a different construction in [32].

Although these definitions are new, it has been recognized for a long time that
the property of hitting circles with a uniform distribution is very useful when using
Brownian motion to study harmonic and analytic functions. Of course postulate
(B) means that, for each integer n, the measure on C" induced by the map
@A, - - -,4,) from @ is product measure ", where p puts uniform measure on the
circle of radius ¢ about 0.

In the rest of this paper Z, will be standard Brownian motion, and P, and E, will
denote probability and expectation associated with Z, started at z, that is satisfying
Z, = z. Since Z, will usually start at 0, P, and E, will be written P and E to avoid
subscripts. Linear Lebesgue measure will be denoted by /, and a A b = min(a, b).

Recall that a harmonic function defined on a region R is a continuous function
which satisfies the averaging property. That is, if {|z — z5| < &} C R then

2.1) u(zg) = [o"u(zo + ee®)df /2.

This connects nicely with postulate (B). The following fundamental theorem is
due to Kakutani, in [29]. The proof is essentially Doob’s ([18]). Although it is stated
only for standard Brownian motion, since it is only a theorem about the paths of
Z,, it also holds for (nonstandard) Brownian motion. It will be seen that only
" postulates (A) and (B) are used in the proof. This also is true of Theorem 2.2 and

Theorem 2.3.

THEOREM 2.1. Let u be harmonic on a region R and continuous and bounded on R
(closure of R). Let T, = inf{t > 0: Z, € R (boundary of R)}. Then if z € R and
P (g < 0) =1, E,u(Z,) = u(2).

PROOF. Let ¢ > 0 be fixed for a while, and let N = min{k : |Z, — dR]| <e},
where 7, = 7,(¢) is defined as before. Let I be the indicator function.

If |z—0R|<e N =0, so assume |z — dR| > ¢ which gives P(N > 1) = 1.
Then

Eu(Z,) = [ou(z + ee®)d /27 = u(z)

by (2.1) and (B).
Now Z, — Z, is uniformly distributed on {|z| = ¢}, and independent of Z, —

Z,, so it is independent of {N > 1}. Thus, integrating first with respect to the

T
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second coordinate and then the first in C X C, (2.1) and (B) again give
E,(u(Z,) — w(Z,))I(N > 1)
= Ez[%ﬁ,”u(zTl + ee)df — u(Z,l)]I(N > 1)
= E[0]-I(N >1)=0, so |
Eu(Z, )= Eu(Z)+ E(u(Z,) - u(Z,))I(N >1) = u(z).

Continuing in this manner we get E,u(Z, ) = u(z) for each k, and the bounded
convergence theorem gives E,u(Z, ) = u(z). Now (A) gives Z, — Z, almost surely
as e >0, so u(Z, ) —» u(Z,) a.s., and another application of the bounded conver-
gence theorem completes the proof.

This theorem implies immediately that the distribution of Z_ under P,, and
harmonic measure on R with respect to the region R and the point z, are the
same. Readers not familiar with the concept of harmonic measure may use this fact
to give a probabilistic definition. Sometimes probabilistic arguments may be used
to find or estimate harmonic measure when other methods do not work. Con-
versely, Brownian hitting probabilities can be found by using the standard methods
to find harmonic measure, as in what follows. Note that, if R in Theorem 2.1 is
bounded, property (A) guarantees P,(t, < o) = 1.

Let 0<a<1<4 < « and let R be the annulus {@ < |z] < A4}, and apply
Theorem 2.1 to the function u(z) = In|z|. Let p(a, 4) = p = P((Z, = a) so that
1 — p = P(Z, = A). Theorem 2.1 gives '

2AN

(22) 0 = In(1) = E,In|Z, | = pln(a) + (1 — p)In(4).

If A4 is held fixed and a — 0, (2.2) gives p — 0, which proves, since 4 was arbitrary
and Z, has continuous paths a.s., that the probability Z, ever hits {0} is 0. This
proof goes through similarly if Z, starts at any point except 0, and uses only the
existence of a harmonic function on C — {0} which goes to oo at 0 and to — oo at
oo. An analogous function exists for every compact set of capacity 0 ([35], page 77),
so the probability that Brownian motion, started at a point outside such a set , ever
hits it is 0. .

If we hold a fixed and let A — o0 in (2.2), then p — 1. Thus Brownian motion
started at 1 hits {|z| = a} with probability 1, for each a > 0, and it is easy to argue
(using the strong Markov property, which will soon be discussed) that {|z| = a} is
almost surely visited at arbitrarily large times ¢, or, to put it another way, the
probability that Z,, ¢ > n, visits {|z| = a} is one for each integer n. Any compact
set of positive capacity may be handled similarly, giving the following theorem of
Kakutani, ([29]), which can be used to give a definition of capacity 0.

THEOREM 2.2. Let K be a compact subset of C.
If Cap(K) =0, P,(Z, € K for somet > 0) =0, z & K.
If Cap(K) > 0, P,(Z, € K for arbitrarily large t) = 1, for all z in C.
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A nonnegative random variable 7 will be called a Markov time for Z, if
Zy,,— Z;, t >0 is a standard Brownian motion independent of the o-field
0(Z, 750 < t < o) (the past up to time 7). A nonnegative random variable 7 is
called a stopping time for Z, if, for each A > 0, {7 < A} is in 0(Z,, ¢ < A). Thus, if
7 is a stopping time, whether stopping has occurred by time A can be determined by
observing Z, up to time A. For instance, the first exit time from a region is a
stopping time. It can be proved that all stopping times for standard Brownian
motion are Markov times (see [4]). Another way to say this is that standard
Brownian motion has the strong Markov property.

Now a version of Lévy’s theorem will be proved. In its simplest form, which is
sufficient for many applications, this theorem says the following.

THEOREM 2.3. If f(z) is a nonconstant entire function, and Z, starts at z,, then
f(Z,), 0 < t < o0, is Brownian motion starting at f(z).

Proor. Clearly, f(Z,) has continuous paths a.s., since Z, does, and they are
almost surely unbounded since, by Theorem 2.2, Z, visits {|f(z)] > A} with
probability one. This takes care of (A).

Let vy, = inf{¢ > 0: |f(Z) — f(20)| = €}. To show that f(Z,) is uniformly dis-
tributed on {|z — f(zo)| = €} it is sufficient to show that, for all functions u
harmonic on S = {z: |z — f(zo)] <€}, and continuous on S, E, u(f(Z,)) =
u(f(z,)). This is an immediate consequence of Theorem 2.1, since, if R is the
component of {z : |f(z) — f(z,)| < &} containing zy, u(f(z)) is harmonic on R and
bounded and continuous on R, while y, = inf{¢t > 0 : Z, € 3R}.

Now if, y, = inf{z > v, : |f(Z) — f(Z,)| = €}, f(Z,) — f(Z,) is uniformly dis-
tributed on {|z| = ¢} and independent of f(Z,) — f(Z,) = f(Z,) — f(zo)- This
follows immediately from the strong Markov property, the fact that y, is a stopping
time for Z,, and the result of the previous paragraph. An iteration of this argument
gives property (B) for f(Z)).

Several things may now be evident. We have only made use of property (B) in
the limit as € — 0. In fact, (B) for only very small ¢ can be shown to imply (B) for
all e. This has the corollary that whether a process is a Brownian motion is largely a
local property. Thus, an heuristic proof of Lévy’s theorem could be given as
follows. Locally, analytic functions are almost like az + b. The functions az + b
clearly take Brownian motion to Brownian motion, Q.E.D. This argument can be
made rigorous, too (see McKean’s book [32], page 109).

Now a more complicated version of Lévy’s theorem will be stated but not
proved. See [32] for a proof. The following notation will be used throughout the
paper. If f(z) is analytic and not constant in the unit disc D, and Z, = 0, define

(23) o) = o(s) = 3l (Z)P 0<s <.

Since Z, misses the (countable) zeros of f’, p is almost surely strictly increasing.
Now f(Z,) is Brownian motion, but perhaps moves locally too fast or slow to be
standard Brownian motion. We speed it up or slow it down by changing the time
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scale. Let

(24) W, = AZ,_ 1), 0<t<mp

Then W, is locally standard Brownian motion, but it is only defined up to
t = p(p), which may or may not be infinite. The process W, could be talked about
as standard Brownian motion up to time p(7,), but it is more convenient to define
W, for t > p(7p) so that the whole process W,, 0 < t < o0, is standard Brownian
motion. This is done by defining, on {p(7,) < 0},

(2.5) Wp(‘fp) = limit,_,,D Wp(,),

and
Wp(‘fp)"'f = W(TD) + (ZTD+I - Z ), t> 0.

4 D
The limit can be shown to exist almost surely on {p(7p) < 00}. One form of Lévy’s
theorem states:

THEOREM 2.4. The process W,, 0 < t < o0, is standard Brownian motion.

Because of the central role of the time p/(7,) in what follows we designate
p(7p) = »(f)

which will be further shortened to » if the function f is clear from the context. The
distribution of » is a measure of the size of f(D). For example, if f is univalent and
maps D onto R and 0 to 0, then P(» > a) is the probability that standard Brownian
motion started at 0 takes more time than a to exit from R.

3. Picard’s little theorem. This theorem, which states that if f is a nonconstant
entire function then the range of f contains every complex number, except perhaps
one, is, of course, equivalent to the statement that if ¢ and b are distinct complex
numbers then either a or b is in f(C). It involves no loss of generality to assume a
= 1and b = — 1, and we make the further simplifying assumption, which can be
easily circumvented, that f(0) = 0. What will be shown, then, is that if f(z) is a
nonconstant entire function satisfying f(0) = 0, then one of the points +1 is in
S(C). Assume, to the contrary, that f(C) contains neither of these points. Identify
the points of {z : |z| < .1}, call this set 0, and let € be C — {+1, —1} with the
points of 0 identified. Let 0 be the component of f~ 1(O) containing 0, and let € be
C with the points of 0 identified. Then f glves a continuous map from € to €, in
the usual manner, and a closed curve in € is mapped. to a closed curve in C.
Clearly any closed curve in € can be continuously shrunk, while remaining a
closed curve, down to a single point, while this is not true of all closed curves in €,
only those which are not tangled around *1 (i.e., those homotopic to 0). Thus the
image under f of any closed curve K in € must be a closed curve in € which is
homotopic to 0, since, as K shrinks to a pomt so must f(K). A contradiction will be
gotten by exhibiting a closed curve in € with an image not homotopic to 0 in €.
This curve will be (the projection of) a Brownian motion path.
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First we need the following lemma, equivalent to a theorem of It6 and McKean
(see [32]), who used the modular function in. their proof. A different proof is
indicated.

THEOREM 3.1. There is a time 7, P(r < o) = 1, such that s > 7 and Z, € 0
implies Z,, 0 < t < s, is not homotopic to 0 in C.

The tangling of a curve in € can be represented by a word written using the four
“letters” a, a~', b, and b~!, where a and a ! stand respectively for clockwise and
counterclockwise loops around 1 and b and b ™! serve similarly for — 1. The curve
in Figure 1 would have a ~'b as its word. If this curve is a Brownian motion path, it
will get less tangled in the future only if it loops counterclockwise around —1, i.e.,
unwinds before it does any of the other three possibilities, which would tangle it
more. Each of the four possibilities is about equally likely, by symmetry, so the
Brownian motion is about three times as likely to become more tangled up as less.
By considering times vy, <y, <7v; ‘- —> o such that Z € 0, and sucP that
Z,0 <t <4y, is about three times as likely to be more tangled up in C than
Z,,0 <t <y, and by using a law of large numbers related to the one which says
that, if a coin with probability 2 heads and } tails is tossed repeatedly, eventually
heads become and stay more numerous than tails, Theorem 3.1 can be proved.

Note that although Theorem 3.1 is stated for standard Brownian motion, since it
involves only path properties it is also true for Brownian motion.

Now the proof of Picard’s theorem can be completed. Let 7(f) be the
guaranteed by Theorem 3.1 for the Brownian motion f(Z,). Since Z, € 0 for
arbitrarily large times ¢ by Theorem 2.2, there is a time > 7(f), P(n < o) =1,
" such that Z, € 0, which implies fz,) e 0. Any of the paths Z,0 <t <n, gives the
contradiction. Details of the above can be found in [16].

4. Stoltz angles. The idea to use probability to help prove theorems of the
type proved in this section is Doob’s, and he worked in a very general setting. His
proofs, which were based in part on classical theorems in potential theory,
especially those involving the fine topology, have been altered here to make use of
recent techniques of Burkholder, Gundy, and Silverstein for dealing probabilisti-
cally with Stoltz domains. First, two more or less immediate theorems concerning
Brownian motion and analytic functions will be proved, and then the older
classical analogues will be stated, together with a sketch of how to get from the
former to the latter. If f is nonconstant and analytic in D and H is a closed set
then, using the notation introduced at the end of Section 2, {(w,e H} = {lim,_,,
f(Z,) € H}, using (2.4) and (2.5). Theorem 2.2 now immediately gives the follow-
ing: '

THEOREM 4.1. If f is nonconstant and analytic in D, and K is a compact set of
capacity 0, then

P(lim,_,, f(Z) € K) = 0.
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The other half of Theorem 2.2 implies that, for each number a, almost every path
W, a <t < oo, is dense in the plane, since the probability it visits each disc of
rational center and radius is one. Thus, the probability W,, a < ¢t < oo, is dense in
C for all a is one, which implies that on {» = oo}, almost all the paths f(Z,),
7 — (e A Tp) <t <7p, are dense in C for all ¢ > 0, since W,, 0 <t <, and
AZ), 0 <t <p, traverse the same paths at different speed. On {» < o0}, lim,,,
f(Z,) exists and equals W, almost surely. This gives the following dichotomy.

THEOREM 4.2. With probability 1, either lim,_,, f(Z)) exists or (Z,), Tp — (¢ A\
Tp) < t < Tp, is dense in the plane for each ¢ > 0.

The classical analogues of these theorems involve Stoltz domains, which will now
be defined. For each e, and each a between 0 and 1, define the Stoltz domain
S,(8) to be the interior of the smallest convex set containing the disc {|z| < a} and
the point e® (see Figure 2). If 4 is a subset of 3D, define S,(4) = U ,wec4S,(0).
These Stoltz domains often have sawtooth-like boundaries. The following theorem
is implicit in [20], although the proof is based on a result of Naim about fine limits.
A probabilistic proof is implicit in the last half of Burkholder’s paper, [6].

THEOREM 4.3. For each fixed a, 0 < a < 1, and each Borel set A, P(Z, ¢ S, (A4),
= (ENT)<t<tp,andZ, € A)—> P(Z € A)ase—0.

This theorem is, of course, vacuous if /(4) = 27P(Z, € A) = 0, but, if P(4) >
0, it says that almost all Brownian paths which hit points in 4 get in and stay in
S,(4) before they hit. It will not be proved, but note that it is immediate if 4 is
open.

A function g, analytic or not, defined in D, is said to have a nontangental limit at
© e if

lim, .6 ,c59)8(2) existsforall a, 0<a<l.

Using Theorem 4.3 it is easy to show that, if g is any function with a nontangental
limit g(e*) on a Borel set B C 9D,

(4.1) P(lim,,, g(Z,) = &(Z,)), Z, € B) = P(Z, € B).

FiG. 2
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This equality and Theorem 4.1 now give the following theorem of Privalov.

THEOREM 4.4. If f is nonconstant and analytic in D, and K is a compact set of
capacity 0, then the Lebesgue measure of the set of 3D where f has nontangental limit
in K is 0.

Now let 6 be fixed. The concept of Brownian motion Z, conditioned so
that Z, = e” is intuitive, but difficult to make rigorous since P(Z, =e?)=0.
Nonetheless this was done by Doob in [19] and the resulting process will be
denoted Z?, 0 < ¢ < 7,,. Here, Z¢ will always be 0. As you would expect, if E a
Borel set in D such that e® & E,and T, = {e®:0 — ¢ < ¢ <0 + ¢},

(42) P(z’eE for some £,0 <t <1p)
=lim, (P(Z, € E forsome 1,0<t¢<r7, and Z_ €T,)/P(Z, €T,),

and the probabilities of other events for Z? are similarly computed. (If ¢? € E, the
limit may not exist.) Conditional Brownian motion is nice enough to be used in the
following way. If E is a Borel subset of D,

43) P(Z,€E forsome #0<t<17p)
= ["P(2z? € E  forsome 1,0<1t<7,)dd/2m.

(If En 3D = @&, (4.3) can be derived directly from (4.2) without much difficulty).
A fundamental connection between conditional Brownian motion and Stoltz
angles is the following theorem, essentially proved in [12].

THEOREM 4.5. For each 6, 0 < 6 < 1, there is a constant a(o) > 0 such that, for
all z € S(0),
P(Z?,0 < t < 1p, contains a closed loop around z) > a(o).
If Fis a set such that D — F is simply connected, a closed loop in D which

. . . . . . . 0
wraps around a point in F intersects F, so if F n S,(#) contains points z, — e,

and if A4, is the event that Z?, 0 < ¢ < 75, contains a closed loop around z,, then
P(lim supA,) > lim supP(4,) > a,. From this it can be concluded, since Z2,
0 < ¢ < 7p, is a curve which first hits 0D at 7, that

(44)  P(Z?, 0 <t <rp,hits F at times arbitrarily close to 7,) > a(o),
and a 0 — 1 law ([3], page 30), applied to the reversed process, gives
(4.5) P(Z!,0 <t < 1p, hits F at times arbitrarily close to7,) = 1.

Now let u be a harmonic function, and define u,"(e”) = lim sup,_, . s,@4(2)-
Applying (4.5) and the maximum principle to the sets {# > A} gives

P(lim sup,,, u(Z?) > u(e”)) =1,
and integrating with respect to df gives
(46) P(hm Supr—wpu(zt) > u0+(ZTD)) =1

There is a corresponding result for lim inf.
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Now let T, = {e” : lim,_, 0, ,c ) f(z) does not exist}. Either the limit of the
real or imaginary part of f fails to exist as z — e” in S,(9), e® € T, so that (4.6)
and its analogue for lim inf give

P(lim,_,, f(Z,) exists, Z, € T,) =0,

which implies

4.7) P(r=,2Z_€T,)=P(Z, €T,)=1IT,)/ 27,
while (4.1) gives
(4.8) P(»< ,Z, &T,) = P(Z, &T,).

Equation (4.7), Theorem 4.3, and the second sentence before the statement of
Theorem 4.2, give that, if 4 is any Borel subset of T, /(4) > 0, then f(S,(4)) is
dense in C, which implies that f(S,(#)) is dense in C for almost every 8 € T,.
Furthermore, (4.7) and (4.8) imply /(T,) is the same (27P(v = o0)) for all . Thus
the following theorem of Plessner holds.

THEOREM 4.6. Except for a set of 0 of Lebesgue measure O, either f has a
nontangental limit at e” or f(S,()) is dense in C for each a, 0 < a < 1.

5. Hardy spaces. The probabilistic treatment of H” spaces, by D. L. Burk-
holder, R. F. Gundy, and M. L. Silverstein, was made possible by Burkholder and
Gundy’s proof, a few years earlier, of a theorem about standard one dimensional
Brownian motion. If Z, = X, + iY, is standard two dimensional Brownian motion
then X, and ¥, are independent standard one dimensional Brownian motions. This
connection is usually used to define two dimensional Brownian motion, in fact.
The definition of Markov time for standard one dimensional Brownian motion

" parallels the definition of Markov time given in Section 2, and if 7 is a Markov
time for Z, then it is for X, and Y, also. When P(1 = o) > 0, we say that 7 is a
Markov time if 7 A\ n is a Markov time for each integer n. It follows from the
construction of Section 2 that » is a Markov time for W,, and thus for Re W, and
Im W,. If A4,, 0 <t < o0, is any stochastic process, define the new process A4},
0 <t < o0, by 4} = supy,<,|4,|- In [11], Burkholder and Gundy prove that, if T,,
0 € ¢t < o0, is standard one dimensional Brownian motion satisfying I'y = 0, then,
for each p > 0, there are positive constants ¢, and C, such that

2 2
(5.1) cpw/ < ET}" < C,Er?”/

for all Markov times 7.

Let & be the class of all functions f = u + iv, analytic in D, which satisfy
f(0) = 0. If 4,(f) and B,(f) are two quantities associated with the functions f € ¥,
we write 4, ~ B, if these exist positive constants k, and K,, not depending on f,
such that k,4, < B, < K,4,, 0 <p < 0. The relation = is clearly an equivalence
relation. An application of (5.1) to Re W,, t > 0, gives

(5.2) Ev?/? ~ ERe W} = Eu(Z,)**,
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and similarly we have

(5.3) Ev?? ~ Eo(Z,))*,
which together give
(5.4) Eu(Z, )* ~ Eo(Z, ))*".

Now define, for a set F C D, the sets A(F) = {Z, € F for some ¢ < 7,} and
N,(F)={0:5,(0) N F} # <. Itis proved in [12), in a slightly different form, that
for each o, 0 <o < 1, there are positive constants ¢, and C, such that, if Fis a
Borel set and D — F is simply connected,

(5.5) ¢, P(A(F)) < I(N,(F)) < C,P(A(F)).
(We may take C,~! to be the a(o) of Theorem 4.5.) Note that if F is closed,

P(A(F)) is the harmonic measure of F relative to D — F. An application of (5.5) to
the sets {|u| > A} yields the beautiful inequalities

(5.6) ¢, P(u* > N) < I(N,(u) > A) < C,P(u* > \), A>0,

where N (u)(0) = sup,cg p)|u(z)| is the nontangental maximal function of w.
Integrating (5.6) times A7~ ! gives

(5.7) Eu(Z, )*" ~ [§'N,(u)(0)df, o fixed.
The equivalent result holds for v, which, when combined with (5.7) and (5.4) yields
(5.8) [2"N (u)(0)d8 ~ [N, (v (0)d¥, o fixed.

This is a major theorem of [12]. Together with previously existing results, (5.8)
made it possible to prove

(59) [N, (¥ (0)dd ~ ||f|» = lim, ,(2m) " '13"| f(re®)Pd, o fixed,

where || f|| g» is the H? norm of f.

The relationship (5.9) can be used to give a number of quantities that are
equivalent to the H” norm for f € %. Perhaps the most useful is to combine (5.9)
with (5.2) and (5.7) to get

£l = Ev?/2.
In particular, f € H? if and only if Ev?/2 < c0. For many purposes Ev?/? is a
simpler quantity to work with than || f|| 4», as D. L. Burkholder has recently shown.
We illustrate by sketching a proof of the following theorem, first proved by
Burkholder in [8], although implicit in the work of Lowell Hansen, [26], if f is
univalent.

THEOREM 5.1.  Let f and g be analytic in D with f(0) = g(0) = 0. Suppose g € H?
and that lim,_, g(re®) exists and belongs to C — A(D) for almost every 8. Then
f € H”, .

The hypotheses of this theorem, together with equation (4.5) (here F will be a
segment {re”, R < r < 1}), imply there is a random variable s < 7, such that
(5.10) P(g(Z,) ¢ f(D)) = L
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Let n = inf{z > 0 : W,(g) &€ f(D)}. Then (5.10) implies P(n <»(g)) = 1. Let y =
inf{¢t > 0: W,(f) & f(D)}. Clearly y > »(f). Now y and 5 have the same distribu-
tion, since both are the first exit time of a standard Brownian motion started at 0
from the set (D). Thus

Ev(fy/* < Ey?/? = En?/2 < Ev(gy’~
Since g € H?, Ev(g)"/* < w0, 50 Ev(f)"/? < o and thus f € H”, completing the
proof.

Albert Baernstein II has recently shown, without probability, that the hypotheses
of Theorem 5.1 imply | f|| z» < || 8|l x> (see [8]). There are versions of the above
formulas for functions which do not vanish at 0, as well as for functions analytic in
a half plane, in [12]. For related recent applications of probability to analytic
functions, see [5], [7], [9] and [10].

6. Conjugate function mequalltles Let f = u + iv be analytic in D, continuous
in D, and satisfy f(0) = 0. If U and U denote, respectively, the restrictions of u and
v to the boundary of D, it is easily seen that U determines {7 completely, and U is
called the conjugate function of U. This map ¢an be extended so that the conjugate
function of any totally finite signed measure is defined in a way compatible with
the definition just given, but here we will work with U which are as just above, that
is, boundary values of functions analytic in D, vanishing at 0, and continuous in D.
The collection of all functions on 3D of this type will be denoted @. In a number
of senses, the distribution of U cannot be too much greater than that of U. An
example is the following theorem of Kolmogorov. For a number of related
theorems, see [36].

THEOREM 6.1.  For each p, 0 < p < 1, there are positive constants K » Such that

- (6.1) (3| O(e™)rdh)"? < K127 U(e™)|db, Uea.
Note that if we define
(62) SUPy o, v ce(S37| U(e™®)PdB)' " / (37| U(e™)|d8 = C

then Theorem 6.1 is equivalent to C, < 0.
Since Z, is uniformly distributed on 9D,

63) 51371 0(e®)Pdb = E|o(Z,) = Elm W,
and
(64) S-S |U(e*)|d8 = E[Re W,| = lim,_ E[Re W,

the last equality by the bounded convergence theorem. Also W, =0, by our
simplifying assumption. )

Let 9N be the class of all Markov times for W,. In view of (6.3) and (6.4), if
65 (Eltm W)™
( . ) SuPne% nEOhm EIRC /\1'

= Cp”

1—00
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then C/ > C,, so if C; is finite then C, is. (Since W, is connected in some way with
/, it is perhaps conceivable that C; depends on f. In reality, C, depends only on the
fact that W, is Brownian motion started at 0). A natural way to prove ¢, <owisto
find the n = p which maximizes the ratio (6.5), and then to calculate

(6:6) (E|tm W,P)"/* /lim, , ,E|Re W,

which will, of course, be C,. A solution is p = inf(z > 0: [Im W,| > 1, Re W, =
0}. This will not be proved here. It happens that C, is not only finite, but also
C, = C, which is, of course, the best possible value for K, in Theorem 6.1. The
examples necessary to show this are associated with the standard analytic function
8(z) = 2z /(1 — z%) mapping D onto C — {z : [Im z| > 1, Re z = 0}, which is not
surprising, since »(g) = p. The constant is C, = ((27) ™' f3"|Im g(e®)|?d8)'/>.

With a little more work it can be shown that this is also the best constant in the
analogue of Theorem 6.1 for conjugate functions of arbitrary signed measures (see
[17]). This method is applied to other problems in [14] and [15].

7. Covering properties of analytic functions. The first part of this section will
be concerned with theorems related to Hayman’s generalization of Koebe’s theo-
rem (see [35], page 85). If f is analytic in D let E; be the set of those real numbers
r > 0 such that the circle of radius 7 around 0 lies entirely in f(D). Hayman proved
that f(0) = 0 and f'(0) = 1 imply /(Ey) > ;. The Koebe function shows that 1 is the
best possible constant. We are not able to prove this sharp result with the method
given here, but can prove it with a smaller constant in place of +. Furthermore, the
condition f’(0) = 1 can be relaxed. In what follows, C will stand for an absolute
constant. The value of C may be different in different theorems. Numerical values
for C could be found only with considerable complication of the arguments, so this
is not done. Let 4, ((8) = A(8) = [/, f'(z)] be the classical area function of f.
Here S,(0) is the Stoltz domain defined in Section 4, and integration is with respect.
to area, so that 4(f) is the area of f(S,(#)) counting multiplicity (see [36], page
290). The area function of z" approaches a positive constant as n — co. We prove

THEOREM 7.1.  There is a constant C(e, 6) = C such that if [ is analytic in D,
vanishes at 0, and satisfies 1{0 : A(8) > ¢} > e, then (E) > C.

If /(0) = 1 then A(0) > [[(;)<o)|f'(2) > mo? so that Theorem 7.1 implies a

weak version of Hayman’s theorem with any of the constants C(7¢?, o) in place of
1

e :
Theorem 7.1 follows from the following two theorems.
THEOREM 7.2. There is a constant C(e) = C > 0 such that, if f is analytic in D

and satisfies f(0) = 0 and P(v > €) > e, then I(Ep) > C.

THEOREM 7.3.  There is a constant C(o, €) = C > 0 such that, if f is as above and
I(0 : A(B) > €) > ¢, then P(y > C) > C.
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Theorem 7.3. follows from Theorem 2 of [13]. (The area function in [13] is
wrongly defined, by the way.)

Now Theorem 7.2 will be proved. Since W, is standard Brownian motion and » is
inf{z > 0: W, & f(D)}, Theorem 7.2 is a consequence of the following lemma. If
F is a closed subset of C let E(F) be the set of all those r > 0 such that the circle of
radius 7 is completely contained in E(F).

LEMMA 7.4. There is a C(e) = C > 0 such that, if F is a closed subset of C and

I(E(F)) < C, then
P(Z, e F forsome t,0<t<e)>1-—c¢

ProOF. Let 7, = inf(z > 0:|Z| = r}. Pick s so small that
(7.1) P(r, <€) >1—(e/2).
Let A = Fn {z < s}. It will be shown that, for some § > 0,
(72) P(z, €4 forsome £,0<t<7)>1-(e/2) if I(E(A)) <.
This & will suffice for C in Lemma 7.4, by (7.1). Now

(73) P(Zz,e 4 forsome ¢ <) > P(Z, € E(A) forsome ¢ <r,).
This equation follows from probabilistic arguments of Haliste [25]. For a different
proof see Baernstein [1]. Note that the probabilities in (7.3) are the harmonic
measures of 4 and E(A) with respect to the point 0 and the regions {|z| < s} — 4
and {|z| < s} — E(A) respectively. Thus it suffices to prove (7.2) with E(A4) in
place of A. Let Q be the region {|z| <s} — [0, s). Let b be so small that, if
n =inf{t > 7, : Z, € 9Q}, then

(7.4) P(Z,€[0,5) > 1—(e/4).

That such an 7 exists follows from the statement at the top of the page 60 of [21]. It
is easily shown that the distribution of Z, on dQ is absolutely continuous with
respect to Lebesgue measure, either probabilistically or using the interpretation of
this distribution as an average of harmonic measure. Thus, since P(Z, € E(A) for
some ¢ < 7,) < P(Z, € E(A)), the existence of a § such that (7.2) holds with E(4)
in place of A follows, completing the proof of Lemma 7.4 and thereby that of

Theorem 7.2.
To conclude this section the following theorem will be proved.

THEOREM 7.5. Let h(z) be analytic in |z| > A for some number A > 0. Suppose
(1) limr»w{max|z|=r|hl(z)|} =

and
(2) lim supy,_, |1/ A(2)| = oo. .
Then either h(z) = + 1 for z of arbitrarily large magnitude or h(z) = — 1 for z of

arbitrarily large magnitude, or both.

Picard’s big theorem (see [1]) is easily derived from Theorem 7.5, since if (1) does
not hold the maximum principle gives that 4’(z) is bounded in |z| > 24 and thus
has a removable singularity at infinity, while, if (2) doesn’t hold, 1/A(z) is bounded
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in {|z| > B} for some B, and thus has a removable singularity at oo, so if either (1)
or (2) fails to hold, # has a nonessential singularity at co.

First several lemmas will be stated. The first of these is an extension of Theorem
7.1, and is a little more general than equation 10 of [13]. It can be proved in a
similar way.

Let rD be the disc of radius r around 0, let 7(r) = inf{¢: |Z,| = r}, (so that
(1) = 7p), let f be analytic in rD, define p as in (2.3), and let M(r) =
max, .| f'(z)|. Then

LeMMA 7.6. For each s, 0 <s < 1, there is a positive constant C(s), which
decreases as s increases, such that

peip(r(a)) > C(s) M(s2)’a®) > C(s).

The statement of the next lemma is related to Theorem 3.1. Although Z, started

at 0 in that theorem this was done only to simplify notation, and, in fact, Z, could

have started at any point in 0. The proof of the following lemma follows from the
proof of Theorem 3.1 of [16].

LeMMA 7.7. IfZ, =z € 0, there is a time , P, (T < oo) = 1, such that s > v and
Z € 0 implies Z,, 0 <t <s, is not homotoptc to 0 in €. Furthermore, there is a
Junction A(x), which does not depend on z € 0, satisfying A(x) = 1 as x — oo, such
that

P,(t < x) > A(x).
Next the following weak form of the Picard-Schottky theorem (see [1]) is proved.

LeMMA 7.8. For each r, 0 < r < 1, there is a positive constant K(r), such that
M(r) > K(r) and | f(0)| < 5 implies f(D) contains either +1 or —1 or both.

PROOF. Let r be fixed. Either Lemma 7.6 or Schwarz’s lemma guarantees that,
if M(r) is large enough, then f(D,3) is not contained in 0, and we assume that
M(r) is this large. Let D, be the largest disc with center 0 such that f(D,) C 0.

Let T = inf{t >x7: Z, = 1or x}, and let S = inf{z > 1(r4) Z,=1orx}. The
strong Markov property and an equation like (2.2) give
(1.5) P(1Z;] = x1Z,,0 < 1 < r(x?)) =1.

Since x <r% %<r?|, so C( )< C(r%), and Lemma 7.3 with s = a = x2
implies

(7.6) P(p(r(x?)) > Cr)M(x)’x) > C(r).
By the mean value theorem, xM(x) < (,o) ( 2'0), so, since p(T) > p(r(x2 )), (7.5)
and (7.6) give

(1.7) P(p(T) > C(r4)(400x)™"  and Z; € D,)> c(r3)/2.
Also,
(7.8) P(|Z5| = x|, 0 < t < 7(r%)) = In(r) /4In(x),
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and an argument similar to the one which gave (7.7) gives
(79) P(p(S) > C(F)M(r)*r3  and Zg € D,) > C(ri)In(r)/4in(x).
From (7.7) and (7.9) it can be deduced that, if M(r) is large enough, then either
(7100  P(p(S)>y and Zge D,)>1-A(y), forsome y,
or
(711)  P((T)>y and Z,€ D,)>1-A(y), forsome y,

where A(y) is as-in Lemma 7.7. (If x is very small, (7.10) holds, while if x and M(r)
are large then (7.11) will hold).

Now (7.10) guarantees P(p(S) > 7, Zg € D,) > 0, and (7.11) guarantees P(o(T)
>1,Zr € D,) >0, 7 as in Lemma 7.7, so, if M(r) is large enough, either +1 or
—1 or both are in f(D), by the argument of Section 3.

Now let T be the region {z:3<|z|] <2 and —«/4 < Argz < 37/2}. The
following lemma can be proved in a manner similar to the proof of the last lemma,
or can be proved using this lemma and the existence of a univalent analytic
function mapping I" onto D.

LEMMA 7.9. Let g be analytic in T and let |g(1)| < 3. Let T, = {z € T : distance
(2, OT) > ¢}. There is a constant ©(e) > 0, such that |g'(e)l > O(e) for z €T,
implies that g(T') contains either +1 or —1 or both.

Now the proof of Theorem 7.5 can be completed. Let z, and z, be two points on
{z:]z| = R}, R/2 > A, such that |h(z,)| <3 and |K'(z,)| > ©(.01). Such z,, z,
occur for arbitrarily large R. Both A(z,z) = g,(z) and h(z,/z) = g,(z) are analytic
in T and satisfy |g(1)| <. Furthermore, |gi(z,/2))| = R|W'(2)| = |83(z1/ 2\,
and one of z,/z,, z,/z, is in T and at least a distance of .01 from the boundary of
T. Thus Lemma 7.9 guarantees that one of g,(I'), g,(I') contains either —1 or 1,
which implies that /4 takes on either —1 or 1 in R/2 < |z| < 2R. Since this is true
for arbitrarily large R, & takes on either —1 or 1 infinitely often.

8. Concluding remarks. As was mentioned in the introduction, some probabil-
istic expressions have arisen in the preceding sections which are directly translat-
able to more conventional expressions, for example, E|W,| = (3| f(e?)|d8 /2,
while others cannot be so handled. The most interesting of these, to me, is the time
»(f). The distribution of »(f) is an intuitively appealing measure of the size of f(D),
since if f is univalent then » is the first exit time of standard Brownian motion from
f(D) and, even if f is not univalent, a similar interpretation can be given using
Riemann surfaces. In the preceding sections there are a number of instances where
information about the size of »(f) translates easily into more conventional informa-
tion about the size of f(D). However, little of a precise nature is known about ».
For example, it is not even known in what sense, with regard to »(f), z is the
smallest analytic function in D satisfying | f’(0)| = 1. It would be nice if

8.1) P(v(z) > A) < P(»(f) > N), A>0,
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for all such f, and it is probably true that

(82) E®(v(z)) < EQ(»(f)),

for all increasing and convex functions ® on [0, o), but neither of these results is
known (although it is known that (8.2) holds if ®(x) = x; see equation (2) on page
309 of [27]). In the other direction, it can be asked in what sense, with regard to »,
the Koebe function z/(1 — z)? is the largest univalent function in D such that
|f’(0)] = 1. The reader interested in these questions should see Burkholder, [7].

The subject of Brownian motion on Riemann surface is outside the scope of this
paper, but it has been successfully defined, and, since the analogue of Lévy’s
theorem holds, can be used to study analytic functions on Riemann surfaces. Many
of the arguments in Section 4 were adapted from proofs for such functions. Now
on some surfaces, for example the plane, Brownian motion is recurrent, that is,
returns to each neighborhood of its starting point at arbitrarily large times, while
Brownian motion on other surfaces, for example an open disc, does not have this
property. If there is an analytic function mapping one Riemann surface onto
another, then, by Lévy’s theorem, Brownian motion is recurrent on both or neither.
Kakutani [29] used such ideas to study when there exist such mappings. See
McKean’s book [32] for more about Brownian motion on Riemann surfaces. It is in
this context that a number of interesting applications of function theory to
Brownian motion occur.

The whole subject of conformal invariance has been studied in a more abstract
setting in [24]. Finally, we remark that there are uses of Brownian motion in
analysis other than those mentioned here. See, for examples, J. -P. Kahane’s paper
[28].

Acknowledgment. The author would like to thank David Drasin for a number
of helpful comments.

REFERENCES

[1] BAERNSTEIN II, A. (1974). Integral means, univalent functions and circular symmetrization. Acta
Math. 133 139-169.

[2] BAERNSTEIN II, A. (1978). Some sharp inequalities for conjugate functions. Indiana Univ. Math. J.
27 833-852. :

[3] BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory. Academic
Press, New York.

[4] BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, Mass.

[5] BURKHOLDER, D. L. (1975). One sided maximal functions and H”. J. Functional Analysis 18
429-454.

[6] BURKHOLDER, D. L. (1976). Harmonic analysis and probability. In MAA Studies in Mathematics,
Vol. 13, Studies in Harmonic Analysis. (J. M. Ash, ed.) 136-149.

[7] BURKHOLDER, D. L. (1977). Brownian motion and classical analysis. Proc. Symp. Pure Math. 31
5-14.

[8] BURKHOLDER, D. L. (1977). Exit times of Brownian motion, harmonic majorization, and Hardy

- spaces. Advances in Math. 26 182-205.

[9] BURKHOLDER, D. L. (1978). Boundary value estimation of the range of an analytic function.

Michigan Math. J. 25 197-211.



932 BURGESS DAVIS

[10] BURKHOLDER, D. L. (1976). Weak inequalities for exit times and analytic functions. In Proceedings
of the Probability Semester, Banach Center, Warsaw, 1976. To appear.

[11] BURKHOLDER, D. L. and GUNDY, R. F. (1970). Extrapolation and interpolation of quasi linear
operators on martingales. Acta Math. 124 249-304.

[12] BURKHOLDER, D. L., GUNDY, R. F. and SILVERSTEIN, M. L. (1971). A maximal function characteri-
zation of the class H?. Trans. Amer. Math. Soc. 157 137-153.

[13] Davis, B. J. (1973). An inequality for the distribution of the Brownian gradient function. Proc.
Amer. Math. Soc. 37 189-194.

[14] Davis, B. J. (1973). On the distributions of conjugate functions of nonnegative measures. Duke
Math. J. 40 695-700.

[15] DAvis, B. J. (1974). On the weak type (1, 1) inequality for conjugate functions. Proc. Amer. Math.
Soc. 44 307-311.

[16] Davis, B. J. (1975). Picard’s theorem and Brownian motion. Trans. Amer. Math. Soc. 213 353-362.

[17] Davis, B. J. (1976). On Kolmogorov’s inequalities || fllp < GlIfll, 0 <p < 1. Trans. Amer. Math.
Soc. 222 179-192.

[18] Doos, J. L. (1954). Semimartingales and subharmonic functions. Trans. Amer. Math. Soc. T7
86-121.

[19] Doos, J. L. (1957). Conditional Brownian motion and the boundary limits of harmonic functions.
Bull. Soc. Math. France 85 431-458.

[20] Doos, J. L. (1961). Conformally invariant cluster value theory. Illinois J. Math. 5 521-549.

[21] DYNKIN, E. B. and YUSHKEVICH, A. A. (1969). Markov Processes: Theorems and Problems. Plenum
Press, New York.

[22] FeFrerRMAN, C. (1976). Harmonic analysis and H” spaces. In MAA Studies in Mathematics, Vol B,
Studies in Harmonic Analysis. (J. M. Ash, ed.) 38-75.

[23] FerFrerMaN, C. and STEIN, E. M. (1972). H? spaces of several variables. Acta Math. 129 137-193.

[24] GETOOR, R. K. and SHARPE, M. J. (1972). Conformal martingales. Invent. Math. 16 271-308.

[25] HALISTE, K. (1965) Estimates of harmonic measures. Ark. Math. 6 1-31.

[26] HaNseN, L. J. (1972). Boundary values and mapping properties of H” functions. Math. Z. 128
189-194.

[27] HunTt, G. A. (1956). Some theorems concerning Brownian motion. Trans. Amer. Math. Soc. 81
294-391.

[28] KAHANE, J. P. (1976). Brownian motion and classical analysis. Bull. London Math. Soc. T 145-155.

. [29] KakuTANI, S. (1944). Two dimensional Brownian motion and harmonic functions. Proc. Japan
Acad. 20 706-714.

[30] KakuTaNi, S. (1945). Two dimensional Brownian motion and the type problem of Riemann
surfaces. Proc. Japan Acad. 21 138-140.

[31] Levy, P. (1948). Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris.

[32] McKEAN, H. P. Jr. (1969). Stochastic Integrals. Academic Press, New York.

[33] NEeLsoN, E. (1967). Dynamical Theories of Brownian Motion. Princeton Univ. Press.

[34] PerersoN, K. E. (1977). Brownian Motion, Hardy Spaces, and Bounded Mean Oscillation. Cam-
bridge Univ. Press.

[35] Tsui, M. (1959). Potential Theory in Modern Function Theory. Maruzen, Tokyo.

[36] ZyaMUND, A. (1959). Trigonometric Series. Cambridge Univ. Press.

STATISTICS DEPARTMENT

PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907



