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ZERO-RANGE INTERACTION AT
BOSE-EINSTEIN SPEEDS UNDER
A POSITIVE RECURRENT SINGLE PARTICLE LAW

By ED WAYMIRE
University of Mississippi

The equilibrium states and the time asymptotic behavior of Spitzer’s
zero-range interaction scheme are studied in the case of a positive-recurrent,
irreducible single particle law and an attractive speed function. It is shown that
within the natural phase space of finitely many particles per cell, clusters occur
which lead time-asymptotically to infinite occupancy by certain individual cells.
These cells are then identified in terms of the parameters of the model.

1. Introduction. The zero-range interaction is one among several of the
Markov processes introduced by Spitzer (1970) to describe the evolution of a
system of infinitely many indistinguishable particles which move along a countable
set A according to random dynamics. The evolution depends on an irreducible
transition probability matrix P = (p(x,y) : x,y € A) and a positive real-valued
function, m, defined on the set, 9, of natural numbers. The elements of A are
called cells, P is called the single particle law, and m is called the speed function.
Think of there being some initial distribution of finitely many particles per cell on
A which evolve according to the following scheme: given that there are k particles
in the cell x, after an exponentially distributed amount of time with parameter
m(k), a particle jumps from cell x to a cell y with probability p(x, y).

As noted by Spitzer (1970), there are some interesting special cases to consider in
the zero-range model. If m is constant then the particles evolve independently
. according to a common jump transition matrix. This is the case of no-interaction.
When A is finite, Spitzer (1970) has shown that the Maxwell-Boltzmann distribu-
tion is the equilibrium distribution for the system. This case had been studied
earlier, with A countably infinite, in a doctoral thesis by Derman (1955) and, as is
now to be expected, it was shown that equilibrium distributions could be con-
structed by distributing a “Poisson” number of particles independently in each cell.
Another interesting case arises when m is decreasing inversely with increasing
occupancy number. In this case we can think of there being attractive forces
between the particles which increase the mean holding times in cells occupied by
more than one particle. When A is finite, Spitzer (1970) obtained the Bose-Einstein
distribution as the equilibrium distribution for the system.

In this paper we shall investigate the infinite particle zero-range model for the
Bose-Einstein speed function m(k) = 1/k. Aside from existence, there are two
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typical problems which are central to the theory of infinite particle systems.
Specifically, the problems are the identification of the totality of equilibria for the
system and, secondly, the identification of the time-asymptotic behavior of the
system.

2. Mathematical preliminaries and statements of results. Let I = 9 U {oo}
be the one-point compactification of the discrete topology on N = {0, 1,2, - - - }.
For topologlcal reasons, define the phase space for the system by S, A= ‘DLA and
give S, A the correspondmg product topology. The Borel sigma-field of subsets of S, A
is denoted by ) A~ The space of observables, E(S, A), is the Banach space consisting
of all continuous real-valued functions of S, equipped with the uniform norm. The
sub-class of E(S, '») Which consists of those observables which depend on the
occupation numbers at finitely many cells is denoted by EJ(S '»)- It follows from
the Stone-Weierstrass theorem that E,(S ') is dense in E(S).

According to Liggett’s existence theorem (Liggett, 1972), if we assume

2.1) sup, 2, epP(x,y) < oo,

then there is a unique strongly continuous, Feller transition function, (P(¢, 0; B) : ¢t
> 0,0 € S,, B € ®,) with infinitesimal generator (A %) such that

22)  Ag(0) = Z.eaZ, e lp (0)P(x, )] 8(0,,,) — 8(0)]. 8 € E{S4),
where
o,,(z2)=0(x)-1 ifz=x andif o(x) > 1

23) =d(y)+1 ifz=y andif o(x) > 1
= a(u), otherwise.
(24) B, = {o € .S—'A:o(x) > 1}.

The conditions on the speed function given in Liggett’s existence theorem are easily
checked in the present case where

mk)=1/k, k=12,
=0, k=0k=oc0.

In passing, it should be mentioned that there are important classes of speed
functions for which Liggett’s existence theorem fails. However, Liggett has shown
that by “diluting” the class of allowable initial distributions, it is possible to prove
the existence of a system with the desired dynamics under relaxed conditions on
the speed function (cf. Liggett, 1973).

A measure @ = (@(x): x € A) on the sigma-field of all subsets of the set A such
that

2.5)

(2.6) a(x) >0 foreach x € A
2.7 a(A) >0
(2.8) 2 ead(x)p(x,y) = a(y) foreachy € A

is called a nontrivial, nonnegative, invariant measure for P. In view of the
irreducibility of the single particle law, P, the condition (2.8) makes the conditions
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(2.6) and (2.7) equivalent to the single condition a(x) > 0 for each x € A. We let
§(P) denote the set of all nontrivial nonnegative invariant measures of P. If P is
recurrent then §(P) # ¢ and is given by constant multiples of a single nontrivial
invariant measure. In the case that P is positive-recurrent, this single measure is
finite and, consequently, has a bounded density. In the case that P is null-recur-
rent, it is not a finite measure and may or may not have a bounded density. In the
case that P is transient, $(P) may be empty or P may have infinitely many
nontrivial invariant measures.

In Section 3 we shall examine states of equilibria for the system which corre-
spond to those invariant measures @ € §(P) for which

(2.9) sup, a(x) < 0.
Apart from condition (2.1) for existence, we assume that there is an @ € J(P) for

which (2.9) is valid. For each real number p, 0 < p < [sup,a(x)]"", let 7,; be the
product measure on (S,, 9B ,) with marginal factors »,;, x € A, given by

Qi) B0 = [1- 0 ][], k=012

=0 k = oo.
For p = py = [sup,a(x)]™", let =, ; be the product measure on (S, B,) with
marginal factors v, ;, x € A, given by

(2.11) vy ak)=[1- pr@(X)opd@x)lF, k=0,1,2,- -
=0, k=o0
if @(x)py, < 1, and
2.12) vy ak)=0, k=012,-"-
=1, k=0
if a(x)py = 1.

Since S, is compact the family {7,; : 0 < p < py,} is tight. Moreover, it is not
hard to show that

(2.13) Tz = limy, 7,z

THEOREM (2.14). Assume that there is an @ € §(P) such that (2.9) holds. Then
each T 0< P < py and p = oo, is an equilibrium state for (P(t, 0, B): t > 0,
o6 € Sy, B € B,) where m; is the point mass representing infinite occupancy in each
cell.
The remainder of Section 3 is devoted to properties of the equilibria given in
(2.14) under the condition that P is positive recurrent.

The investigation of the long-time behavior of the system is carried out in Section
5 under the assumption that P is positive-recurrent. However, this investigation is
based on certain monotonicity results which are given in Section 4. The techniques
employed in Section 4 are popular in the study of particle systems and they are
essentially due to Liggett and Spitzer.
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THEOREM (2.15). Assume that the single particle law, P, is positive-recurrent and
satisfies (2.1). Let @ € 3(P) and let y,, denote a solution to a(y) = max,a(x). Define

C( k ) = {0 € Sy 0(yy) > k). If 0 € S, and if T 0(x) = oo, then

M
um,_mf(t, - c( x )) =1
foreachk=0,1,2,- - -.

The natural state space for the system is S, rather that S,. However, according
to Theorem (2.15), clustering will occur. Consequently, as a corollary to Theorem
(2.15) we can identify the class of all equilibria for the zero-range system restricted
to S,.

COROLLARY (2.16). Fix p such that 0 < p < p,, and define
EM = 722, enr0(x) = N), N=0,1,2---.
Then { p™: N = 1,2, - - - } is precisely the collection of all extremal equilibria for P
restricted to (S,, B, N Sy).

3. Equilibria. In this section we shall examine states of equilibria for the
zero-range system which correspond to those invariant measures @ € 9(P) for
which (2.9) is valid. The assumption that P is positive-recurrent is not necessary in
Theorem (2.14), however, condition (2.9) is certainly valid under this assumption.

PRrOOF OF (2.14). The two cases p = 0 and p = oo are clear. The case in which
p = py, follows from the case 0 < p < p,, because the class of equilibrium states is
closed in the weak* topology. So, we fix p between 0 and p,,. Let g € Ef(§ ») and
let C(g) denote the coordinate set of g. Then g(o) = g(n) if 6 = 3 (pointwise) on
C(g) C A, and

A8(0)=2, conZ, enls (0)P(x, ¥)[ g(a,,,) — g(0)]

+ExEA—C(x)zyEC(g)IBx(o)p(x’ ,V)[ g(ox,y) - g(a)].
Convergence of each of the above series is automatic by (2.1) and the fact that
2, eaP(x,y) = 1foreach x € A. Since by construction (cf. Liggett, 1972), 4, D)
is the closure of the operator (4, E{S,)), it suffices to show [ 5,48(0)7 3(do) = 0
for all g € E(S),).
Consider first the integral
I, = f.S—'A{ExEC(g)zyEAP(x’ »): IB,(O)[ g(ox,y) - g(")]}%a(do)-

Since 7,;(S,) =1 for 0 < p < p,,, the integral I, is given by the corresponding
integral over S,. We have, under the change of variables o, y—0,

L= szC(x)zy eac)P *P(x, J’)a(x)fsAg(o)'”pa(da)
+2 ety (5 ) 5 5,088(0)a(do)

- ExEC(g)fsAang(a)Wpa'(do)’
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where this simplification is made by using the independence of g(o) and o(y) when
y € AN C( g) and the invariance of @ under P. Now consider,

= fSA{ZxEA\C(g)EyEC(g)p(x’y)IB (0)[ 8(0x,y - 8(0)] }Wpa(d")
= 2xeA\C(g)zyeC(g)p(xa .Y)fs,\nB g( y) (do)

- ExEA\C(g)EyE C(g)p(x’ y)fsAn Bxg(a)ﬂpa(do)‘
If again we use independence and the invariance of @, then we get,

12 = Eyec(g)fsAnB,g(o)Wpa(da)
—zxec@zyec(g);—g%p(x, W) 5,08,8(0)7,(do)

_ExEA\C(g)EyEC(B)pa('x’ )’)fs,\g(a)'”pa(do)'
Combining these expressions and observing that
2xec(g)zyeA\C(g)l’a("‘)P("" y)= ExEC(g)EyEA\C(g)pa(y)p(y’ x)

we obtain the result. [

PROPOSITION (3.1). Assume that P is positive-recurrent and let @ € $(P). For
0 < p < pp we have m,;(Z , cp0(x) < 0) =

PROOF. The event {0 € §,: 3 0(x) < o} is a 7,; zero-one event. It therefore
suffices for us to observe that

Toa(250(x) < 00) > 7,5(2,0(x) = 0)
= ILea(l — pa(x)) >0 -
since 0 < a(x) < 1and 3, _,a(x) < . []

Using Liggett’s construction (Liggett, 1972), it is not hard to show that the
particle number of the system is conserved. Also, it is to be noted that, since & is
summable, we have for 0 < p < p,,, T2, ecp0(x) = N) > 0 for each N =0, 1,
2,

4. Monotonicity of states. The evolution of the state of the system in the
space, S A» consisting of all probabilities on (S, o> ® A), takes place according to the
adjoint to the semigroup of linear operators furnished by {P(t ,» *)}. In this
section we shall investigate the monotonicity of the evolution of states under this
adjoint law. The techniques adopted in this section are quite familiar in the study
of particle systems (cf. Spitzer, 1974; Liggett, 1974).

Let M={f€e E(SA) fo) < S(m) if 6 <7 (pointwise)}. Let p, » € SA Then
u < v if and only if

4.1) J5,f(0)v(do) < [5, f(o)v(ds) forall f €& M.
Note that (4.1) defines a partial ordering on S A-
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THEOREM (4.2). Let p, v € S, such that . < v. Define v, = /s, P(t o, -)u(do),
t>0andv, = [g, P(t, 6, )v(do), t > 0. Then

w <vwv, forall t>0.

PrOOF. Let (o, m,) denote the coupled process on (S, X .STA@—?) A X B,) with
infinitesimal generator given by

Qg(o, 1) = 2(x »): o(x)>l,'q(x)>lp(x9y)[ g(o, e,y Tx, y) g(o, "7)]
+2(x »)ioe(x)>1, 'n(x)-Op(x y)[ g( X, y? 7') g(o’ T’)]

+2(x,5) : a(x)=0, n(x)> 1P(x,)’)[ g(a, n,,,) — 8(o, "7)]
for g € Ef(SA X S,), (6,m) € S, X S,. Then the infinitesimal generators of the
marginal processes are given by (A4, 91). The existence of the coupled process
comes from Liggett’s existence theorem. Now, let § = {(s,7) € S, X §, 10 <7
(pointwise)}. Then, /5 = 0. So, in particular, § is closed under the evolution of
the coupled process. It now follows that for f € M,

/5, f(0)p(do) — [5, fo)v(do) = [5,E,f(0)(do) — [5,E.f(a,)r(do)
= fEAX.S_'AE(O, 'n)[f(ot) - f("h)]d(ﬂ X V)(U, T’)
< 0. 0
REMARKS. The key to the proof of Theorem (4.2) is in showing that Ig € 9,
That this is true follows from Liggett’s construction of the process with the closure
of (2, E(S,)) as its generator, (cf. Liggett, 1972). Liggett (1974) has shown that the

evolution of states for simple exclusion is monotonic and it is from there that the
idea behind Theorem (4.2) was adopted.

. 5. The long-time behavior of the system. We recall that for each N =0, 1,

2,- -+, S,u(N) is closed under the evolution of the system. The restriction of the
transition law to S,(N) shall be referred to as the N-particle system. Throughout
this section the single particle law is positive-recurrent. It is easy to apply induction
to see that the N-particle system is an irreducible Markov chain. Fix p such that
0 < p < p,, and define,

(5.1) p™M) = 7|2 cp0(x) = N), N=012,-

It is well known that an irreducible Markov chain is positive-recurrent if and only
if the transition law possesses a positive summable invariant measure. Since u®’ is
such a measure for the N-particle system, it follows that the N-particle system is
positive recurrent. So, as a consequence, if 7 € S, and if #(S{") = 1 for some N,
then 7 lies in the domain of attraction of u®, That is

(5.2) lim, . f5.P(t 0, -)n(do) = p™),  (weak* sense),

(cf. Breiman, 1969).
It is now necessary that we consider the case when the infinite volume system

supports an infinite number of particles. For x,,- - ,x, € A, ky, - - - , k, € N,
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define

ki-- -k _ ‘
C(x:...x:)={UESAo(x,-)>k,-,l<1<r}.

Note that the indicator
IC( ky: - k,),

X%
belongs to the set, M, defined in Section 4.
ProPOSITION 5.3. For each N=0,1,2,- - -, we have
un(e(f k) < w0 %))
1 r 1 r
forallx,---x,€Aandk,- - -k, € .

Proor. Since the N-particle system is positive-recurrent with equilibrium state
™, we have
lim,_mf(t, 0; C(I;: ,;:)) = u(N)(C( I;: ,;:)) foro € S,(N).
Define oy, € S,(N) by selecting x € A and setting
() =N  ify=x
=0 otherwise.

Clearly oy < oy, ,. Suppose that 37 _,k, < N. Then

k- -k _ k- k
) 1 ) =1 ; ! i’
13 (C( Xy x’)) 11mt—>ooP(t’ ONs C( Xpcoo xr))
. (kK
< llm,_,wP(t, aN+]’ C( xl e X ))
= M-(N"'l)(C( ky--- kr)),
xl * o o x’

I(}a- k) € M.

XX,

since

In the case that 27_,k; > N, we have

(N) 1 r —
# (C("l‘ o x,)) o {

ki - k\\

= @) 1 r

()
Jorx,---x, €A k- -k, €. Then

limy_ Ay = 1oy [03(%) ] + 220 Ast = A] 7oz (Z eno(x) < 1),
Jor 0 < p < py,.

LEMMA 54. Let
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ProoFf. In view of Proposition (3.1), we have
lim,, _,7,:(2,cp0(x) <m) =1, for 0 < p < py,.
So for 0 < p < pyys
lil-nm—»:oAm = limm—»oo}\m : Wpa(zxo(x) < m)

= limm—»oo[}\m : ‘”pﬁ(szAo(x) < m)
+2':-_(;[}‘n - }\n+1]'”'pa(2xez\°(x) < ")]
—Z:O-O[A'n - }‘n+|]7’pa(2xe1\°(x) <n)

= 2 MToa(Zcer0(x) = n)
_2;0-0[}‘" - }\n+1]'”pa(2xeA°(x) <n)

by the summation by parts formula. Now, since 0 < p < p,,,

22 M rear(®) = 1) = Zpmoma( (5111 K )is0) - (i)

Xy

- kj-- -k
= Wpa(c(xl. .. x,))

, ~ k
= i[pa(x)]”- 0
Consider the system of equations
(M) a(y) = sup,a(x).
Since lim,_, ,a(y) = 0, the system (M) has at least one solution y = y,,. We shall
use y,, generically to denote a solution to M.

PROOF OF (2.15). Let 06 € S, assume 3, ,0(x) = . Then we will demon-

strate that lim, f(t, o; C(yl;)) =1,foreachk=0,12,---.

1—>00

PrROOF. Since X ,,0(x) = oo, foreach N=0,1,2,-- -, we can select oy €
S{™ such that o), < 0. Now, for any k € 9, we have by Theorem 4.2,

.. = k . = k
lim mf,_mP(t, o; C(J’M)) > hm,_mP(t, Ons C()’M))

= ) k
1))
Now, in view of Lemma 5.4, we have
. k —
limy_, ., u"”(C(yM)) > [pa(yy)]* forallk=0,1,2,- - -.
So, letting N tend to infinity, we obtain

lim inf,_mP—(t, o C(ylfu)) > [pd(yy)]* forall 0 < p < py.
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Now let p increase to p,,. Then

lim,, [pa(y))]“=1  forallk=0,1,2,---,

so that
lim,_,wf(t, o; c(y" )) =1 forallk=0,1,2---,
M
COROLLARY. Let p™ be the state given in (5.1) for each N =0,1,2- - - . Then

(WM :N=0,1,2,- -} is the collection of all extremal equilibria for the zero-
range model at Bose- Einstein speeds with positiwe-recurrent single particle law when
restricted to (S, B,).

PrROOF. Suppose that 7 is an extremal equilibrium state for the model and that
7#=p®™ for N=0,1,2---. Then a = m(6 € S, : =,0(x) = ) > 0. Now for
eachk=0,1,2,:- - -, we have

W(C(YIL)) = fSAP(t, o; C(ylil))w(da)
> [(oes,: z,o(x)-oo)P(t, o; C(yIL))vr(do).

Letting ¢ tend to infinity, it now follows that

ﬂ(C(k))>a>0 fork=0,1,2,---.
Ym

But this is impossible since C( ylj,) decreases to C( ;:’{ ) as k increases to oo; i.e.,

a(c(50)) = limk_m'n'(C( ylfu )) >a>0,

and therefore #(S,) < 1. []
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