A RENEWAL MODEL WITH RANDOMLY SELECTED PARAMETERS

BY FREDERICK SOLOMON

State University of New York, Purchase

Let \(\{ \mu_1, \mu_2, \cdots \} \) be chosen from a strictly stationary, ergodic sequence of random variables each with distribution concentrated on \((0, \infty)\). Let \(S_n = T_1 + \cdots + T_n \) be a sum of independent random variables where \(T_j \) is exponential with mean \(\mu_j \). Limiting properties of \(S_n \) are considered. More limiting properties are derived under the assumption that \(\{ \mu_1, \mu_2, \cdots \} \) is strongly mixing and then under the assumption of independence.

1. The model. Let \(T_1, T_2, \cdots \) be independent, exponential random variables with parameters (means) respectively \(\mu_1, \mu_2, \cdots \). The sequence \(\Lambda = \{ \mu_1, \mu_2, \cdots \} \) constitutes the parameter sequence for the renewal process \(\{ S_n = T_1 + \cdots + T_n \}_{n=0}^{\infty} (S_0 = 0) \). The \(\mu_j \)'s are chosen previous to the renewal process; they form a sample from a strictly stationary sequence of random variables each with distribution \(G \) concentrated on \((0, \infty)\). This paper is concerned with limit behaviors of the renewal process \(\{ S_n \} \) given a "typical" parameter sequence \(\Lambda \).

Notation. Set \(\lambda_i = \mu_i^{-1} \) for all \(i \). Let \(F_i \) be the exponential distribution with mean \(\mu_i \) and let \(f_i \) be the corresponding density. As usual count time 0 as renewal number 1. The convolution of distribution functions \(H_1 \) and \(H_2 \) is

\[
H_1 \ast H_2(t) = \int_{-\infty}^{\infty} h_1(t - x)H_2(dx)
\]

whereas the convolution of densities \(h_1 \) and \(h_2 \) is

\[
h_1 \ast h_2(t) = \int_{-\infty}^{\infty} h_1(t - x)h_2(x) \, dx.
\]

\(N_t \) denotes the number of renewals in \((0, t] \) so that

\[
P(N_t = n) = P(T_1 + \cdots + T_n < t, T_1 + \cdots + T_{n+1} > t)
\]

\[
= F_1 \ast \cdots \ast F_n(t) - F_1 \ast \cdots \ast F_{n+1}(t)
\]

\[
= \mu_{n+1} \cdot f_1 \ast \cdots \ast f_{n+1}(t)
\]

as can easily be verified for exponential distributions. Finally, \(U(t) \) is the expected number of renewals in \([0, t] \)

\[
U(t) = \sum_{n=0}^{\infty} F_1 \ast \cdots \ast F_n(t)
\]

—the addend for index \(n = 0 \) being the atom at the origin (evaluated at \(t \)).

The main results in this paper are contained in these two theorems:

Received September 1978; revised March 1979.

AMS 1970 subject classifications. Primary 60K05; secondary 60J75.

Key words and phrases. Renewal process, jump process, exponential distribution.
Theorem 1. Suppose \(\{\mu_1, \mu_2, \cdots\} \) is chosen from a strictly stationary, ergodic sequence. Then for a.e. parameter sequence

(a) \(U(t) = 1 + E(N_t) < \infty \) for all \(t \),
(b) \(t^{-1}U(t) \to (E(\mu))^{-1} \) as \(t \to \infty \).

If \(\{\mu_1, \mu_2, \cdots\} \) is strongly mixing, then for a.e. parameter sequence

(c) \(n^{-1}S_n \to E(\mu_1), t^{-1}N_t \to (E(\mu_1))^{-1} \) a.e. respectively as \(n, t \to \infty \).

Theorem 2. In addition if \(\{\mu_1, \mu_2, \cdots\} \) are independent, identically distributed

(d) \(t^{-1} \cdot \int_0^t P(\mu(s) < x) \, ds \to (E(\mu_1))^{-1} \cdot \int_0^\infty yG(dy) \)

where \(\mu(t) = \mu_{N_t+1} \) is parameter of the component in operation at time \(t \),

(e) \(t^{-1} \cdot \int_0^t P(H_t > \xi) \, dt \to (E(\mu_1))^{-1} \cdot \int_0^\infty y \exp(-\xi y^{-1})G(dy) \)

where \(H_t \) is the residual waiting time \(S_{N_t+1} - t \), the spent waiting time \(t - S_N \), or the interarrival time containing \(t \) : \(S_{N_t+1} - S_N \).

2. Proofs. The proof of Theorem 1 is straightforward enough; the proof of Theorem 2 relies on Lemma 4 below.

Feller [2], page 452, shows \(N_t \to \infty \) for all \(t \) (this is a pure birth process) if and only if \(\sum_{n=1}^\infty \mu_t = \infty \). Since the ergodic theorem implies that \(n^{-1}\sum_{i=1}^n \mu_i \to E(\mu) \) a.e., \(N_t \) is finite for all \(t \) for most every parameter sequence.

Proof of Theorem 1. (a)

\[
U(t) = 1 + \sum_{n=1}^\infty P(S_n < t) \\
 \leq 1 + \sum_{n=1}^\infty P(T_1 < t) \cdots P(T_n < t) \\
 = 1 + \sum_{n=1}^\infty (1 - \exp(-\lambda_1 t)) \cdots (1 - \exp(-\lambda_n t)).
\]

But for a.e. fixed parameter sequence

\[
\prod_{j=1}^n (1 - \exp(-\lambda_j t)) = \exp\left[\sum_{j=1}^n \log(1 - \exp(-\lambda_j t)) \right] \\
 \leq \exp\left[n(E(\log(1 - \exp(-\lambda_1 t))) + \varepsilon) \right]
\]

for \(n \) sufficiently large by the ergodic theorem. Choosing \(\varepsilon \) so that \(E(\log(1 - \exp(-\lambda_1 t))) + \varepsilon < 0 \) implies the tail of the series \(U(t) \) is bounded above by the tail of a convergent geometric series.

(b) Assume \(n^{-1}(\mu_1 + \cdots + \mu_n) \to E(\mu) \). Taking Laplace transforms

\[
\Phi(s) = \int_0^\infty e^{-st}U(dt) = \sum_{n=0}^\infty \phi_1(s) \cdots \phi_n(s)
\]

by monotone convergence where the addend for \(n = 0 \) is 1 and

\[
\phi_1(s) = \int_0^\infty e^{-st}F_1(dt) = (1 + s\mu_1)^{-1}
\]

for exponential distribution \(F_1 \). Since \((1 + s\mu_1)^{-1} \geq e^{-s\mu_1} \),

\[
\Phi(s) > \sum_{n=0}^\infty \exp\left[-s(\mu_1 + \cdots + \mu_n) \right].
\]

Given \(\varepsilon > 0 \), choose \(N = N(\varepsilon) \) so large that \(n > N \) implies \(\mu_1 + \cdots + \mu_n \leq n(E(\mu_1) + \varepsilon) \). Hence

\[
\Phi(s) > \sum_{n=0}^N \exp\left[-s(\mu_1 + \cdots + \mu_n) \right] + \sum_{n=N}^\infty \exp\left[-sn(E(\mu_1) + \varepsilon) \right].
\]
Thus
\[
\liminf_{\epsilon \downarrow 0} \Phi(s) > \liminf_{\epsilon \downarrow 0} \left(s \exp[-sN(\epsilon)(E(\mu_1) + \epsilon)] \right) / \left(1 - \exp[-s(\epsilon + \epsilon)] \right)
\]
\[= (E(\mu_1) + \epsilon)^{-1}.
\]
So \(\liminf s\Phi(s) \geq (E(\mu_1))^{-1} \). On the other hand, let \(\tau_j^* = \mu_j \) if \(\mu_j < A \) and \(\tau_j^* = A \) if \(\mu_j > A \). For \(a < 1 \), choose \(\delta \) so that \(0 < x < \delta \) implies \(1 + x > ae^x \). Then for \(s < \delta/A \), \(1 + s\mu_j \geq 1 + s\tau_j^* = ae^{s\tau_j^*} \). Thus as before, given \(\epsilon > 0 \) so that \(\tau_1 + \cdots + \tau_n > n(\epsilon(\tau_1) - \epsilon) \) for \(n > N = N(\epsilon) \),
\[
\Phi(s) \leq \sum_{n=0}^{N-1} (1 + s\mu_j)^{-1} + \sum_{n=N}^\infty a^{-n} \exp[-ns(\epsilon(\tau_1) - \epsilon)]
\]
and
\[
\limsup_{\epsilon \downarrow 0} s\Phi(s) \leq \limsup_{\epsilon \downarrow 0} a^{-N(\epsilon)} \left(\exp[-sN(\epsilon)(\epsilon(\tau_1) - \epsilon)] \right) / \left(1 - \exp[-s(\epsilon(\tau_1) - \epsilon)] \right)
\]
\[= a^{-N(\epsilon)} / (\epsilon(\tau_1) - \epsilon) \quad \text{(at least for } A \text{ large enough).}
\]
Now letting \(a \uparrow 1 \) (it is independent of \(\epsilon \), \(\epsilon \downarrow 0 \) and \(A \uparrow \infty \) implies \(\lim s\Phi(s) = (E(\mu_1))^{-1} \) as \(s \downarrow 0 \). Thus a Tauberian theorem [3], page 421, implies \(t^{-1}U(t) \rightarrow (E(\mu_1))^{-1} \) as \(t \uparrow \infty \).

(c) We embedded the process in the larger one consisting of the Cartesian product of the set of parameter sequences \(R = (0, \infty)^N \) and the set of component lifetimes \(T = (0, \infty)^N \) where \(N \) denotes the set of positive integers. To define a probability measure on \((R \times T, F) \) where \(F \) is the \(\sigma \)-field generated by the cylinder sets, begin by letting \(Q_\Lambda \) denote the product space measure on \(T \) where the \(j \)th slot has exponential distribution with mean \(\mu_j \). (Here \(\Lambda = \{ \mu_1, \mu_2, \cdots \} \).) On the parameter sequences \(R = \{ \Lambda \} \) let \(M \) be the measure so that \(\{ \mu_j \}_{j=1}^\infty \) is the required strictly stationary, strongly mixing sequence—each \(\mu_j \) distributed with distribution \(G \). Now for \(A \subset \) parameter sequences \(R \) and \(B \subset \) set of component lifetimes \(T \), each measurable with respect to the \(\sigma \)-fields generated by the cylinder sets, let
\[
P(A \times B) = \int_A Q_\Lambda(B)(d\Lambda).
\]
As in [4] where a similar model is considered, it is routine to show that \(P \) is well defined and extends to a probability measure on \((R \times T, F) \). And the very definition implies

Lemma 3. Let \(B \) be measurable \(\subset \) set of component lifetimes \(T \). Then \(Q_\Lambda(B) = 1 \) for a.e. environment \(\Lambda \) if and only if \(P(R \times B) = 1 \).

Returning to the proof of (c), let \(T^*_i \) be the random variable on \(R \times T \) defined by \(T^*_i(\Lambda, \omega) = T_i(\omega) = \omega_j \) (= \(j \)th component of \(\omega \). Hence
\[
P(T^*_i < t) = \int_R Q_\Lambda(T^*_i < t)(d\Lambda)
\]
\[= \int R^\infty (1 - \exp(-tv^{-1}))G(\phi_t).
\]
So \(E(T^*_i) = E(\mu_1) \). A straightforward verification shows that strict stationarity and
the strong mixing of μ_1, μ_2, \cdots imply these properties hold for T_1^*, T_2^*, \cdots. Thus the ergodic theorem implies as $n \to \infty$

$$n^{-1}S_n^* = n^{-1}(T_1^* + \cdots + T_n^*) \to E(\mu_1) \quad \text{a.e.}$$

But $(\Lambda, \omega) : n^{-1}S_n^*(\Lambda, \omega) \to E(\mu_1)$ as $n \to \infty) = \{(\Lambda, \omega) : n^{-1}S_n^*(\omega) \to E(\mu_1)\}$ as $n \to \infty) = R \times (\omega : n^{-1}S_n^*(\omega) \to E(\mu_1))$ as $n \to \infty)$. Therefore Lemma 3 implies as $n \to \infty n^{-1}S_n^* \to E(\mu_1)$ a.e. for a.e. fixed parameter sequence. Since N_t increases with t, $\{N_t \to \infty \text{ as } t \to \infty\} \subset \bigcap_{n=1}^\infty \bigcup_{j=1}^\infty (N_j \geq n) = \bigcap_{k=1}^\infty \bigcup_{j=1}^\infty \{S_j < j\}$ which is a set of measure 1 since each S_n has a proper probability distribution for each parameter sequence. Thus $N_t \to \infty$ a.e. Now $S_{N_t} \leq t < S_{N_t+1}$. So

$$(N_t)^{-1}S_{N_t} \leq (N_t)^{-1}t < (N_t)^{-1}S_{N_t+1} = (N_t)^{-1}(S_{N_t} + T_{N_t+1}).$$

Hence it remains to show that $n^{-1}T_{n+1} \to 0$ a.e. in the case where $E(\mu_1) < \infty$. But

$$P(\{n^{-1}T_{n+1} > \varepsilon\}) = P(T_{n+1} > n\varepsilon) = \exp(-n\varepsilon\lambda_{n+1})$$

(recalling that T_n has exponential distribution with mean μ_n when the parameter sequence is fixed). Thus the first Borel-Cantelli lemma [1], page 69, implies $n^{-1}T_{n+1} \to 0$ a.e. if $\sum_{k=0}^\infty \exp(-n\varepsilon\lambda_{n+1}) < \infty$. But this is true for a.e. parameter sequence since this series has a finite expectation: By monotone convergence

$$E(\sum_{k=0}^\infty \exp(-n\varepsilon\lambda_{n+1})) = \sum_{k=0}^\infty E(\exp(-n\varepsilon\lambda_{n+1})) = \sum_{k=0}^\infty \int_0^\infty \exp(-n\varepsilon y^{-1})G(dy).$$

This converges by the integral test since

$$\int_0^\infty \int_0^\infty \exp(-n\varepsilon y^{-1})G(dy) \, dt = e^{-1}E(\mu_1).$$

Thus $t(N_t)^{-1} \to (E(\mu_1))^{-1}$ a.e. which completes the proof of Theorem 1.

The proof of Theorem 2 depends on

Lemma 4. Let X_1, X_2, \cdots be independent, identically distributed each with finite expectation m and finite variance σ^2. Set

$$Y(a) = \Sigma_{j=0}^\infty a(1-a)^jX_{j+1}.$$

Then $\lim_{a \to 0} Y(a) = m$ a.e.

Proof. Setting $X_j = X_j^+ + X_j^-$ where $X_j^\pm = \max(\pm X_j, 0)$, and

$$Y(a)^\pm = a\Sigma_{j=0}^\infty (1-a)^jX_{j+1}^\pm$$

shows that a proof for nonnegative random variables X_j suffices. Hence assume throughout that each X_j is nonnegative.

By monotone convergence $E(Y(a)) = m$; hence for each fixed $0 < a < 1$, $Y(a)$ converges a.e. Also by direct calculation $E(Y(a)^2) = m^2 + \sigma^2a/(2-a)$. So

$$\sigma^2(Y(a)) = \sigma^2a/(2-a).$$

Hence $P(1\{Y(a) - m| > \varepsilon\}) \leq \sigma^2a/(\varepsilon^2(2-a))$ by Chebyshev's inequality. Now the first Borel-Cantelli lemma implies that the sequence $(Y(n)^{1/2})_{n=1}^\infty$ converges to m everywhere on a set Ω of probability 1. The
claim is that the full set \(\{ Y(a) \} \) converges to \(m \) a.e. as \(a \downarrow 0 \). To see this suppose that \((n + 1)^{-2} < a < n^{-2}\). Now \(h(x) = x(1 - x)^j \) is increasing on \([0, 1/(j + 1)]\) and decreasing on \([1/(j + 1), 1]\). Thus

\[
a(1 - a)^j < n^{-2}(1 - n^{-2})^j \quad \text{for } n^{-2} < 1/(j + 1) \quad \text{or } j < n^2 - 1
\]

\[
< (n + 1)^{-2}(1 - (n + 1)^{-2})^j \quad \text{for } (n + 1)^{-2} > 1/(j + 1) \quad \text{or } j > n^2 + 2n.
\]

When \(n^2 < j < n^2 + 2n \) a bound for \(h(a) = a(1 - a)^j \) is obtained in this way: \(h \) is concave on \((n + 1)^{-2} < a < n^{-2}\) (for \(n > 3 \)); so

\[
h(a) < h((n + 1)^{-2}) + h'((n + 1)^{-2})(a - (n + 1)^{-2})
\]

\[
< h((n + 1)^{-2}) + h'((n + 1)^{-2})(n^{-2} - (n + 1)^{-2}).
\]

But a routine calculation shows the second term in the last right-hand side is less than \(h(n^{-2}) \) for \(n \) large. Hence for \(n^2 < j < n^2 + 2n, n \) large

\[
a(1 - a)^j < n^{-2}(1 - n^{-2}) + (n + 1)^{-2}(1 - (n + 1)^{-2}).
\]

So, for \(a \) close enough to 0

\[
Y(a) < \sum_{j=0}^{n^2+2n} n^{-2}(1 - n^{-2})^j X_{j+1} + \sum_{j=n^2}^{\infty} (n + 1)^{-2}(1 - (n + 1)^{-2})^j X_{j+1}
\]

\[
= Y((n + 1)^{-2}) + Z_1 + Z_2
\]

where

\[
Z_1 = \sum_{j=0}^{n^2-1} n^{-2}(1 - n^{-2})^j - (n + 1)^{-2}(1 - (n + 1)^{-2})^j X_{j+1}
\]

\[
Z_2 = \sum_{j=n^2}^{\infty} n^{-2}(1 - n^{-2})^j X_{j+1}.
\]

Now \(\max_{0 < x < 1} |h'(x)| = 1 \). Thus the mean value theorem implies that the term multiplying \(X_{j+1} \) in the series defining \(Z_1 \) is \(< \) in absolute value

\[
|n^{-2} - (n + 1)^{-2}| = (2n + 1)/(n^2(n + 1)^2)
\]

\[
< 2/n^3.
\]

Hence

\[
|Z_1| < \sum_{j=0}^{n^2-1} (2/n^3) X_{j+1}
\]

\[
= (2/n)n^{-2} \cdot \sum_{j=0}^{n^2-1} X_{j+1}
\]

\[
\rightarrow 0 \text{ a.e.}
\]

by the law of large numbers. Also,

\[
|Z_2| < n^{-2} \sum_{j=n^2}^{\infty} n^{-2} X_{j+1}
\]

\[
= (2n + 1/n^2) \cdot (2n + 1)^{-1} \sum_{j=n^2}^{\infty} n^{-2} X_{j+1}
\]

\[
\rightarrow 0 \text{ a.e.}
\]

using the first Borel-Cantelli lemma and Chebyshev's inequality. (Note: for

\[
Z' = (2n + 1)^{-1} \sum_{j=n^2}^{\infty} n^{-2} X_{j+1},
\]
\[E(Z') = m, \sigma^2(Z') = \sigma^2/(2n + 1) \]. Combining this with the analogous reverse inequality yields \(Y(n^{-2}) + W_n < Y(a) < Y((n + 1)^{-2}) + W_n' \) where \(W_n \) and \(W_n' \) → 0 as \(n \uparrow \infty \) a.e., say on set \(\Omega' \) of measure 1. Therefore on \(\Omega \cap \Omega' \), \(Y(a) \rightarrow m \) as \(a \downarrow 0 \) a.e.

Proof of Theorem 2. (d)

\[
P(\mu(t) < x) = \sum_{n=1}^{\infty} P(\mu(t) < x | N_t = n - 1) \cdot P(N_t = n - 1)
\]

\[
= \sum_{n=1}^{\infty} \epsilon_n \mu_n f_1 \ast \cdots \ast f_n(t)
\]

where \(\epsilon_n = 1, 0 \) respectively if \(\mu_n < , > x \). So

\[
\Theta(s) = \int_0^\infty e^{-st} P(\mu(t) < x) \, dt
\]

\[
= \sum_{n=1}^{\infty} \epsilon_n \mu_n \phi_1(s) \cdots \phi_n(s)
\]

\[
= \sum_{n=1}^{\infty} \epsilon_n \mu_n (1 + s\mu_1)^{-1} \cdots (1 + s\mu_n)^{-1}.
\]

In the same way as in (b),

\[
\lim_{s \downarrow 0} s\Theta(s) = \lim_{s \downarrow 0} s\sum_{n=1}^{\infty} \epsilon_n \mu_n e^{-sE(\mu_n)}
\]

\[
= \lim_{s \downarrow 0} s/(1 - e^{-sE(\mu_1)}) \cdot (1 - e^{-sE(\mu_1)}) \sum_{n=1}^{\infty} \epsilon_n \mu_n e^{-sE(\mu_n)}.
\]

Lemma 4 now applies with the result

\[
\lim_{s \downarrow 0} s\Theta(s) = (E(\mu_1))^{-1} E(\epsilon_1 \mu_1) = (E(\mu_1))^{-1} \int_0^\infty yG(dy).
\]

Application of the same Tauberian theorem yields result (d).

(c) Details are similar in all three cases and much the same as in (d); so only the outline for the case \(H_t = \) residual waiting time \(S_{N_t+1} - t \) is here presented. Now

\[
P(H_t > \xi) = \sum_{n=0}^{\infty} P(H_t > \xi | N_t = n - 1) \cdot P(N_t = n - 1)
\]

\[
= \sum_{n=0}^{\infty} P(T_n > \xi) \cdot \mu_n f_1 \ast \cdots \ast f_n(t)
\]

by the "memoryless" property of exponential random variables. Let \(\rho(s) \) be

\[
\int_0^\infty e^{-st} P(H_t > \xi) \, dt = \sum_{n=0}^{\infty} \mu_n e^{-\lambda t} \phi_1(s) \cdots \phi_n(s).
\]

As in (d)

\[
\lim_{s \downarrow 0} s\rho(s) = \lim_{s \downarrow 0} \sum_{n=0}^{\infty} \mu_n e^{-\lambda t} \phi_1(s) \cdots \phi_n(s)
\]

\[
= (E(\mu_1))^{-1} E(\mu_1 e^{-\lambda t}).
\]

Application of the same Tauberian theorem completes the proof. (Note that the proofs apply with the usual modifications when \(E(\mu_1) = \infty \).)

3. Randomizing the parameter sequence. The above process may be compared with the process in which the \(\mu_j \)'s are random independent, identically distributed rather than preselected and fixed. The probabilistic setting for this new process has been defined at the beginning of the proof of Theorem 1: \(T_1, T_2, \cdots \) are independent, identically distributed each with density

\[
f(t) = \int_0^\infty ye^{-yG(dy)}
\]
for $t > 0$. So the model reduces to the standard renewal model of [3], chapter 11. Still it may be of interest to calculate the distribution of $\mu(t) = \mu_{N_i+1}$ = parameter of the component in operation at time t.

Theorem 5. In the renewal model in which $\{\mu_i\}_{i=1}^{\infty}$ is a sequence of independent, identically distributed random variables with distribution G concentrated on $(0, \infty)$, (a) $\{\mu(t)\}_{t>0}$ is a Markov process; (b) $\mu(t)$ approaches in distribution $(E(\mu_i))^{-1} \cdot yG(dy)$ when $E(\mu_i) < \infty$.

Proof. It is clear that $\{\mu_i\}$ is Markovian since each T_j is exponentially distributed. Now $\{\mu(t)\}_{t=0}^{\infty}$ constitutes a jump process. Given $\mu(t) = x$, the waiting time till the next jump is exponential with mean $1/x$ at which time the process jumps to another state according to distribution G independent of x. Hence with $Q_t(x, \Omega) = P(\mu(t) \in \Omega | \mu(0) = x)$ Kolmogorov's backward equations are

$$\frac{\partial Q_t(x, \Omega)}{\partial t} = x^{-1}Q_t(x, \Omega) + x^{-1}\int_0^\infty Q_t(y, \Omega)G(dy)$$

[3], page 317. The infinitesimal generator associated with Q_t is thus

$$Uu(x) = -x^{-1}[u(x) - \int_0^\infty u(y)G(dy)].$$

So the resolvent operator is

$$R_xw(x) = (1 + \tau x)^{-1}[xw(x) + C]$$

where

$$C = \left(\int_0^\infty \tau y(1 + \tau y)^{-1}G(dy)\right)^{-1} \cdot \int_0^\infty yw(y)(1 + \tau y)^{-1}G(dy)$$

since R_x is the inverse of $\tau - U$. Or

$$R_xw(x) = (1 + \tau x)^{-1}xw(x) + L(h_1 * h_2 * U)(\tau)$$

where L indicates the Laplace transform of the function $h_1 * h_2 * U$ and

$$h_1(s) = x^{-1}e^{-s/x}, \quad s > 0$$

$$h_2(s) = \int_0^\infty w(y)e^{-s/y}G(dy), \quad s > 0$$

$$U(t) = \sum_{k=0}^\infty F*e^{n}(t), \quad F(t) = \int_0^\infty (1 - e^{-t/y})G(dy) \quad \text{for } t > 0.$$

Now $P(\mu(t) < x | \mu(0) = \mu_0) = \int_0^\infty w(y)Q_t(\mu_0, dy)$ where $w(y) = 1$ if $0 < y < x$ and 0 otherwise. Since the Laplace transform of this function (as a function of t) is $R_xw(x)$, taking inverse transforms implies

$$P(\mu(t) < x | \mu(0) = \mu_0) = e^{-t/x}w(x) + h_1 * h_2 * U(t).$$

Since $h_1 * h_2$ is directly Riemann integrable, the renewal theorem of [3], page 349, implies as $t \to \infty$

$$P(\mu(t) < x | \mu(0) = \mu_0) = (E(\mu_1))^{-1} \int_0^\infty h_1 * h_2(t) dt$$

$$= (E(\mu_1))^{-1} \int_0^\infty yG(dy).$$
REFERENCES

DEPARTMENT OF MATHEMATICS
STATE UNIVERSITY OF NEW YORK
COLLEGE AT PURCHASE
PURCHASE, NEW YORK 10577