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CONVERGENCE RATES FOR PROBABILITIES OF
MODERATE DEVIATIONS FOR SUMS OF RANDOM
VARIABLES WITH MULTIDIMENSIONAL INDICES

By ALLAN GuT
Uppsala University

For a set of ii.d. random variables indexed by Z‘_{,, d > 1, the positive
integer d-dimensional lattice points, convergence rates for moderate deviations
are derived, i.e., the rate of convergence to zero of, for example, certain tail
probabilities of the partial sums, are determined. As an application we obtain
results on the integrability of last exit times (in a certain sense) and the number
of boundary crossings of the partial sums.

1. Introduction. Let Z%,d > 1, be the positive integer d-dimensional lattice
points with coordinate-wise partial ordering, < . Points in Z% are denoted by m, n
etc. Also, for n = (n, n,, - + + , n;), we define |n| = II?_,n, and n — oo is interpre-
tedasn, »>o00,i=1,2,---,d.

Throughout the paper X and {X,; n € Z¢} are ii.d. random variables and
S, = Zk<aXi In [9] we extended results of Baum and Katz [1] to d > 2. As a
typical example we proved that, for ar > 1,a >3, S, |n|*"%- P(|S,| > |n|*- &) <
o if and only if E|X| - (Ig/X|)*"! < o0 and, if r > 1, EX = 0.

For a =3 the sum cannot converge in view of the central limit theorem and for
this case |n|* has to be replaced by (|n|1g|n|)%, where 1g x = max{1, log x}. (Simi-
larly, 1g, x = max{1, lg1g x} etc.) For d = 1, Davis [3] and Lai [12] have obtained
results for that case.

One aim of this paper is to study these problems for d > 2, thus generalizing the
results of [3] and [12]. In Section 3 we state some results, proofs of which are given
in Sections 4 and 5. In Section 6 we give the corresponding theorems for P(|S,| >
e(]n]lgzlnl)%) which give connections to the law of the iterated logarithm. Some of
the theorems of Section 6 seem to be new also for d = 1, although results along
those lines have earlier been given by Baum and Katz [1] and Davis [2].

In Section 8 we use the above theorems and results from [9] to give an
application to last exit times and the number of boundary crossings defined as
L, = sup{|n|; |S,| > &-a,} and N, = S I{|S,| > €- a,} respectively, where a, =
[n|*, « >3 or (|n|1g]n|)% or (|n|1g2|n|)%. The preceding results are used in order to
investigate the existence of moments of L, and N,, thereby extending earlier results
from d = 1, see, e.g., [19], [16], [17], [20], [13] and [14].

The main tool in earlier papers dealing with moderate deviations, except for [3],
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Theorem 1 and [12], are remainder term estimates for the central limit theorem,
whereas our approach is a direct estimation of the tail probabilities involved, and
s0, in some instances, our approach provides new proofs for the case d = 1.

2. Auxiliary results. In this section we collect some auxiliary results needed
later.

Let d(x) = Card{n € Z%; |n| = [x]} and M(x) = Card{n € Z%; |n| < [x]}.
Then, as x — o, we have M(x) = O(x(log x)?~') and d(x) = o(x®)V8 > 0.

The sign ~ is used to indicate that the quantities on either side converge
simultaneously. 7{-} denotes the indicator function of the set in braces. We also

use 7(j), j > 1, to denote the point (j, 1, - -, 1) and n(i), i > 1, for the point
(ny, Ryy + * + 5 ny_y, §). The first result corresponds to [9], Lemma 2.1.
LemMa 2.1. Let r>0and m=0,1,2,- - - . For any random variable X the

following are equivalent:
E|X[- (glX)*" " < oo
Salnl¢/2=1. (log [u])" - P(1X| > (n1g[n))?) < oo
S, JOD7 (log )* 1 P(IX] > (1g)?) < oo
52, J/271 (log j)™ - d(j) - P(IX| > (1g)?) < co.

We also need the classical exponential bounds, see [15], page 254, more precisely
the following version.

LEMMA 22. Let Y, Y,,-- - Y, be iid. random variables, |Y,| < b, EY, =
0, Var Y, = 6> < 0. Then, for 0 <t <b~,

2.2
P(|Z1Y,| > x) < 2exp{ —ix + ”t2° (1 + %b)}
ProoF. From [15], page 255 we have E exp(tY,) < 1 + (%62/2)(1 + (tb/2)).

The rest is immediate.
The next tool is a variation of the Lévy inequalities. We denote a median of X by

med(X).

LemMA 23. Let {X,; k € Z4} be iid. random variables with mean 0 and
variance o*. Then ’

() P(maxg_ S, > A) < 27+ P(S, > A — do(2n])2).

(i) P(max, /S| > ) < 2 P(S,| > X — don)?).

Proor oF (i). The proof is based on induction. For d = 1, see [15], page 248.
Suppose the result is true for d — 1 dimensions. Define myKk) =
max, ¢ ;¢ |med(Sy) — Sy, and m, = max, _,m,(K).

By Tjebyshev’s inequality [med(Sy;, — Sk('u))|2 <2 Vaf(Sk(,) = Sk = 2.|k(1)| .
(ny — i)a?, (cf., [15], page 244), and so m (k) < o(2k(n,))? and m, < o(2|n|)2.
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Next we note that
{Sk(i) > }\} C {Sl((l) - med(Sk(,-) - Sk(lld)) > }\ - md(k)}
and
{8 > A} N {Suny = Suy — med(Siny — Sin) > 0}}
- {Sk(nd) > A= md(k)}
and so, by minor changes in an argument of Gabriel, [7], Ch. II, Section 1 or [8],
pages 9-10, we obtain
P(max, _,Sy > A) < 2P(maxy(,y<nSim,) > A — my)
1
< 2P(maxk(,,d)<nSk(,,d) > A - 0(2|n|)2).

Since, for n fixed, {k(n;) < n} is a set of indices of 4 — 1 dimensions, the induction
hypothesis is applicable and the conclusion follows.
The proof of (i) is immediate.

ReMARK. The proof actually shows that we may use A — 41(2)212‘.‘,f'_,(nl - n,
1 1
++ -+ -n)? instead of A — do(2|n|)2 in the right-hand side.

3. The log-case, @ =1. Let {X,;n € Z¢} be iid. random variables. In [9],
Theorems 4.1 and 4.2 the following results were established.

THEOREM 3.1. Forar > 1, a > %, the following are equivalent:

(3.1) E|XI'(g| X)) '< oo  and,if r>1,EX=0.
(32) S, a2 P(S, > [nf-&) <o forall &> 0.
(3.3) a0 "2 P(max, _,|S,| > [n|*-e) < 0  forall &>0.

Ifar > 1, a > %, then the above statements are also equivalent to

(34) 2077 P(sup;cpl S/ Kl > €) < o0 forall &> 0.

THEOREM 3.2. For ar = 1, a >3, the following are equivalent:
(3.5) E|X|"- (IgX|)*< o  and,if r>1,EX=0.
(3.6) San|!- logln| - P(|S,| > [n|'/"-e) < o0  forall &>0.
(3.7)  Z,n|7'- logn| - P(max,_,|S,| > [n|'/"- &) < o  forall €>0.

" (38) 32 i P(sup; il S/ K[| > €) < o0 forall &> 0.
The theorems generalize results of Baum and Katz [1].

In this section we state the results corresponding to ra > 1, a = %
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THEOREM 3.3. Letr > 2. If EX =0, EX? = o2 and

(3.9) E|X|- (gX)*'""? < 0, then
(3.10) 3, /n¢/2=2. P(|S,| > e(Inflghl)?) < oo, e >a(r —2)7.
(3.11) S, /0C/2=2. P(max, IS,/ > e(lnllg)?) < o, & >o(r —2)2,
1 1
(3.12) 322,722 P(sup, < lSy/ (Kligk)?| > &) < o0, &> o(r — 2)2.
Conversely, if one of the sums is finite for some ¢, then so are the others, EX = 0
and (3.9) holds.

The case d = 1 has been studied in [3] and [12].

THEOREM 3.4. The following are equivalent:
(3.13) EX?-(Ig X)) "< and EX =0.
(3.14)  S,n|~'- logln| - P(IS,| > e(nlign)?) < 00 forall &> 0.
(3.15) =,n|™!- log|n| - P(maxk<n| Sl > e(]n]lg]n|)%) <o forall £>0.

(3.16) =2, P(sup;cpl Si/ (IKliglk))?| > e) <o  forall &>0.

J

For d = 1, see [3], Theorem 1.

Before we proceed with the proofs of these results we make some remarks.

@) In full accordance with the results of [9], i.e., with Theorems 3.1 and 3.2
above, (3.9)-(3.11) should also be equivalent when r = 2.

By checking the proof of Theorem 3.4 below it is easily seen that the same
estimates also yield (3.9) = (3.10) & (3.11) provided the variance is finite, some-
thing which is guaranteed as soon as d > 2. In fact, we have

THEOREM 3.5. Ford > 2, the ff)llowing are equivalent:
(3.17) EX? - (lglX|)“*<o and EX=0.
(3.18) S,n/~"- P(IS, > e(nllgln])?) < o0 forall &> 0.
(3.19)  Z,n|~"- P(max,|S,/ > e(nllgh))}) < o forall &>0.

Furthermore, if d = 1, (3.19) = (3.18) = (3.17).

This leaves the case d = 1 without a complete solution. By modifying the proof
of Theorem 3.4 it is possible to show that EX?- (Ig|X[)™'*" < oo for some n > 0
implies (3.18) and (3.19) for symmetric random variables, i.e., finite variance is not
necessary. (Recall that if the variance is finite we have (3.14) by Theorem 3.4, i.e.,
(3.18) is trivially satisfied.) Since the variance may be infinite it is likely that one
has to impose conditions on the tail behaviour of the distribution to obtain the best
result, (just as in the central limit theorem and the law of the iterated logarithm, cf.
[5], vol. 11, and [6]).
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(ii) It is natural to ask whether the constraint ¢ > o(r — 2)% can be removed in
Theorem 3.3. To see that this is not the case, let X € N(0, ¢%). By using the
well-known lower bounds for normal probabilities (see [5], vol. I, page 175) simple
calculations show that, for large j,

(3.20) P(lS,,( 5l > e(jlog j)%) > const.- (log j)_%~ jTere,
Thus,

Salnf/272- P(1S,] > e(Inllgln)?)

1
= 32272 d() - P(IS,p)| > e( 18)?) = oo

if (r/2) — 2 — (€2/20%) > — 1, ie., fore < o(r — 2)2.

4. Proof of Theorem 3.3. The methods of [9] do not apply in order to prove
Theorem 3.3, so we have to use a different approach, which is partly based on the

method of Erdos [4] and Katz [11].
@) (3.9) = (3.10). Recall that r > 2 and thus 6> < co. Choose 8,0 <8 <3,

arbitrarily-small and set b, = 28a% ~'(jn| - (Igln))~Y) and ¢, = (¢/ 2)(|n|lgjn])>.

Define Xy = Xy - I{|X,| < b,}, XY = Xy~ I{|X\| > c,} and X" = Xy - I{b, <
|Xi| < cp} = Xy — X — Xy for k< n, |n| large (to ensure that b, < c,).

Set A, = {|S,] > e(nllgin))?}, 4, = {|X,| < b, for all k < n}, 4 = {at least one
X! # 0,k <n} and 4" = {at least two X" 7 0, k <n}. With this notation we
have
(4.1) A, c{A, N AU AU AY.

We now proceed to estimate the probabilities of the events on the right-hand side
- of (4.1).

Set S, = Sy <. Xy Then P(4, N Ay = P(S;| > s(|n|1g|n|)%). From Lemma 2.2
with b = b,, t = 28b, ' and (0')? = Var(X;) we obtain after elementary computa-
tions

(42) P(|S; - ES}) > e(nllgln])?) < 2 exp{ - %-‘Sllgm }
Furthermore, since EX, = 0, it follows that
|ES.| = In| - [EX]| = In| - |[jx>5.x dF| < 0| * 55 |x|dF
< const. (|nfigin])? [, 4F = o((mllgl))?)  as B> oo.
Thus _
@3)  P(|S; > e(1 + 8)(nllgn])?) < 2 - o|=F1=9/2"  forlarge |n]
and consequently ’
(44) S5, n|?7P72 P(4, N A}) < const. Z,[n|/D727,
where 8 = e%(1 — 8)/20%(1 + &)™
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The last sum is finite if (r/2) —2 — B < — 1, i.e., for & > o(r — 2)2- (1 + 8)2/(1

- 9).
Secondly, P(4,) < |n| - P(|X| > ¢,) and hence
(4.5) Z,m|/272- P(A7) < Z,n|?7P71- P(X] > ¢,) < 0

because of Lemma 2.1.

Finally, for large [n|, P(4}') < |n? - (P|X| > by)* < C, - [nf* - [P(X]| -
(gl X )*~1~¢/? > C(o, ) - 8"+ [n|"*(gn))* ') < C "o, €) - 6 ¥ [n*~"-
(gn|**1~9 and thus, since r > 2,

(4.6) Zjaisnnl/?7%- P(47) < const. -5+ Z,[n| /2 (Ig)* "% < 0.

By combining (4.1), (4.4), (4.5) and (4.6) we obtain

2
47) S22 P(1S,] > e(lnfighl)?) < o0 if & >o(r—2) (11+—88)

and since 8§ was arbitrarily chosen, (3.10) follows.
(i) (3.10)= (3.11). Choose s, 3 < s < r/4. Then,

00 > Z,/n¢/272- P(|S,| > e(Inllgn))?)
> const. -3 [n|"/P~2. P(|S,| > &- n[*)
and so, by [9], Theorem 4.1 (i.e., Theorem 3.1 above) we have E|X|/*.

(g|X|)*~! < co. Since r/2s > 2 we also have EX = 0 and EX? = 0 < 0.
From Lemma 2.3 we obtain, for large [n]|,

(48) P(max,_,|S,| > e(lnllgln))?) < 2¢- P(|S,] > e(lnllgln])* — do(2Jnl)?)

,‘ < 2 P(IS,| > (¢ = o(1))(Inllgln])?)
and (3.11) follows.

(iii) (3.11) = (3.10). Obvious.

(iv) (3.10) = (3.12). For d = 1, see [3], page 2022 and [12], Theorem 3.

Now, suppose that d > 2. The validity of (3.12) for “large” ¢ follows as in [9]. To
obtain the sharper result we have to refine the method (cf. also [2], page 1481 and
[3], page 2022.)

We first note from (i) that EX = 0 and that EX? = ¢ < co.

Next, choose ¢ > 1 and define ¢; = [/, j > 1 and S, = S,q, x > 1.

For later use we note that
(4.9)

(O lg ) — do(2 - TTIFHYE — (2 ¢y p)E B e e TN Ig )

for j > j, = Jjo(c).
Let m, be the smallest integer such that c,, ,; > ¢™ and define
E = E(c) = {k = (ky, -+ -, k;); exactly i of the indices k, - - - , k; < cmo},
i=12---,d
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and
Ey = Eg(c) = {k = (k;, - ~~,kd);k,.>cmo,i=1,2,-~,d}.

It follows that
1 1
(4.10) P(sup,lSu/ (Kliglkl)?| > €) < P(subeer, ,<wlSu/ (Kligh)?| > ¢)

1
+ P(subye Uz, <l Si/ (Kllghk)?] > €).

The last two probabilities will be treated separately and we begin with the first
one.
Choose j, large enough to ensure that {k; ¢~ < [k| < ¢/} is not empty.

1
2;‘iv'oj(r/z)_2 - P (supkeEo, <kl Sk/ (|k1g[k])?| > 5)
1
< z?iiozc'<j<c'+y(r/2)_2’ P(supkEEo,j<|k||Sk/ (k1glk))?| > e)
. — 0 l
< const.E‘,?Z”.oc‘((’/z) b. 2j-i+IP(supkEEo, ci"<|k|<c/|sk/ (k1glk))?| > 3)

((r/2)— — il
< const.22 , / /D7D P(SqueEo, o icii<o] Sl > e(c/ - 1g ¢/ l)2).

The problem at this point is to derive a Lévy-type inequality to replace (5.2) of
[9].

Let 4;, /=0, 1, 2,- - -, be the set of points in R4, (the set of d-tuples with
positive coordinates), of the form (c™, ¢, - - -, c¥), where iy + i, + - = - +i; = J.
These sets divide R? into d-dimensional cubes, where each cube has its smallest
corner (in the natural ordering) in some 4; and the largest corner in 4, ;. Further,
the curves |x| = j, where x € R%, j=1,2,- - - split the cubes into d curved
“slices”.

Now, choose an arbitrary but fixed point k, ¢/~! < [k| < ¢/. This point belongs
to some cube and it is dominated by the largest corner, which belongs to some 4,,
where the value of i = j,j + 1,- - - ,j + d — 1, depends on the slice of the cube to
which k belongs. However, by increasing some of the coordinates of the domina-
ting point (if necessary) we have

(4.11) For eachk, ¢/~ ! < [k| < ¢/, there exists t € 4;,,_, such thatk <.

Since t does not in general have integer valued coordinates we have to find
k*, k < t < k*, such that k* has integer valued coordinates.
Now, if t = (c"*1, c2*, - - -, ¢%*Y) it follows from the fact that k € E, that

l:;—i(z?' +2 42" * "5 C+2) has the desired property. Also, 1+ < k¥ <
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This together with Lemma 2.3 yields
P(SqueEo, I i<ki<| Sl = e(c7 ! 1g Cj_l)%)
<3- P(supk(c““,. e Sl > e(c/7 1 1g c"“)%)
< P(|Sp el > T g STl e, o))

<273 P(|S(c,]+2,. ol P (1 Ig I — do(2 1Y),

Here X’ denotes summation over all points (i}, - - - , {;) such that i; + - - - +1i,
= j — 1. This means that the number of terms in the sum is majorized by j¢~!.

Because of the equal distribution, Lévy’s inequality and (4.9) the last expression
is majorized by

2.3 P(|S¢r(n',‘,-,c,,,+2)| >e(c/7 1 1g cj—l)% — do(2 - oj—1+2d)%)
<M. .P(machmJ ol > e(c1 - Ig o™ 1)2 do(2 - cj—1+2d)§)

| > er e (eI M  Ig S+ 2)2).

(Cj+24

< 2d+1. jd-1 P(|

This proves the following inequality of Lévy-type:
. L
(4.12)  P(suppc, o-1<picol Sl > e(e/7 - 1g /7))

) ) 1
< 24+1. jd-1, P(|Sw(c,+u)| Se-c9 3(c,+2d_ lg c,+2d)z)’
for large j.
We thus conclude that

1
32,772 P(supyc g, spl S/ (Kllgk])?| > e)

. . . 1
< const. B2, JC/D7D. ja-1. P(IS,,(M)| >e-c7973(IM g cf+2d)2)

1
< const.ZR, (/27D (Ig D271 P(|Sy| > e e 1g i)’).

The last inequality is obtained by a change of variable (cf., [12], page 439).

By using the estimates from step (i) it follows that the last sum is finite for
e >cd*3.6(r — 2)2 (cf. (54) of [9]). (This can also be seen by the change of
variable i — 2 — i together with the fact that d(2°) ~ (Ig 2°)¥~! ~ i971).

This proves that

(4.13) 25,7 P(Supkezo(c)1<|k||sk/ (|k|18|k|)’| >e) < 0
ife >c?*3-o(r — 2)2

It remains to study the convergence of

552,007 P(supee U g, il Su/ (KlIgD?| > €).
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Obviously,
(4.14)

1 1
P(supye U< 5, <pal S/ (Kllglk)?| > ¢) < =2, P(supec s, ;<plSe/ (Kllglk])?| > ).
The probabilities of the right-hand side are treated very much as before. First, let
i=1.
By symmetry,
1 c 1
P(supyc g, <pl S/ (Kllglk)?| > €) < 29_ S50 P(supy, - ;< Su/ ([K[IglK])?| > e)

1
= d- 250 P(UPk, il Si/ (KlglK])?| > ).
For the case i = 1 it therefore suffices to prove that

1
@15)  Z2 P72 P(supy o sl S/ (KIIgIK)?] > €) < oo,
m=12--- > Comye

Since the first coordinate is kept fixed in the sum, the problem is essentially the
same as before but reduced to d — 1 dimensions. We therefore do not give all the

details.

For j=0,1,2,- -+, let A/ be the set of points in R of the form
(m, ¢, ¢ - - -, c¥)withi, + iy + - - - +i; = j. For points k, where k;, = m and
¢/~! < k| < ¢/, the dominating points are of the form (m, ¢, 15, * * * , ¢, 42)-

Thus, by Lemma 2.3

. i
P(supkl_m, mo-i<kj<me| Sl > e(m- /"1 lgm- c’“)’)
. ot
<2 P(supk<("" G+ G +2)|Sk| > e(m el lgm- 01_1)2)

. o . 1
<27.3. P(ls(m,c,2+2,' » |>e(m-c~ ' lgm-c/ 1) = do(2mc’_'+2d_2);).

Since only the coordinates k,, - - - , k, vary, the number of terms in the sum is
majorized by j? 2.

IBy proceeding just as before we find that (4.15) holds for all ¢ > c*!- o(r —
2)z,

This completes the proof of the case i = 1. The estimates for i = 2,- - - , d are
similar and therefore omitted.

We thus conclude that (3.12) holds for all ¢ > ¢?*3- o(r — 2)%. Since ¢ may be
chosen arbitrarily close to 1 the proof is complete.

(v) Finally, suppose that (3.12) holds for some ¢, > 0. By [12], Theorem 3, we
know that EX = 0 and that (3.9) holds if d = 1. For the case d > 2 the conclusion
follows by arguments like those of [9], Section 5, (see also [3], page 2020). The
details are omitted.

> Cy+2)

5. Proof of Theorems 3.4 and 3.5. The proofs follow the ideas of [9] and are,
therefore, only sketched.
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LemMa 5.1. 3,|n|™'- (logn|)~# converges if B > d and diverges if B < d.

Proor. Follows from integration by parts together with the fact that M(x) =
O(x(log x)*~1) as x — oo.

Proor or THEOREM 3.4. First, assume that the random variables have a
symmetric distribution.

(3.13) = (3.14). Pickj such that2’ >d + 1. Var X = ¢ < o0. By an inequality
of- Hoffmann-Jergensen ([10], page 164, see also [9], Lemma 2.4) together with
Lemma 2.1 with r = 2, m = 1 and Lemma 5.1 we obtain

Saln|~" - lgln| - P(|S,] > e (imllgn))?)
< G- 3, lgln| - P(1X| > e (lnllghn))?) + Dy(e, 0)- Z,ln|~" (Igln])' ~? < co.
This proves (3.14). The proofs of (3.15) and (3.16) (for symmetric random

variables) and the desymmetrization follow as in [9] (except for obvious modifica-

tions) and are therefore omitted.
(3.16) = (3.13). For d =1, see [3], Theorem 1. For d > 2 the conclusion

follows by the induction procedure used in [9], Section 6.

ProoF oF THEOREM 3.5. Suppose that d > 2. The estimates used in the preced-
ing proof also yield (3.17) = (3.18) < (3.19) for symmetric random variables and
the desymmetrization is by now standard.

Now, d > 1. It remains to show (3.18) = (3.17).

Pick s, 3 <s < L.

0 > 2,,|n|‘l . P(|S,,| > e(|n|1g|n|)%) > const.- S, [n|~ - P(|S,] > &n[*)

and thus, by [9], Theorem 4.1 (i.e., Theorem 3.1 above) we have E|X|'/*- (Ig| X |)?~!
< oo and, since 1/s > 1, EX = 0.

Next, suppose that d = 1 and suppose further, that the variables have a symmet-
ric distribution. By a change of variable (cf. above) and the Lévy-inequalities we
obtain

w0 > 32 n71- P(|S,| > e(n- g n)?)
> const.- 2;,‘°=,P(|Sz..| >e(2"-1g 2")%)
> const.-2;°=1P(maxk<2..|Sk| >e(2"1g 2")%)
> const.- Ef_lP(maxz..—l<k<2..|Sk| >e(2"- g 2”)%)
> const.~2;,‘°,,1P(max2.._.<k<2..|Sk/ (k-1g k)%l > 4e).
Thus, we conclude that

(5.1) P(|S,] > 4e(n Ig n)7i0.) = .
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Since |X,| < |S,| + |S,_,|, (5.1) implies that P(1X,| > 8e(n Ig n)? i.0.) =0, ie.,
by independence and Borel-Cantelli,

0 > 27 P(IXnI > 8e(nlg n)%) =23% P(|X| > 8¢(nlg n)%),

n=1 n=1

which is equivalent to EX?- (Ig|X|)~' < co.

To desymmetrize we note that if (3.18) holds, the weak symmetrization inequali-
ties [15], page 245, imply that (3.18) also holds for symmetrized variables. Hence
E|X*?- (Ig|X*|)~" < oo, and thus also E|X|*- (lg|X|)™' < .

Now, letd > 2.

o > 3,/n| !+ P(max, /S, > e(|nlign)?)

> Z,n|"- P(1S,] > e(nllgln])?) > 22,7 P(IS,| > e(j 18)?)

and thus, since the proof for d = 1 is complete, it follows that EX2- (lg|X|)~' <
cc. By the Erdos-Katz method [4], [11] we have

1 1
(52) P(|S,| > e(nlign)?) > [n| - P(1X| > c(nlg|n])?)
for some ¢ > 0 and consequently,
00 > Syln|~ P(max, .,/S,] > e(lnllglnl)?)
1
> Z,P(1x| > c(jnflgln))?),

which, by Lemma 2.1, is equivalent to E|X|?- (Ig|X )2 < oo.
The proof is complete.

6. The loglog-case. In this section we state some results related to the law of
the iterated logarithm.

THEOREM 6.1. Let EX = 0 and EX? = o> If

(6.1) EX?- (Igy)X])"'(lg)X])* < o0
then
(62) S,/n/~"- logn| - P(|S,] > e(lnllgn)?) < oo, &> o(2(d + 1))?
(63) ,/nj " logln| - P(max,,/Sy| > e(nllg,jn))?) < oo,

e >o(2(d + 1))%
(6.4) S i P(sup,cplSi/ (Kllggk))7| > €) < o0, & >o(2(d + 1)7.

Conversely, if one of the sums is finite for some &, then so are the others, EX = 0
and (6.1) holds.
This result seems to be new also for the case d = 1.

THEOREM 6.2. Let EX = 0 and EX? = 0% < o0. If
(6.5) EX2- (Ig)X|)~" (1g)x )" < oo,
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then
(6.6) S,/n/~1- P(|S,| > e(jnllg,ln])?) < o, e > 0(2d)?
67 Saln| ™! P(max, ,|S,) > elnligln)?) < 0o, &> o0(2d)7.

Conversely, if one of the sums is finite for some ¢, then so is the other, EX = 0,
EX? < o0 and (6.5) holds.

When d =1 it follows from [2], Theorem 4, that (6.6) holds if EX = 0 and
EX?=1.

Note that EX? < oo implies (6.5) for d =1, so in that case the moment
requirements reduce to EX = 0 and EX? < . Ford > 2, (6.5) implies EX? < oo.
In this connection we also refer to the law of the iterated logarithm, see [21], page
280.

Again it is easy to see that the e-bounds cannot be improved upon and, further,
that the results cannot be generalized to higher moments.

7. On the proofs of Theorems 6.1 and 6.2. The proof of Theorem 6.1 follows
closely that of Theorem 3.3. We omit the details. For d = 1, cf. also [2] and [3].

PrOOF OF THEOREM 6.2. (i) For d = 1 it follows from [2], Theorem 4, that (6.6)
holds if EX = 0 and EX? = 0% < o0 and for 4 > 2 the above methods yield (6.6)
provided EX = 0, EX? = ¢ < o and (6.5) holds.

(i) (6.6) = EX = 0 and EX? < . Since (6.6) = (3.18) it follows from Theo-
- rem 3.5 that EX = 0 and that EX?- (Ig|X|)¥ %2 < 0. If d > 2 we are done, so
suppose that d = 1. Assume first that the variables are symmetric. By arguments as
those preceding (5.1) we obtain

(1.1) P(|S,| > 4¢(n - 1g, n)*i.0.) = 0.

By the converse of the law of the iterated logarithm [18] we conclude that
EX? < . The desymmetrization follows as in Section 5 and thus EX2 < oo also
in the general case.

(iii) (6.6) < (6.7). From (ii) and Lemma 2.3 we have (6.6) = (6.7) by the usual
method. The converse is obvious.

(iv) Finally, suppose that (6.6) holds. From step (ii) we know that £X '= 0 and
EX? < o. Hence nothing remains to prove if d = 1. For d > 2 we obtain (6.5) by
the method of [4] and [11] (cf. also (5.2)).

We conclude this section with a remark about the law of the iterated logarithm
ford = 1.

Suppose that EX = 0 and EX? = ¢2 < o0. By Theorem 6.2 we know that (6.6)
holds and by modifying the arguments leading up to (5.1) we have, (no symmetry
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assumed),
0 > =201 P(|S,] > e(n- 1g; n)?)
> const.- 3% P (|S | > e(c; g, ¢)? )
P(IS,) > e+ (g1 182 G-1)* = 0(26)7)
> const.- 272 P(max <kaolSil e (g g cj_l)%)
P(max

1
G- |<k<c,|Sk/ (k- 1g, k)| > 802).

> const.- 27 .

o0
> const.- X772

Thus,
1
(12) P(|S,| > e-c? (n-1g m*io) =0  for &>o(2).

Since ¢ may be chosen arbitrarily close to 1 this proves the upper class result for
the law of the iterated logarithm. ‘

COROLLARY. Let d = 1. Suppose that EX = 0 and EX* = 6* < 0. Then

' 1
P(lS,,| >e(n-lg, n)%i.o.) =0, e >0(2)2.

8. Last exit times and the number of boundary crossings. For d = 1 several
authors have investigated the last exit times L = sup{n; |S,| > &¢-a,} and the
counting variables N = 3°_,I{|S,| > ¢- a,}, i.e., the number of boundary cross-
ings of the random walk, where a, = n% a >3 and a, = (nlg n)2 and a,

(nlg, n)%, with regard to existence of moments. See, e.g., [19], [16], [17], [20], [13],
[14]. (Throughout, sup & = 0.)

Note that N < L and that if, e.g., a, = n, the statement P(N < oo) = 1 for every
e > 0 is equivalent to the strong law of large numbers (see, e.g., [17]).

Since the index set is no longer totally ordered when d > 2, these results do not
generalize immediately. In this section we shall present some results for L, =
sup{[n|; |S.| > €- a,} and N, = Z,I{|S,| >e-a,}, where a, = [n]* a >3 and
a, = (|n|1g|n|)% and g, = (|n|1g2|n|)%, by applying results from earlier sections and
from [9].

We first observe that for all choices of boundary we have

(8.1) P(L, > j) = P(sup; < S/l >-¢)

and consequently it follows that
(8.2) E(L)Y =32 ,j7~ " P(sup;<|Sk/al > e), p>0.

(8.3) ElgL,~2%77,J ! P(SUP,<|k||Sk/ak| > e).
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THEOREM 8.1. Let L, = sup{|n|; |S,| > €[n|*}, a > 3. For r > 1/ a, the following
are equivalent:

(8.4) EIX"- (g X)) ' <o andif r>1,EX=0.
(8.5) E(L)” "< o  forall ¢>0.

For d = 1 see [13], page 625 and [14], page 60.

ProoOF. Immediate from (8.2) with p = ar — 1 together with [9], Theorem 4.1
(i.e., Theorem 3.1 above).

THEOREM 8.2. Let L, = sup{|n|; |S,| > e(|n|1g|n|)%}, If EX =0, EX? = ¢® and
E|X" (gl X)*"'"/? < o0, r > 2, then

(8.6) E(L)?™' < o, e>oa(r — 2)7
(8.7) E(L)"?™" = o, e <o(r —2)7.

Conversely, if E(L)"/? ! < o for some ¢ >0, then EX =0 and E|X| -
(glXP*=1=0 < oo,
For d = 1 see [13], Theorem 3 and [14] Theorem 3.

PrOOF. Let & < o(r — 2)% Since L, > L = sup{n, [ Syl > &(n 1g n) } i
follows from [13], page 615, that EL{/?~2 > EL"/?72 = o0, (Note that if X €
N(0, 6®) the conclusion follows from (8.2) and the remark at the end of Section 3).
The rest is immediate from (8.2) together w1th Theorem 3.3.

Finally, let L, = sup{[n|; |S,| > e(|n|lg2|n|)2} For d = 1, Slivka [16] proves that
the corresponding counting variable, N;, possesses no moments of positive order.

“Since L, > L, > N, it follows that no moments of L, can exist. For d = 1, see also
[19], page 315. However, with the aid of Theorem 6.1 we can give conditions for the
finiteness of a logarithmic moment of L,, a result which seems to be new also for
d=1.

THEOREM 83 Let L, = sup{|n|; |S,| > e(|n|1g2|n|) } and suppose that EX = 0
and EX? = ¢*> < oo0.

(i) For nor > 0 and no € > 0 does E(L,) exist.

(i) If in addition EX?- (Ig,|X|)~ " (g|X|)? < oo, then ElgL, < oo for e >
o(2(d + 1))a.

PrOOF. (i) has already been demonstrated and (ii) follows from (8.3) and
Theorem 6.1.
Finally we give some results for the counting variable N.

COROLLARY 8.1. If the assumptioﬁs of Theorem 8.1 are fulfilled, then, for N; =
ol {|Sal > €n|*}, @ >3, we have

(8.8) ENg~'-(IgN,) " “ @D <o forall &>0.
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For d =1 the corollary reduces to the sufficiency part of [14], Theorem 1,
(1 <ar < 2) and [20], (ar > 2), and for d = 1, « = 1 we have Theorem 1 of [17].

COROLLARY 8.2. If the assumptions of Theorem 8.2 are fulfilled, then, for N, =
I {|S,| > e(nllgln])=}, we have

(8.9) ENY/D=1. (Ig N)~ @ DC/2=D o e > o(r — 2)7.
For d = 1 this reduces to (1.18) = (1.20) of [14], Theorem 3.

COROLLARY 8.3. Suppose that EX =0 and EX 2=02< 0 and set N, =
I (S| > e(lnllg;In])7).

(i) For nor > 0 and no € > 0 does E(N,)" exist.

(ii) If in addition, EX*- (g,|X|)™"- (1g|X|)? < oo, then Elg N, < o0, € > (2(d
+ 1))2

For d = 1 (i) reduces to the theorem of [16].

PrOOFs. Recall that M(j) = card{n € Z%; |n| < j} = O(j(logj)*~ ') asj — oo.
Thus, for all cases,

(8.10) P(L; > j) > P(N; > M(j)) > P(N, > ¢j(log j)*™"),

where ¢ is some constant.
Consequently, if @, = [n|%, a >3, (8.2), (8.10) and Theorem 8.1 yield

o > E(L)¥ "' > const22, j¥ 2 P(L, >j)
> const.- 22,772 P(N,; > ¢i(1g )* "),

which implies that EN2"~!. (Ig N)~@ =D =D < o,
~ The other cases follow similarly.
Finally, (i) of Corollary 8.3 follows from [16] since N, > N,.
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