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INEQUALITIES FOR THE PROBABILITY CONTENT OF A
ROTATED SQUARE AND RELATED CONVOLUTIONS!

BY RICHARD L. HALL, MAREK KANTER, AND MICHAEL D. PERLMAN
Concordia University and University of Chicago

Let (X,,X,) be independent N(0,1) variables and let P(v,,v,) =
P[(X}, X;) € C + (vy,0;)], where C is the square {|x,| < a,|x,| < a}. By
demonstrating that P[|X; — v;| < a] is log concave in v?, the extrema of
P(v,,0,) on all circles {v? + v = b2} are determined. The results are ex-
tended to determine the extrema of the probability of a cube in R”. The proof is
based on a log concavity-preserving property of the Laplace transforms.

1. Introduction. This paper originates with the following question. Let X, X,
be independent N(0, 1) random variables and let

C = {(x1,%3) ! |%] € a,|x;] < a}.
What are the extrema of the function
P(v,,0,) = P[(Xl’Xz) eC+ (”1,02)],

where (v,,v,) is restricted so that v? + v3 = b?? Since P(+v,, xv,) = P(v,0,),
we only need consider v; > 0, v, > 0.

The investigation of the cases where either a or b is very small led one of us to
conjecture and then prove [4] that for all fixed a > 0 and b > 0, P(v,,v,) is
maximized when v, = v, and minimized when v, = 0 or v, = 0. More specifically,
in order to maximize its probability content the square C + (v;,v,) should be
located so that one of its diagonals (or the extension thereof) contains the origin
(0,0). As the square is rotated from such a position, either by rotating its center
(v,,v,) while keeping its sides parallel to the coordinate axes, or by fixing its center
and rotating it about its center, the probability content decreases monotonically
and achieves its minimum after rotation through an angle of 7 /4.

The argument used by Hall to prove this fact may be summarized as follows.
Write

P(v1,0;,) = q(v1)q(v,),
where

(1.1) q(y) = P[|X; - y| < a].
If 7(y) = ¢(»'/?) can be shown to be log concave in y > 0, then
P(vy,0,) = r(o7)r(v3)
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is log concave in (v?,v?). Since P is invariant under exchange of coordinates, it
follows that P is maximized when v} = v = 1b* and minimized when (v,0v3) =
(b%,0) or (0,b?). We note that the result immediately generalizes to cubes in R”
since
P[|X,—v;| <a,1<i<n] =T%Lr(o})

is a permutation-invariant log concave function of (v?,- - -,v?) (see Section 3).
Other generalizations, such as the extension of the result to any scale mixture of
spherically symmetric multivariate normal distributions on R”, are also presented
in Section 3—cf. Theorem 3.1.

The crucial property that () = ¢(»'/?) is log concave was established in [4] by
a delicate discussion of inequalities between complicated expressions involving
hyperbolic functions. In Section 2 of the present paper we give a simpler proof.
Since

(1.2) a(y) = Q@m)73[% e =N 2y = hy(y),

where 55 is given by (2.12) with h =1I,_,,, the desired result follows from
Theorem 2.3. The latter result, together with the other theorems in Section 2,
establishes more general log concavity and log convexity properties for Laplace
transforms and related integral transforms.

2. Main results. Throughout this paper, g denotes a nonnegative measurable
function on [0, o) and G denotes the tail of its distribution function, i.e.,
(2.1) G(x) = [Zg(w)aw, x €[0,00);
to avoid trivialities it is always assumed that G(0) > 0. Also, 4 shall denote a

measurable function on [0, «0) or, later, on (— oo, o0), such that 4 is nonnegative on
[0, ), and H is defined by

(2.2) H(x) = [Pwh(w)dw, x €[0, ).
Notice that if

(2.3) g(x) = h(x'7?), x €[0, ),
then

(2.9) G(x) = 2H(x'?), x €[0,c0).

Next, define
Ki(x) = e*

K,(x) = cosh(x)
K,(x) = sinh(x),
and for g, A as in the preceding paragraph define the transforms g, lf,. by

£(y) = ffKi((w)'”)g(W);fld%

h(y) = @K, (xy)h(x)dx, i=1,2,3.
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Notice that g; and h ; are increasing on [0, o0), and that
(25)  g(x) = h(x"*)on [0,00) = §(y) = 2h,(y'/*) on [0, ).
A function v is said to be log concave (log convex) on the interval A C (— o0, 00)
ify:4—-[0,00) (y:4—(0,00]) and
W(0x, + (1= 0)x;) > ()[w(x)] [w(x)]"™"
for all x;,x, €4 and 0 < # < 1. Our main results are based on the following

theorem.

THEOREM 2.1. (a) If G(x) is log concave on [0, o), then g,(y) is log concave
wherever finite on [0, ), i = 1,2,3.

(b) If H(x"/?) is log concave on [0, o0), then h,(y'/?) is log concave wherever finite
on[0,00),i=1,23.

ProOF. By (2.5), we need only prove part (a). Let b = sup{x|G(x) > 0}; then

0< b < oo and
(2.6) £() = ISK((w)" 2)8(W)%5-

It can be verified (e.g., apply 3° on page 126 of [6]) that differentiation under the
integral sign is permissible in (2.6) when y lies in the interior of the interval
{g; < oo}, so in this case we obtain

28/(») =y~ 23K ((w)"/)g(w)dw.
Now integrate by parts to obtain

28/(5) = y~VGO)K;©) + LK/ () )G n) 5.

Notice that G satisfies G(b) = 0 and 0 < G < oo on [0, b). Furthermore, K;(0) > 0
and K/ = K;,i = 1,2,3. Thus

@7 28/(y) _ GO)Ki(0) _ 1
' () y%(») G'w)
2f0bLi(W’y) G(W) dw
where
1/2 1/2
Liwy) = KLOWI IGO0/

JEK((wp) 2 G (w)dw /w2

In order to conclude that g; is log concave wherever finite, it is sufficient to show
that (2.7) is decreasing in y. Clearly, the first term on the right of (2.7) is decreasing.
To show that the second term is also decreasing, we argue that (i) G'(w)/G(w) is
decreasing on (0, b), since G is log concave; (ii) L,(w,y) has monotone likelihood
ratio (i.e., is totally positive of order 2 = TP,) in (w,y), because K;(uv), being of
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the form 3Fa,(uv)* with a, > 0, is TP, in (u,v) (cf. Karlin [5], page 101). In view
of (i) and (ii) we may apply Theorem 3.4 of Karlin [5], page 285, to deduce that the
second term on the right of (2.7) is decreasing in y. This completes the proof of
Theorem 2.1.

ReMARK 2.1. If g is such that G is log concave on [0, o), then the probability
distribution with density proportional to g is said to have increasing failure
(= hazard) rate (cf. [2]). The support of g must be an interval [a,5],0 < a < b < o0.
It is pointed out in [2] that if G(0) < oo then

(2.8) g iog concave on [ 0, c0) = G log concave on [ 0, ),

but that the converse is not true. Since the indicator function /;, ,; of an interval is
log concave and the product of log concave functions is log concave, Theorem 2.1
remains valid if f° is replaced by [’ in the definitions of g, and h (0<a<b< o),
provided that the stronger assumptions that g(x) and h(x'/?) are log concave are
imposed (as well as G(0) < oo and H(0) < o). (Concerning the terminology used
in [2] and [5], it should be pointed out that a function v is log concave if and only if
it is a Polya frequency function of order 2(= PF,).)

REMARK 2.2. In contrast to Theorem 2.1(b), the log convexity of the Laplace
transform, together with (2.9) and (2.10) below, implies that for any nonnegative
measurable function 4 on [0, ), /,(y) is log convex on (— o0, ), i = 1,2,3. For
example, if we take g = h = I}, ,;, Theorem 2.1 and Remark 2.1 imply that each of

172
e’ —1

5(y) = ——7— = 2h,(y"?)
y

5 sinh( y!/2 A

&) = —'y‘(ﬁr‘)' = 2h,(y'?)

. cosh(y'/?) — 1 .
iy =SB g

are log concave, while Pfl( »), h}( »), and h}( y) are log convex.

ReMARK 2.3. In view of Remark 2.2, we point out the following relations
between () and (y'/?): if ¢ is an increasing function on [0, ), then

¥(») log concave = ¢(y'/?) log concave

¥(»'/?) log convex = () log convex,

while if ¢ is decreasing on [0, 00), these implications are reversed.

REMARK 2.4. For any nonnegative measurable function 4 on [0, o), consider
the transform 4, defined by

hy(y) = [ge™h(x)dx, y €[0,0)
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(compare lf4 to lfl). Since A +(») is a Laplace transform it is log convex in y, and
furthermore it is decreasing, hence /. 4(»'7?) is log convex (by Remark 2.3).

We now turn our attention to functions /4 defined on (— o0, o0). If A is even on
(— o0, o) (i.e., h(x) = h(—x)) then, provided the integrals exist,

(2.9) J® e h(x)dx = 2[ cosh(xy)h(x)dx = 2h,(y),
while if & is odd (i.e., h(x) = —h(—x)) then

(2.10) [® e h(x)dx = 2[ sinh(xp)h(x)dx = 2hs(y).
Thus if we define 45 by

(2.11) hs(y) = [ e*h(x)dx,

the following is an immediate corollary of Theorem 2.1.

THEOREM 2.2. If h is an even or odd function on (— 00, 00) such that H(x'/?) is
log concave on [0, c0), then hs( »/?) is log concave wherever finite on [0, o0).

REMARK 2.5. As in Remark 2.1, a sufficient condition for the log concavity of
H(x'/?) on [0, o0) is the log concavity of 4(x'/?), provided H(0) < oo. In this case,
the conclusion of Theorem 2.2 remains valid if [ is replaced by (2 (a > 0) in
the definition of 55. Notice that Ifs( y) is increasing and log convex in y.

Finally, for a function A on (— 00, c0) such that the integral exists, define

(2.12) Ro(y) = (2m) 5[ 2ue™ ™ 2h(x)dx = (92h)(»)
(ﬁ6( ») is the Weierstrass transform of /), where
(2.13) o(x) = (27)Tie %72,

For later reference notice that if 4 is even on (— o0, ) and g(x) = A(x'/?) on
[0, 0), then

(2.14) he(») = ER((x3(»*)"?) = Eg(x}(»?)),

where x2(»?) denotes a noncentral chi-squared random variable with one degree of
freedom and noncentrality parameter y2.

THEOREM 2.3. If h is an even or odd function on (— o, o) such that h(x'/?) is log
concave on [0, ©), then hg( ¥'72) is log concave wherever finite on [0, 00).

PrOOF. From (2.12),
(2.15) he(y'/?) = e/2(eh)s(y'2), y €[0, ).

Since ¢(y'/?) is log concave and the product of two log concave functions is again
log concave, the result follows from Theorem 2.2 and Remark 2.5.

REMARK 2.6. From (2.15) we can write

ho(y) = e2(¢h)s(y),
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a product of a log concave function and a log convex (cf. Remark 2.2) function.
Thus, if no log concavity or log convexity assumptions are imposed on #(x'/?) or
h(x), no general statement can be made about corresponding properties of h}( y'?)
or h}( ) (unlike li,.,i =1,---,5; cf. Remarks 2.2 and 2.4). However, since the
convolution of two log concave (= PF,) functions on (— o0, o0) is log concave
(Karlin [5], Proposition 1.5, page 333) if A(x) is log concave on (— oo, c0) then
he(») is log concave on (— o0, 00). On other hand, if A(x) is log convex on
(— o0, c0) then h}(y) is log convex on (— 00, o0), because

hs(») = (2m) 32 e/ *h(y + u)du

and the sum of log convex functions is log convex. Theorem 2.3 states that if 4 is
even or odd and A(x'/?) is log concave on [0, c0) then h(y'/?) is log concave,
while Theorem 2.6 (to follow) states that if 4 is even and h(x'/?) is log convex on
[0, ), then A4 (y'/?) is log convex. Furthermore, if & is even then h increasing
(decreasing) on [0, c0) = k¢ increasing (decreasing) on [0, o0) (from -(2.14)), so
under such monotonicity conditions on 4, Remark 2.3 provides information about
the interrelationships among the various log concavity and log convexity properties
of h and 56. Examples occur in the next two paragraphs. Finally, we record here
that in view of (2.14), the preceding comments imply the following properties of the
noncentral chi-squared distribution: if g is a nonnegative measurable function on
[0, c0), then

(2.16) g(x?) log concave (log convex) in x on (— 0o, )
= Eg(x}(»?)) log concave (log convex) in y on (— o0, o),
while
(2.17) g(x) log concave (log convex) in x on [ 0, 0)
= Eg(x}(»)) log concave (log convex) iny on [ 0, ),

whenever the expectations are finite. Nontrivial examples are obtained by setting
g(x) = e**, exex'? xxe o (%), and I}, ,\(x), for ¢ > 0.

As remarked at the end of Section 1, Theorem 2.3 implies that the function
q(»'/?) is log concave on [0, o), where g is given in (1.1) and (1.2). Since g = A,
where h(x) = I;_, ,,(x) is log concave on (— o, 00), Remark 2.6 shows that g(y)
is log convex on (— o0, c0). However A, and hence g, is decreasing on [0, ), so
Remark 2.3 implies that log concavity of ¢g(y) is a weaker property than log
concavity of g(y'/?),y > 0.

By contrast, consider ¢* given by

(2.18) g*(y) = 1-q(») = P[|X; —y| > d]

(see (1.1)). Since g*(y) = h}(y) where now h =1 __ _, (4 ) Theorem 2.3
implies that g*(»'/2) = 1 — g(»'/?) is log concave for y > 0. Here, ¢* is increasing
on [0, o0), and for any such function (log) concavity of ¢*(y) would be a stronger
property than (log) concavity of g*(y'/?), y > 0. However, while g*(y) is log
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concave for large values of y, it must be log convex for values of y near 0, since log
g*(»'/?) is increasing on [0, c0) yet its first derivative vanishes at y =0 (by
symmetry).

Finally consider the single-tail probability

(2.19) g*(y) = P[X, > y] = (2m) 3 [ge ) 2,
Since
q**(y1/2) = eﬂ'ﬂé,“(yl/z),

Remark 2.4 shows that g**(y'/?) is log convex on [0, ). On the other hand, by
(2.8), ¢**(») is log concave on (— o0, o).

REMARK 2.7. Suppose % is an even function on (— o, 00) such that A(x'/?) is
log concave on [0, o), as in Theorem 2.3. Since h ¢ = ¢ * h where ¢ is also even and
(x'/?) is log concave on [0, ), Theorem 2.3 would be a rather weak result if it
were true that (h, * h,)(»'/?) is log concave on [0, ) whenever 4, is even and
h,(x'/?) is log concave on [0, o0), i = 1,2. To see that this is not the case, take
hy=hy=1_, . Then for y > 0,(hyxh}(»"/?) = (1 = y'/*) 4 1(»), which is
not log concave on [0, 1].

We conclude this section by reexamining Theorems 2.1-2.3 if the assumption of
log concavity is replaced by log convexity.

THEOREM 2.4. (a) If G is log convex on [0, o), then §,(y) is log convex on [0, o0).
(b) If H(x'/?) is log convex on [0, c0), then hy(y'/?) is log convex on [0, o).

ProOF. Proceeding as in the proof of Theorem 2.1, we find that (2.7) is again
valid when y lies in the interior of {g; < o0} (now b = oo, by Remark 2.8). When
i = 2, however, K;(0) = 0. Furthermore, G’(w)/G(w) is now increasing on [0, c0),
so that (2.7) is increasing in y in [0, 00), hence g,(») is log convex wherever finite.
As £,(y) is increasing, it is therefore log convex on [0, c0).

Remark 2.8. If g is such that G is log convex on [0, o), then the probability
distribution with density proportional to g is said to have decreasing failure
(= hazard) rate [2]. In this case, G must be strictly decreasing on [0, c0), hence
G > 0on [0, ) and g > 0 a.e. on [0, o0). Furthermore, since

G(x) = [°g(x + u)du
and the sum of log convex functions is convex,
(2.20) g log convex on [ 0, c0) = G log convex on [ 0, ).

To illustrate (2.8) and (2.20), note that if g is the gamma density proportional to
x*"le™* then the distribution has increasing (decreasing) failure rate if a > 1
O<a<.

REMARK 2.9. In Theorem 2.4(b), log convexity of h}( »'/%) is a stronger prop-
erty (cf. Remark 2.3) than log convexity of /,(y), which holds for any nonnegative
h (cf. Remark 2.2). (The same remark applies to 45 in Theorem 2.5.)
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The final two theorems of this section follow from Theorem 2.4 in the same way
that Theorem 2.2 and 2.3 followed from Theorem 2.1.

THEOREM 2.5. If h is an even function on (— o0, 00) such that H(x'/?) is log
convex on [0, ), then hs(y'/?) is log convex on [0, o).

THEOREM 2.6. If h is an even function on (— o0, 00) such that h(x'/?) is log
convex on [0, 00), then hg( y'/%) is log convex on [0, ).

3. Applications. We begin by considering applications of our results to the
probability content of n-dimensional cubes under scale mixtures of spherically
symmetric multivariate normal distributions. Let X = (X}, -+, X)) where the X,
are independent N(0, 1) random variables and let C be the cube given by

3.1 C = {(x, ,x,):|x] <a,1 <i<n}.
For any v = (v, * * ,0,) € R" define
(3.2) P(v) = P[X € C+ o] = II",r(v}),

where r(y) = g(»'/?) as in Section 1. We now insert a scale parameter ¢ > 0 and
define

(33) P(v) = P[tX € C+ 0] = II_,r(v?),
where fory > 0 and ¢ > 0,
(34) n(y) = q(y"?) = Q@m) rrYe e VDY 2y,

Since Theorem 2.3 remains true in the presence of a scale parameter ¢ # 1,
q,(»"/?), like g(»'/?), is log concave on [0, ). It follows that P,(v) is log concave
in (v},---,0?) on the nonnegative orthant R" . Furthermore, P,(v) is invariant
under permutations of v, - -, v2.

Because the set of log concave functions is not convex, we shall interest ourselves
in the property of Schur concavity (cf. [7]) which is closed under combinations.
First, for u,w € R", we say that u majorizes w if w= Du for some doubly
stochastic matrix D. A function S(u) = S(u,, - -, u,) is Schur concave on R"(R", )
if S(u) < S(w) whenever ¥ majorizes w with v, w € R"(R’} ). Equivalently, S(u) is
Schur concave on R"(RY ) if it is invariant under permutations of u,, - - - ,u, and if
for all ¢ (all ¢ > 0), S(¢c + A,c — A, uy,---,u,) is decreasing in A for A > 0 (for
¢ > A > 0). We say S is Schur convex if — S is Schur concave. It is easy to see (e.g.
[8]) that log concavity (log convexity) together with permutation invariance implies
Schur concavity (Schur convexity). Therefore, for each ¢ > 0, P(v) is a Schur
concave function of (v3,- -+ ,02) € R" .

Suppose now that the distribution of the random vector Z = (Z,,---,Z,) is a
scale mixture of spherically symmetric multivariate normal distributions, i.e., there
exists a probability measure p on [0, 00) such that for all Borel sets B of R” we have

P[Z € B] = [{°P[tX € B]u(dt).
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Therefore, for the cube C,

P[Z € C+ o] = [°P(0)u(dr),
so we have the following result.

THEOREM 3.1. If the distribution of Z is a scale mixture of spherically symmetric
multivariate normal distributions on R", then for the cube C given in (3.1), P[Z € C

+ v] is @ Schur concave function of (v3,- - + ,v?).

In particular, on the set {v|v? + - - - +v? = b?} the function P[Z € C + v] is
maximized when v? = - - - = v? = b%/n and minimized when v} = b%, 03 = =
v? = 0. Many intermediate comparisons are also available; for example, P[Z € C
+ v] decreases as (v, - -, v7) successively assumes the values

b2 b2 b2 b2 b2 b2 )

(B E) (B2 0)e (22 0 0) (50,0

The family of all scale mixtures of spherically symmetric multivariate normal
distributions has been discussed, for example, by Strawderman [10] and includes,
for instance, the multivariate ¢ distribution.

One application of Theorem 3.1 is to hypothesis testing. Suppose that we observe
Z' = Z + v, where Z is as in Theorem 3.1 and v is an unknown centering vector.
We wish to test the null hypothesis that v = 0 against the composite alternative
hypothesis that Sv? = b2. (This is certainly a sensible alternative in the case of
spherically symmetric random vectors.) Consider now the test which accepts the
null hypothesis if Z' € C, C given by (3.1). (Such acceptance regions are often
associated with simultaneous confidence intervals.) We have shown that the power

function of this test is minimized when v} =--: =1? and maximized when
vi=0b%0i=--. =92=0.
Moving away from cubes, let Z = (Z,,- - -, Z,) be as above and suppose that

is an even or odd function on (— o, ) such that A(x!/?) is log concave (log
convex) on [0, o0). By Theorem 2.3 (Theorem 2.6) and the argument leading to
Theorem 3.1, E[II}.h(Z; + v;)] is a Schur concave (Schur convex) function of
(v}, -+, 0]).

It is natural to ask whether Theorem 3.1 is true for any spherically symmetric
distribution on R”. That this is false, even for unimodal distribution, is demon-
strated by consideration of the uniform distribution on a disk in R? having a
suitably chosen radius, as illustrated in Figure 1.

It is interesting to compare the result proved here with results in previous papers.
For simplicity let n =2 and let Z = (Z,,Z,) be as in Theorem 3.1. For 6 > 0
consider the four points v” = (b,b), v® = (21/2p,0), v® = (2!/2b,2'/?b), and
v® = (2b,0) in the x, — x, plane. Note that v and v® lie on the circle of
radius 2'/2b, while v® and v® lie on the circle of radius 2b. Let K be a convex
body in the plane and for any point v define

P(v) = P[ZE K+ v].
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FiG. 1

Anderson’s theorem [1] implies that (i) if K is symmetric about the origin
(K = —K) then P(v) decreases as v moves along the line segments from v to v®
and from v® to v®—in particular P(v®) > P(v®) and P(v®) > P(v®). Each of
the results of Mudholkar [8], Davidovic, et al [3], Prekopa [9], Marshall and Olkin
[7] (and others) implies that (ii) if K is symmetric about the x,-axis then P(v)
decreases as v traverses the line segment from v to v®—hence P(v®) > P(v®);
and (iii) if K is symmetric about the line {x,,x,|x, = x,} then P(v) decreases as v
traverses the line segment from v to v®@—so P(v®) > P(v™®). Finally, our result
shows that (iv) if K is in fact the square C = {|x,| < a,|x,| < a} with sides
parallel to the coordinate axes, then P(v) decreases as v traverses the circular arcs
from v to v® and from v® to v™—hence in this case (using (ii))

(3.5) P(v®) > P(v®) > P(v®) > P(v?).
(The reader is urged to draw a diagram showing the squares C + v, 1 < i < 4))

Lastly, we compare the behavior of the probability content of cubes with that of
several other types of sets. For simplicity we consider X = (X, - -, X,,) as given in
the first paragraph of this section, although each of the conclusions in the
remainder of this section holds if X is replaced by Z as given in Theorem 3.1. First,
define

C* = {(x,-+,x,):|x;| > a,1 <i<n}
and

P*(v) = P[X €C* +v] = 1I"_,9*(v)),

i=1
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where g* is defined in (2.18). Since g*(y'/?) is log concave on [0, c0), P* is a Schur
concave function of (v3,---,v2) on R” ; in particular, when n = 2, P*(vV) >
P*(v@) and P*(v®) > P*(v™@). Since ¢* is increasing on [0, c0), P*(v®) >
P*(vV) and P*(v®) > P*(v®). Also, since g*(y) is log convex in a neighborhood
of 0, P*(v) is Schur convex in (vy,- - - ,v,) on a neighborhood of the origin in R”;
in particular, when n = 2 and b is small, P*(v™®) > P*(v"). Summarizing, when
n = 2 we have

(3.6) P*(u®) > P*(vD) > P*(uv?®)
P*(O(3)) > P*(v(")) > P*(U(Z))
for all b > 0 and

(3’7) P*(O(3)) > P*(v(“)) > P*(v(l)) > P*(v(Z))
when b is small, while it can be shown that
(3.8) P*(v®) > P*(v®) > P*(v®) > P*(v?®)

when b is large.
It is curious to notice that since all inequalities satisfied by the function

P*(v) = 1 — P*(v) = P[X € (C*)° + 0]

are opposite to those satisfied by P*, P* satisfies (3.6), (3.7), and (3.8) with the
inequalities reversed; in particular

3.9 f*(u(z)) > f*(u(l)) > f*(v“”) > 17*(0(3))
when b is small, while
(3.10) P*(v®) > P*(v®) > P*(v™) > P*(o®)

when b is large. Since (C*)° O C, it might be expected that P* and P have similar
monotonicity properties, but (3.10) does not closely resemble (3.5). A diagram
shows that (c* and C are sufficiently dissimilar that this difference in the
orderings of P* and P is not surprising.
Finally, define
C** = {(xy,"*,x,)|x;2 0,1 <i<n}
and
P**(v) = P[XEC* +v] = P[X,>v,1 <i<n] =1"%g*),

where ¢g** is defined in (2.19). Since g**(»'/?) is log convex on [0, o0), P**(v) is a
Schur convex function of (v, --,v?) on R” . On the other hand, ¢**(y) is log

concave on (— oo, o), so P**(v) is a Schur concave function of (v,, - -, v,) on R".
In particular, when n = 2,

(3’”) P**(DO)) > P**(O(l)) > P**(v“’) > P**(v(3)).

In view of the dissimilarity of C** and (C*), the agreement between (3.9) and
(3.11) is somewhat unexpected.
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