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THE ASYMPTOTIC DISTRIBUTION OF THE SCAN STATISTIC
UNDER UNIFORMITY.

By NOEL CRESSIE
The Flinders University of South Australia

The problem of testing uniformity on [0, 1] against a clustering alternative,
is considered. Naus has shown that the generalized likelihood ratio test yields
the scan statistic N(d). The asymptotic distribution of N(d) under the null
hypothesis of uniformity is considered herein, and related to the version of the
scan statistic defined for points from a Poisson process. An application of the
above yields distributional results for the supremum of a stationary Gaussian
process with a correlation function that is tent-like in shape, until it flattens out
at a constant negative value.

1. Introduction. The following problem motivated the research contained in
this paper. Suppose U,, - - - , Uy is a sample of size N from the unit interval [0, 1].
We wish to test the null hypothesis of uniformity against a clustering alternative
with density,

fi(x) =1/(1 + nd) 0<x<bh
1.1 = {1+71)/1+nd) b<x<b+d
=1/(1+ nd) b+d<x<1;

i.e., a density which is constant except for a rectangular peak at position b, of width

d; m is a height parameter. Orear and Cassel (1971) give a number of cases in

physics where the type of departure to be expected is this “bump” type of

alternative; see also Bhattacharya and Brockwell (1976), and Birnbaum (1975).
Define,

(1.2) N(x, h) = number of points in the interval (x, x + k],

where h < 1,0 < x < 1 — h. We are then able to define the scan statistic as,
(13) N(h) = supocrc1onN(x, h).

On intuitive grounds, if we have some idea of the cluster width 4 likely to be
met under the alternative, then it would make sense to slide an interval of length
d over the points to see if there were any unusually large peaks of {N(x,d);
0 < x < 1 —d}; N(d) would be a natural statistic to compute. In fact, treating n
and b as unknown parameters, Naus (1966b) has shown that the generalized
likelihood ratio test rejects the null hypothesis of uniformity for N(d) large.
Saunders (1978), using size and power criteria for the more general stationary
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renewal process, also concluded that the choice of A = d was optimal. So for testing
purposes, we need the distribution of N(d) when the sample comes from the
uniform distribution on [0, 1]; all subsequent results will be under this hypothesis.

The scan statistic N(d) has been studied by Naus (1965), (1966a), (1966b),
Wallenstein and Naus (1974), and Huntington and Naus (1975), however only for
finite N. Cressie (1977a) briefly summarises these results, as well as deriving further
properties under the null hypothesis, and giving the corresponding results under the
alternative hypothesis.

This paper looks at the asymptotic (N — o0) distribution of N(d) under the null
hypothesis of uniformity; Theorems 2.2 and 2.3 of Section 2 contain the important
results, followed by two examples. In Section 3, a result of Huntington and Naus
(1975) is corrected; the striking similarity between the results of Theorems 2.2 and
2.3, and a result of Shepp (1971) on the first passage time of a particular Gaussian
process can then be explained. Both are derived from an identity of Karlin and
McGregor (1959), although the identity is used differently in each case. In fact
Shepp’s result is shown able to be independently derived, using Section 2 as a
starting point. The particular Gaussian process considered by Shepp is just the
limiting form of the scan statistic, now defined for points coming from a Poisson
process. Details are given in Section 3, while Section 4 applies the results of the
previous sections to derive certain distributional results for the supremum of a
stationary Gaussian distribution, adding a fifth case to the four already known.

2. The scan statistic and its asymptotic distribution. The distribution of the
scan statistic N(d), for finite N, and d = 1/L, L an integer > 2, was derived by
Naus (1966a):

2.1)  Pr{N(1/L) <m} = Sy NIL™¥ det(1/c;;!),
where
;= ((—iym—=3Z/2lm + m, 1<i<j<L
(2.2)
=((j—im+3Z,_m, L>i>j>1.

Ifc;; <O or ¢;;j> N,put 1/c;;!= 0. Also Q, is the set of all partitions of N into L
nonnegative integers m;, each less than m. The extension of (2.1) to any d between
0 and 1, came from Huntington and Naus (1975): Define L = [d~!'], the largest
integer in d~', and r = 1 — dL. Then,

(23) Pr{N(d) <m} = 3, Rdet(1/h;;!) det(1/e;;!),

where the summation extends over the set Q, of all partitions of N into 2L + 1
nonnegative integers m, satisfying,
m;+m;,, <m i=12,---,2L,

and R=N!rM(d — r)" ™ with M =3{_,m,,,,- In the determinant of size
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(L+1)><(L+1),
—Ek_zj my — (i —j)m L+1>i>j>1
= -3 lm,+ (j—i)ym 1<i<j<L+1,
and in the determinant of size L X L,
e,; =33, m— (i—j)m L>i>j>1
= =S¥l me+ (- i)m 1<i<j<L,

where 1/»!=0,if » <0, » > N.

In this section we allow N — oo, and derive corresponding asymptotic results for
the above. The details will be given for d = 1/L, and results merely stated for any
0 < d < 1; there is no real difference in approach, only in complication. Define,

2.4) k=m"Nd g sy(a) = M4 N4
N: Nz
Then
Pr{N(1/L) <m} = Pr{Sy(1/L) < k}.
Now
o= {(my, -+, m):0<m<mVi, andZlm,=N}.
Therefore write m, = N/L + (1 — x,)k(N?), where x; > 0, (i=1,- -+, L) and

3L x; = L. We then substitute these expressions into (2.2), giving

(c;;) = ( + k(NY)d, )

where -
dj;=1+3i_\x — x, 1<i<j<L
2.5) o
=1—2,_jx, L>i>j>1,

remembering that =%, x, = L.

Now use Stirling’s formula: n!= (27n)7n"e~"**"/12 where (n + ™! < w(n)
< n~!, to evaluate det(1/c,;!), for large N. The resulting algebra is extremely
messy, however tractable if we exploit the fact that /.,d,,,, =0, for every
permutation o, on the integers {1,2,- - -, L}. Hence I, exp(c.d,,;y) = 1, and
we are able to use this to great advantage when looking for the asymptotic
expansion of

N!L™¥det(1/c,;;!) = NIL7VZ e(o)I/= (1/Ci0) 1)

where the summation is over all permutations o, and ¢(o) is the sign of the
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permutation. The L = 2 case illustrates the approach:
N127Vdet(1/c;;!)

N/2—(1—x)k(N?)

2 ((N/2 + (1= x)k(ND)(N/2 = (1 = x)k(ND))27/N )}
. (N/2 - (1 - xl)k(Ng))—N/2+(1_x|)k(N%)

((N/2 + (1= x )k(NH)(N/2 = (1 = x)k(ND)2m/N )}

X

N —_ o —N/2+K(N?) 1 —N/2-k(N1)
B ( ) (N/2 = k(N?)) (N/2 + k(N%)) . . 0(%’)
((N/2 = k(N))(N/2 + k(N¥)27/N )

__ 2 : {e—Z(l-—xozkz 2 0(_1_1)}
(27N)? N:

2 ~k(1-x)? = kAD?
= T 1det € €
(2aN)? e~ K(=D*  omkA(=(-x))?

We are thus able to prove:

»|Z

THEOREM 2.1.  For c;; given by (2.2), and large N,
L2 L 1
NN ) = — Zk%d2 — ]
L™"N!det(1/c;;!) pYRNDEY {det(exp( 3 k du)) + 0( o )} ;
k>0,
where the d,;’s are given by (2.5).
The main result of this section then follows:

THEOREM 2.2. As N — oo,
Pr{SN(l/L) < k}
LL/2p L1

- L, 2,2 1),
= Wfs det(exp(——z—k dij))dxl' cedxp_ + 0(—),

Ni
k>0,
where Sy (1/L) is given by (2.4), x, = L — (x; + - -+ +x,_,), and the region

S ={(xp-",x_):x,>0Vi, and Z[5'x,<L}.

im=]
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Proor. From (2.1), we see that

Pr{Sy(1/L) <k} = 2, N!L™ " det(1/c;;!)

LY L, ,, 1.
Egom {det(exp(— a-k d,-j)) + O( N%) 5

k>0,

by Theorem 2.1. Now the sum can be approximated by an integral, and since
m, —1=N/L+ (- (x; +1/k(N))k(N7), then 1= Am,; = k(N?)Ax,.
Therefore the above becomes

(k(N%))L"fs(—z—ﬂ—]’:)L(/Lz_—wz{det(exp(—gkzdfj))}dxl- Cedx,, + 0( ;)

which is the required result. []

We can prove the analogous results to Theorems 2.1, 2.2 for general 0 < d < 1:

Now Q,={(my,- -+, my )  m;>20Vi,m;+m, , <m((i=1---,2L),
and 2 'm,; = N}. Write
mz,._,=Nr+(—J—x)k(N2) i=1, ,L+1

my; N(d—r)+<d—r

- .)k(Ns) i=1,---,L,

where x; +y;, > 0,y + x;,,; > 0(i=1,---,L) and 2/'x; + /.y, = 1/d. De-
fine

2 l,.jEr/d—ZZ_j(xk+yk)+yi L+1>i>j>1
) =r/d+ 2z x + ) — 1<i<j<L+1,
and

= (d—=r)/d—=Zij(x +3) + x; L>i>j>1
Q.7

= (d—r)/d+Zhai(Xe +21) — 1<i<j<L.

Note that 2/4'Y,., = (L + Dr/d —ZiX'x, and 2, f, = L(d—r)/d -

im=1]
SE |, for any permutations o, r; which implies =4, + Pl iriiy = 0. We use
this in proving:

THEOREM 2.3. For k > 0, Pr{Sy(d) < k}

k2L 4 ( ( k212)
= t — ]2
(Zﬂ)Lr(L"'l)/z(d—r)L/sz et| exp 2y i

K 1
-det(exp( 2(d r) )) N2 --deayL+0(;%—),
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where Sy(d) is given by (2.4), 1/d is not an integer, and the region
T = {(X1:015" s X0 Vs Xpa1): Xit 3, 2 0,9+ %, > 0
(i=1,---,L), and Z[Hx, + 3Ly, = 1/d.

Theorems 2.2 and 2.3 are the exact asymptotic results for the scan statistic. As L
gets larger, the integration becomes intractable. Ford = 1/L, L = 2, Theorem 2.2
gives a closed form result:

(2.8) limy . Pr{Sy(1/2) < k} = {20(2k) — 1} — 4k¢(2k),
e™*/? and ®(y) = [”_ ¢(x) dx. For L = 3:

where ¢(x) = -
@n):

2.7

lim,y_., Pr{Sy(1/3) < k} = —% { S (e7KA=0Y8 4 gmokHU+0Y/4)

x (20((3 — x)(3/2)%k) — 1) dx
(2.9) 9.3k i

2.m2

— 3¢7%/4(20((3/2)23k) — 1) +

3tk _g o 3777 s 3igr e VK] )
- e — o362 k) -+ — —— |1,
7 1( e )~ 3k 6k> 6k
which cannot be put into closed form. Now consider the asymptotic distribution
for large k; i.e., in the tail.

A result of Naus (1965) says that for d < 1,

1 — Pr{N(d) < m} = 225\:_’"“(1;’)‘1:'(] - )"

(2.10) +{dl1—-d)-N+m+ 1}(%)d'"(l —-d)"™",

N+1

2
since we need results for m > Nd. Equation (2.3) fills the gap, but with a

complicated expression. With the help of Stirling’s formula, and using the defini-
tions of k and Sy (d) given in (2.4), we see that

@211) 1 — Pr{Sy(d) <k} =~ k(d(1 - d)) " i¢(k(d(1 —d))"?)/d

provided m > . This is an incomplete solution to the distribution of N(d),

+2[1 - @(k(d(1 - d))"7)],

N+1

provided £ > ([ - Nd) N2,

It does not seem unreasonable to hope that (2.11) would be accurate enough to
give a quick and easy critical level for the distribution of S, (d), in much the same
way as in Watson (1967). Kuiper (1960) did a similar thing, but also kept the
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leading term of O(1/N %). Unfortunately, from extensive numerical studies using
the table of exact probabilities given by Wallenstein and Naus (1974), we con-
cluded that the approximation was not good enough. We believe this is due mainly
to the heavy skewness of distribution, for small d. A similar result to (2.11) for the
scan statistic on the circle may be obtained; see Cressie (1977b). For d = %,this
shows agreement with the first term of the exact asymptotic result given by Ajne
(1968).

3. The Poisson process and Shepp’s result. Suppose {K(?),¢ > 0} is a Poisson
process with E(K(z)) = At, A > 0. Then define,
3.1) K(t,t +h] = K(t +h) — K(2),

to be the number of points of the process in the interval (¢,¢ + h]. We will hold A
fixed, and allow ¢ to vary. Define,

W = time to the first occurrence of an interval of length A,
m.h — which contains m points of the Poisson process.

KT(h) = sup0<,<TK(t,t + h]

Then,
{(Woon > T} = {Kr(h) <m},

and,

Pr{K (h) < m}

(3.2)

®_oPr{K;(h) < m|K(@©O,T + h) = N} Pr{K(0,T + h) = N}

- e—}.(T+h)[ >\(T+ h)]N h . ~
N=0 N1 PT{N(T+h)<m|Np01ntsm [0,1]}.

Note that K;(h) is the version of the scan statistic on the positive half line; it is
also the maximum queue length of an M/D/ queue, where the service time is
deterministic of length 4. Hence we wish to find its distribution. Since we know the
distribution of N(d) from (2.3), the distribution of K,(4) can be found from (3.2).
A similar expression is given in Huntington and Naus (1975) as a corollary to their
main theorem, however their result is in error. It should read,

33) Pr{W,, ,< T} =1- Z5.R* det(1/h,,!) det(1/e,;!),
where Q* is the set of all 2L + 1 nonnegative integers m, satisfying m, + m, ., <m
(i=1,---,2L), and where R* = Re " T*M[X(T + h)]"/N!; R is obtained from
23) withd = h/(T + h).
It is a very simple matter to show that
{ K(O0, t] — At

- ;0<t<T}—>W{W(t);0<t<T}, asA — oo,
A2z
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where W(¢) is the standard Weiner process, and “—,” means “converges weakly
to.” Then by methods similar to those of Cressie (1977a),

K(t, t+h] —Ah
1 2w {Xh(t)}’
(Ah):

where X, (¢) = (W(t + h) — W(t))h‘%. The process X,(¢) is a stationary, separa-
ble Gaussian process with mean zero and covariance function,

r(s,t)=1—|s—t|/h (|s—t¢t <h)

=0 (Is =t > h),

Kr(h) — Ah

(Ah):
“converges in distribution to.”

Now sup, ., .+ X4(#) = supy, r/» X1(#), and the supremum of X,(¢) has been
studied by Slepian (1961), and Shepp (1966), for T < 1. Finally, Shepp (1971) gave
the general result for all T

(3.4)

and from (3.4), —q SUPg 1 X(2), as A — 00, where “—4” means

THEOREM 3.1. (Shepp).
Q.(T/h) = Pr{sup0<l<T/h X,(2) < a}
= fD, -+ f det ¢(y; — Va1t a)dy, -+ Apps

where D' = (0 <y, <y, < -+ <y,41}» T/h = n, an integer, and the determinant
isofsize(n+ 1) X (n+1),0<i,j<n,withy,=0.

Proor. Equation (2.15) from Shepp (1971) gives Pr{sup,_, 7/ X\(?) <
a| X,(0) = x}. The starting value may be integrated out to give the required result.

0

Note that when 7/h is not an integer, a similar result to the above theorem may
be obtained from Shepp (1971), expression (2.25). We will now give a direct
derivation of the distribution of K, (h) when T/h = n, showing that we do indeed
arrive at the distribution given in Theorem 3.1.

THEOREM 3.2.
Kp(h) — Ah

lim, Pr{%— a} = o [det (Y, —yta)dy o B

Proor. From (3.2),

Kr(h) — Ah (N—A(T+h)) 1
P o\ ~°" = 3®_ —= |- -
o <o) == ) G |
.Pr{ N(d) - N.d _\h— N.h/(T-ll- h) + a(Ah)? }
Nz N2

r o)
A2
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where d = h/(T + h); see Johnson and Kotz (1969) page 99, for justification of the
remainder term. Now put z = —N———M—TL},Q; ie, N=N(z; A)=NT+ h) +
(MT + h))?
zZ(MT + h))il; and approximate the infinite sum by an integral with respect to z.
Hence the above becomes,
)
h

+(Tih)%a)(l+ (A(Tih))z)} ( )

The upper limit can be modified to a((T + )/ h)?, since the integrand is nonzero
only when a(Ah)i + Ah > Nh /(T + h). Now since the integrand is positive and
bounded, we can use dominated convergence to show that as A — oo the above
converges to

a(T+h)/h)2 T __zh h )5
S8 ¢(z) lim,_, Pr{SN(d) < T+ h + a( T+h dz.

Recall that T/h = n, and so h/(T + h) = 1/(n + 1); also make the change of
variables w = —z/(n + 1) + z/(n + 1)%, and use Theorem 2.2 with L =n + 1 to
give,

f—(A(T+h))z¢( z) Pr{ N(z; }\)(d) <( (T

(n+ 1)f0w¢(w(n +1)—a(n+1): )(_n_éi)(:_/';_)_/jw

X fg det(exp(—ﬁ;;—wzd2 ))dx e dx,dw.

Make the change of variables

Vi = Zj_o(n+ 1)%wxl (i=1,--+,n+1),
yielding as Jacobian, {(n + 1)"*¥/2w"}~! and hence obtain
I S det ¢(y; —y;ta)dy, - - dypyy 0

Note that when T/h =n + 6, 0 < § < 1, we can in a similar manner, obtain

Pr{w<a} -

(Ah):
J det(y(r;, — ;) det(dy_g(s; — rjpy + @))dry - - - dr,, dsy- - - ds,,,,
asA — oo,
where ¢y(u) = (2770)" ~u/28 pr= {0<r< -  <Fipse<s;<---<

Sp+1}> o = 0,and the first determinantis of size(n + 2) X (n + 2),0 < i, j < n+1
while the second is of size (n + 1) X (n +1),0< i, j < n.

It is not surprising that the asymptotic scan distribution of Theorem 2.2, and
Shepp’s result of Theorem 3.1 look so similar and, as Theorem 3.2 shows, are in
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fact related. They are essentially both derived from an identity of Karlin and
McGregor (1959), although the identity is used differently in each case. Theorem
3.2 also provides a very useful check on the validity of our results, as well as an
independent derivation of Shepp’s result.

4. The supremum of another Gaussian process. Let X(¢) be a stationary
Gaussian process with 3(X(¢)) = 0 and S(X(¢)X(¢)) = p(¢ — t’). Define
(4.1) Py(a, T|x) = Pr{X(t) <a;0<1t<T|X(0)=x}.
In a recent paper, Shepp and Slepian (1976) stated that to the best of their
knowledge, P, was only known for the three cases:
0 p(r)=e'",
@ii) p(r) =1~ |7|for |7| < 1, =0for|7| > 1,
(i) p(7) = 3/2 exp(—|7|/3)(1 — exp(—2|7|/3%)/3).
They then added a fourth case to the above:
W) p(r)=p(—1)=p(r+2); p(r)=1—ar for 0K7<1, =1+
a(tr—2)forl1 <7< 2. Also0 < a <2
Using the results of Section 2, we will now derive expressions for (4.1) when the
covariance function is,

1- |7/ = B) (vl <1
= —8/1 - B) A<t < -8B,

where 0 < B8 < % The range of the covariance is necessarily restricted, in order to
retain positive-definiteness. Thus the covariance has the same initial “tent” shape
as cases (i) and (iv), but after going negative, it stays negative, and constant. If we
put 8 = 0 in (4.2), we obtain case (ii).
Define,
(4.3) Y(t) = X(¢/B); 0<r<1-8.
Then {Y(¢); 0 < ¢t < 1 — B} has covariance function,
py(=1~Irl/BA~B) (7] <B)
= -B/(0-B) B<r[<1=4),

and Py(a, ' — 1|x) = Py(a, 1 — B|x). Recall from (1.2), the definiti{m of
N(t, B). Then Cressie (1977) has proved that {(N(t, B8) — N.B)}(NB(1 — B))~3;
0 <1< 1— B} converges weakly (as N — o0) to {¥(¢); 0 <t < 1 — B}, on the
Skorohod metric space of functions that are right continuous and have left hand
limits. Therefore,

(44) Pr{sup0<t<l—ﬁ N(t’ B) < m|N(O’ B) = ml} - PY(a’ 1 - ,B|X),
as N — oo,

where m = (NB(1 — B))%a + NB and m, = (NB(1 — B))%x + NB. Let us consider
for the moment B = 1/L, L an integer. With a little modification to Naus (1966),

“2) 1 px(7)
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we easily have, for 0 < m; < m,[N/L] < m < N,
Pr{sup0<,<1_,/L N(t,1/L) <m|N(0,1/L) = m,}

=[(”1:'1)(1/L)""(1 —1/L)"m _IEQ,N!L‘” det(1/c;;!),
where c;; is given by (2.2), and Q' = {(my,---,m;):0 <m; <m; 3L ,m, =
N — m,}. Thus via an identical proof to that of Theorem 2.2, we can prove,
THEOREM 4.1. For L > 2,a > 0,
Py(a,L = 1|(1 = x;)a) = Py(a,1 — 1/L|(1 = x)a)
100 < x, < L)a*~2L:(1 — 1/L)*~""?
- (2m)E=272 exp(—a2(1 - x,)2/2)

x [, det(exp(—3(1 — 1/L)a%d}%))dx, - - - dx,_,,

where I(A) is the indicator function of the set A,d,; is given by (2.5), 3L x,=L,and
S = {(xp,*+yxy)ix; 2 0,2 ,x;, = L~ x,}. When L =2, the integrand is a
constant; here interpret [ g.dx,- - -dx,_; to be equal to 1.

By multiplying the above expression by (27) ia-exp(—a*(1 — x,)?/2), and
integrating out over x,, we get,
Py(a,L— 1) = Py(a,1 — 1/L) = the expression given in Theorem 2.2,

where k = a(1/L(1 — 1/ L)), which is what the theory predicts. A further check is
got by repeating almost line by line the argument of Section 3; we can then derive
independently the distribution of Pr{sup,, ,_; X1(#) < a|X;(0) = x} = Py(a,L
— 1|x), for X, the Gaussian process of case (ii). The formula is originally due to
Shepp (1971) (see his equation (2.15)).

Suppose now that 8 = d # 1/L, but define L = [d™'], the largest integer in d~ 1,
and r = 1 — dL. Then by an argument similar to that which led to Theorem 4.1, we
can prove,

1

THEOREM 4.2. For0< d< 3,a>0,

Py(a,d”' = 1|(1 = z)a) = Py(a,1 —d|(1 — z)a)
_ I0 < z < d™")-a*:~Y(d(1 - d))*
@u)E 2 ) R exp(—a(1 - 2)/2)

2d(1 — d)I3
f,-,det(exp( - f—‘i(—lz—rd—)lz ))

a’d(1 - d)f?
-det| exp| — ——————— | |&v\dx,dy,dx;- - - dx, dy,,

2(d—-r)
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where I,,.f,; are given by (2.6), (2.7), and the region of integration is T' =
{(xl,yl, x2’y2, ct ,xL,yL, xL+l) . x,. +y, > O’yi + Xit1 > O (i = 1’. .
Ly;x, +y,=z;2x, + Sy, =d').

We will now illustrate the results of this section for 8= ; and B = 3 ie,

B =1/L for L = 2,3. This enables us to use the simpler formula of Theorem 4.1.
When L = 2, the integrand of Theorem 4.1 is a constant. Substituting into the
formula, and interpreting [ odx,- - dx,_; = 1, we get,

Py(a,1](1 = x,)a) =

—a*(1-x,)%*/4 —a?/4
(4.5) 10 < x, < 2)-e®A=x/2 get| ¢ ' €
e~ /4 e~ 1—x)?/4

=J00< x, < 2){1 - e‘“z/z/e"“z("'"')z/z}; a >0,

where X has covariance function, py(7) = 1 — 2|7| for |7| < 1. Note that the
presence of negative correlation gives the Gaussian process an interesting be-
haviour. As the initial starting point x, goes negative and tends to —a, the
probability that {X(7);0 < ¢ < 1} remains below +a, gets smaller and tends to
zero. Then, for all x < —a, this probability is exactly zero.

When L = 3, X has covariance function,

1 —=3|r|/2 (rf <D
=-1/2 (< |7] < 2);

Px(7)

i.e., the covariance function has the initial “tent” shape, goes negative, and at
|7| = 1 “flattens out” to stay negative. After some algebra,

P(a,2/(1 — x,)a) = I(0 < x, < 3)-(27 “%ea’ﬂ-xo’ﬂ[e-2“’{2a(3 — %3
- ®(2a(3 — x,)377) +%}
- e—2a2(x,2—3x|+3)/3{2a(3 _ x,)3‘% _ pa?xi/6

{®(2a(3 - x,/2)37%) — ®(ax,377)) } ]

where ®(-) is the cumulative distribution function of a standard normal variate.
Note that at x; = 0,3; i.e.,, x = (1 — x;)a = a, —2a; the formula gives Py to be
zero, and for x; > 3; i.e., x < —2a; Py is identically zero. Once again this says
that in order for {X(¢); 0 < ¢ < 2} to stay below +a with positive probability, the
starting value x cannot be too large negative.

In conclusion then, we have used the asymptotic techniques developed in the
previous sections, to calculate the supremum-type probability (4.1), for the particu-
lar case of T= (1 — B)/B, and the Gaussian process given by (4.2). Ideally we
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would like to calculate Py(a, T|x), for all T < (1 — B)/B, under the assumption
that X has covariance (4.2).
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