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FINITE EXCHANGEABLE SEQUENCES

By P. Diaconis! AND D. FREEDMAN?

Bell Laboratories and Stanford University, and University of California at -
Berkeley

Let X}, X5, - -, X3, X1, - -, X, be exchangeable random variables tak-
ing values in the set S. The variation distance between the distribution of
Xy, X,, ++, X, and the closest mixture of independent, identically distributed
random variables is shown to be at most 2ck/n, where c is the cardinality of S.
If ¢ is infinite, the bound k(k — 1)/n is obtained. These results imply the most
general known forms of de Finetti’s theorem. Examples are given to show that
the rates k/n and k(k — 1)/n cannot be improved.

The main tool is a bound on the variation distance between sampling with
and without replacement. For instance, suppose an urn contains » balls, each
marked with some element of the set S, whose cardinality ¢ is finite. Now k&
draws are made at random from this urn, either with or without replacement.
This generates two probability distributions on the set of k-tuples, and the
variation distance between them is at most 2ck/n.

1. Introduction. de Finetti’s theorem involves an infinite sequence X, X,, - - -

of exchangeable 0-1 valued random variables. de Finetti showed that there is a
unique probability measure u on the Borel sets of [0, 1] such that

() P{X;=¢fori=1,-,k} = fioyp(1 = p)/u(dp), wherej = Ze,.

The main results of this paper concern finite exchangeable sequences
X, X5, -+, X,. As is well known, the representation (1) need not hold exactly
for finite exchangeable sequences. For example, let

P(X;,=0,X,=0) =P(X,=1,X,=1) =0.
Now X, and X, are exchangeable; but if a representation like (1) held,

0 = fpu(dp) = fo(1 = p)’u(dp).
This implies that p puts mass one both at 0 and at 1, which is impossible.
However, suppose & is much smaller than # and X, - - - , X, is the beginning of
a long exchangeable sequence X, - - -, X, X;.,, - -, X,. Then (1) should be
approximately true. Our main theorem (3) makes this precise, with the universal
error bound 4k /n. And, as we will indicate in Section 4, there is an example where
the error is essentially (2/ me)ik/n, so k/n is the right order of magnitude.
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746 P. DIACONIS AND D. FREEDMAN

So far, we have discussed only 0—1 valued random variables. However, similar
results apply to variables with values in any finite set. To state theorem (3), let S be
a finite set of cardinality c. Let S* be the set of k-tuples of elements of S. A
probability P on S* is said to be exchangeable provided it is invariant under
permutations. More precisely, if 7 is a permutation of 1, - - - , k, then

P{(s,, Tt Sk)} = P{(svr(l)’ Tt svr(k))}‘

To state the analog of (1), let S* be the set of probabilities on S; geometrically, S*
is the unit simplex in R°. For p € S*, let p* be the distribution of k independent
picks from p. Formally, p* is the power probability on S*:

Pk{(su’ t sk)} = H;-lp{sj}‘

If p is a probability of the Borel subsets of S*, we define the probability P,, on Sk
as follows: choose p at random from p, then make 4 independent picks from p.
Formally,

P;Ak(A) = fs'Pk(A)#(a?’)-

If Q is a probability on S" and k < n, let Q, be the projection of Q onto S*.
More formally, Q, is the distribution of (s;,---,s,) when the n-tuple
(S15° " * sSksSka15* * * 5 8,) 18 distributed according to Q. Clearly, (P,,); = Py-

The variation distance || P — Q|| is defined as usual:

|P — Q| = 2sup,|P(4) — Q(A4)|.
(3) THEOREM. Let S be a finite set of cardinality c. Let P be an exchangeable
probability on S". Then there exists a probability p. on the Borel subsets of S* such that
Py — Pyll & 2¢k/n forallk < n.

The measure p. depends on n and P, but not on k; notice that the same constant
2¢ applies for all k, n and P. The rate k/n is sharp, as will be seen in Section 4.
The result is almost immediate from the following estimate.

(4) THEOREM. Suppose an urn U contains n balls, each marked by one or another
element of the set S, whose cardinality c is finite. Let Hy;, be the distribution of k
draws made at random without replacement from U, and My, be the distribution of k
draws made at random with replacement. (H stands for hypergeometric; M for
multinomial.) Thus, Hy, and M, are two probabilities on S*. Then

| Hye — Myl £ 2ck/n.
This result will be proved in Section 2.

ProOF OF THEOREM (3). Each extreme exchangeable probability on S” is of the
form H,, for some urn U, and the exchangeable probability P on S” is a unique
mixture of extreme points:

(%) P = IywyHy,.

The sum runs over the finite set of all possible urns U of the type considered in
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Theorem (4). The w;,’s are nonnegative weights which sum to 1. The representation
(5) may be proved by conditioning on the order statistics: see Kendall (1967), de
Finetti (1969), Crisma (1971), or Diaconis (1977). Clearly,

P, = ZwyHy,.

Now use theorem (4):
| P — SwyMy, |l £ SwylHy, — Myl £ 2ck/n.

This proves Theorem (3), because M, = p¥, where p y€S* is the distribution of
one pick from U: the probability measure u can be constructed by assigning weight

wytopy. {1

REMARK. We have stated our results for finite exchangeable sequences by
assuming a measure P on S” and working with the projection P,. Another way to
formulate the results starts with an exchangeable probability Q on S* and asks if
there exists an exchangeable probability P on S” such that P, = Q. Then we say
that Q can be extended to P. The probability defined by equation (2), for instance,
cannot be extended at all. Our results show that if an exchangeable probability Q
can be extended from k-tuples to n-tuples, where n is much larger than k, then Q is
nearly a mixture of power probabilities.

To pursue this a bit, suppose Q on S* can be extended to P on S”; that is, P is
exchangeable on §” and Q = P,.

The extreme exchangeable probabilities on S” are the urn measures H,, con-
structed in the proof of (5). And if P is exchangeable on S” then

P = ZywyHy,

SO
Q = P, = ZywyHy,.

This gives an algorithm for deciding if Q is extendable to S”; check if Q is a
mixture of Hy, . When S is finite, this can be done via linear programming. Further
discussion is in Diaconis (1977).

Theorem (3) can be modified to handle S of infinite cardinality. If (S, %) is an
abstract measurable space and P is an exchangeable probability on (S”, %"), then
Theorem (13) shows there is a probability & on S* such that

1 Pe = Pull < k(k~1)/n.

Here, S* is the set of probabilities p on (S, %®). The set S* is equipped with the
o-field B* generated by the functions p — p(A4) as 4 ranges over %. And

P, = [sp"u(dp)

is a probability on S*. The rate k(k — 1)/n is sharp, as will be seen in Section 4.

In Section 3, these results are shown to imply the most generally known versions
of de Finetti’s theorem for infinite exchangeable sequences. For a discussion of the
role of these results in the foundations of Bayesian inference, see Diaconis and
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Freedman (1978a). For an application of finite exchangeability, see Chapter 3 of
Galambos (1978).

2. Variation bounds on the difference between sampling with and without replace-
ment. Our first object in this section is to prove Theorem (4). Since U and k may
be taken as fixed, we abbreviate H for Hy, and M for M,,. We label S as
{1,---,c}. For 1 £i £ c, let n, be the number of balls in U which are labelled i, so
2,_1n = n. Without loss of generahty, we may suppose n; > 1 for all i. Fix
s € S¥; for i €18, let », be the number of indices j < k with s; = i, so Z{_», = k.
Then

M(s} = T y(n;/n)" = n~ ¥ ny
H{s} =[(n = k)!/n! Lo 10!/ (n; = »)!
The main step in proving (4) is
(6) LEMMA.
H{s}I: [1 — (v/n)] = M{s}.

Proor. The left side vanishes unless »; < n, for all i, so assume this condition.
Now M{s} > 0, and

H{S} _ f—l[l - (”i/"i)](”i_y'”i!/ (n; - "i)!)
® M{s}) il = C/m)] = n~*n1/ (n — k)! ’
For0 £ x <1, let

f(x) = = (1 —x)log(l —x) — x = =22 x**1/i(i + 1).

Write exp(x) for e*. Then we claim

(8) n~*n!/ (n—k)!'2 exp[nf(k/n)].
Indeed, the logarithm of the left side of (8) is
2,-1 log(1 —j/n) = 1-1 x-l(l/’)(l/”)

=32,(1/in)2521" 2 nf(k/n),

using the elementary estimate

® SECUT S (/i 4 DK

Similarly, with n, for n and », for k, it can be shown that

(10) [1=(/n)](n;7n;t/ (n;—»)!) S exp[nf(v,/n,],
replacing (9) by

() gtz (/i + Dyt

The factor [1 — (¥;/n;)] was put in precisely to extend the range of summation
from v, — 1 to »,.
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To complete the proof, notice that f is concave. By Jensen’s inequality,
Zinif(vi/n;) £ nf(k/n).

On the right side of (7), the denominator has been bounded below by exp[nf(k/n)];
the numerator has been bounded above by the same quantity. []

PrOOF OF THEOREM (4). Lemma (6) implies
M{s} — H{s} 2 —H{s}Z{.v/n,.
Writing x~ = max{ —Xx, 0}, we get
(12) (M{s} — H{s})" = H{s}Z[_/n;.
Now
IM — H|| = 2Z,(M(s} — H{s})™ .

Recall that »; is the number of j < k with s; = i, so summing the right side of (12)
over s is tantamount to computing a certain expectation relative to H. Since the
H-expectation of »,/n; is k/n, the sum of the right side of (12) over s is just ck/n.

0

3. Results for general range spaces. In this section we give finite forms of
de Finetti’s theorem for variables taking values in an arbitrary space. The most
general known infinite versions of de Finetti’s theorem are then derived by taking
limits.

Let (S, ®) be an abstract measurable space and write S* for the set of probabili-
ties on (S, ®). Endow S* with the smallest o-field B* making p — p(A) measurable
for all A € B. If p € S*, then p* is the power probability on (S*, B*). Clearly,
p —>p*(A) is B*-measurable for any 4 € B*. If pu is a probability on (S*, B*),
define the probability P, on (S*, B*) as before:

P, (A) = [s.p"(A)u(dp).

The main result of this section can be stated as follows, with P, the projection of
P onto (S*,%*), and B(n, k) defined as follows:

1 - B(n,k) = n*n'/ (n—k)!
(13) THEOREM. Let P be an exchangeable probability on (S, B"). Then there exists
a probability p on (S*, B*) such that
|12 — Pill = 2B(n,k)  forallk < n.

Note. B(n,k) £ 3k(k — 1)/n.
The probability u depends on n and P, but not on k. The bound is sharp, as will
be seen in Section 4.

ProOF. For w € §”, let U(w) be the urn containing » balls, marked w,," - -, w,
respectively. Let Hy ), be the distribution of k draws made at random without
replacement from U(w), while My, is the distribution of k draws made with
replacement. Thus, Hy,), and My, are probabilities on (S¥, B*). The maps
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w = Hy,(A4) and & — My, (A) are measurable on (S”, ®") for each 4 € B*.
As is easily verified, the exchangeability of P entails

P(A) = [gHyy(A)P(dw) ford € B".
So
P(A) = [gnHy,i(A)P(dw)  ford € B
Clearly,

k
MU(w)k = (MU(w)l) .

Now w— My, is a measurable map from (S”, B") to (S*,B*). Let u be the
image of P under this map. If 4 € ®*, then

Pp.k(A) = fS"MU(w)k(A)P(dw)
and
P(4) — Pp.k(A) = fs"[ HU(w)k(A) - MU(w)k(A)]P(dw)t
But Freedman (1977) shows
IHU(w)k(A) - MU(w)k(A)l < B(n,k). 1]

The balance of this section is somewhat technical. Readers who want to see that
the rates in Theorems (3) and (13) are sharp can skip to Section 4, which does not
depend on later results in this section.

Theorem (13) implies the most general known representation theorem for an
infinite exchangeable sequence. To begin with, we derive a result of Hewitt and
Savage (1955). Suppose S is a compact Hausdorff space, and B is the o-field
making the real continuous functions measurable. The o-field P is called the Baire
o-field. The infinite product $* is the Baire o-field of the product $*®.

As before, S* is the set of probabilities on (S, B). In the weak * topology, S* is
compact Hausdorff; the o-field %* is generated by the functions p — p(A4) as 4
ranges over %, and ®* is the Baire o-field in S*.

If p is a probability on S*, define the probability P, on (S%, B>) as usual, by

P, = Js»pu(dp).
If Q is a probability on (S®,®®), let Q, be its projection onto the first k

coordinates. Clearly, P, = [s. p*u(dp), so there is no conflict with previous nota-
tion.

(14) TueoreM (Hewitt-Savage). Let S be a compact Hausdorff space, and P an
exchangeable probability on the Baire field H™ of S®. Then there exists a unique
measure p. on ®* such that P = P,.

Proor. For each n, Theorem (13) yields a measure p, on (S*, %*) such that
(15) Py — Bill £ k(k—1)/n  fork < n.

The set of probabilities on (S*, %B*) is compact in the weak* topology. So there is a
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probability u on (S*, B*) and a net n(a) of positive integers such that n(a) — oo
and p, () — p. The map » — P,, is weak* continuous, so P, ., — F,;, in the weak*
topology. But B, . — P, in variation norm, by (15). So F,, = P, for all k, and
P, = P. This completes the existence proof. We omit the uniqueness proof: see, for
instance, (3.4) of Dubins and Freedman (1979). J

Note added in proof. In (13-14-15), pu, is a probability on S*. Indeed, it is (in
disguise) the P-law of the empirical measure

0 = 2l-l

where §, is point mass as x. A relatively elementary argument shows that pu,
converges weak-star; that is, for any continuous function ¢ on S*, [c.¢(p)p,(dp)
converges as n — o0. First, suppose

o(p) =11 -1fsf(x)P(dx)
where the f; are continuous functions on S. Then

fS‘qs(P)”n(dD) = fﬂ"q)(on,w)P(dw)
= Joellioi| 231 (0) | P(dw)

> Jollfo, f(w)P(dw);

because, after expanding the product, there will be n* — O(n*~!) terms in which
each of the k factors f(w;) corresponds to a different index i. By exchangeability,
all such terms are equal. []

Theorem (14) implies de Finetti’s theorem for exchangeable probabilities in
standard spaces, which are isomorphic to Borel subsets of the unit interval. As
shown in Dubins and Freedman (1979), de Finetti’s theorem can fail for separable
metrizable spaces which are not standard.

The compact Hausdorff space S also admits the Borel o-field @, which is larger
than the Baire o-field %% when S is not metrizable. For our purposes, % may be
defined as the smallest o-field relative to which all lower semicontinuous functions
are measurable. A probability p on % has a unique regular extension j to $. We
propose to show that the formula P = [p®u(dp) can be extended regularly from
the Baire to the Borel o-fields.

It may be helpful to review very briefly the procedure for extending the Baire
probability p on % to the regular Borel probability 5 on M. Let f, be a net of
continuous functions, with f, 1 f. Then p(f) = lim, p( f,). The value p( f) does
not depend on which net of continuous functions is used to approximate the lower
semicontinuous function f. The extension of j from the lower semicontinuous
functions to all Borel functions is done by the usual procedures. For a careful
discussion of these matters, see Choquet (1969). We point out that the Borel sets
usually do not turn up in the measure-theoretic completion of ®. To keep the
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notation straight: p € S* is a Baire probability, defined only on %; its regular
extension to % is p.

(16)

Indeed, suppose f were lower semicontinuous. Choose a net f, of continuous
functions with f, 1 f. Now p — p(f,) is a continuous function of p, and this net
increases to p — p(f). The latter function is lower semicontinuous, and hence
Borel. Consider the class of Borel f for which p — (0 Vv fA k) is Borel. This class
includes the lower semicontinuous functions and is closed under sequential limits,
so must comprise all Borel f’s. Letting k1o proves (16).

Let f be a nonnegative Borel function on S. Thenp -»p(f)is a
Borel function on S*.

17 The map p _)FS is weak* continuous from S* to (S®)*.
p

(18) Let B> be the Borel o-field of S®. Usually, %> is larger than
Bee,
For p € §*, letF be the regular Borel extension of p® to @?‘2
(19) Let f be a nonnegative Borel function on S*. Then p —>}?( i)
is a Borel function on S*.

(20) THEOREM. Let S be compact Hausdorff, and P an exchangeable Baire probabil-
ity on (§®,B>). According to (14), there is a unique Baire probability p on (S*,%*)
such that

(21) P(A) = [0, gp™(A)u(dp)  forallA € B™.
This representation extends regularly to the Borel o-field:
(22) B(A) = 5o 5P (A)ii(dp)  forall4 € B

Notation. 1In (21), the space S* of probabilities p on (S, ®) has been equipped
with the Baire o-field B*. In (22), the space S* is the same, but is equipped with the
larger Borel o-field B*.

PrOOF. Let f be a nonnegative lower-semicontinuous function on S*. We must
show

(23) B(f) = Jisn,P2(S)ii(dp).

Suppose the net f, of continuous functions on S® increases to f. Then p — p>®(£,) is
a net of continuous functions on S* increasing to p — p*( f). The latter function is
lower-semicontinuous on S*, and

P(f)

lim, P(f,)
lim, [p*°( f,)u(dp)
/p*(f)i(dp).

This proves (23). Now (23) can be extended by the usual arguments to all
nonnegative Borel functions. []
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We turn now to nontopological situations. Let (.S, B) be an abstract measurable
space. Let S* be the set of probabilities on 9B, with the weak* o-field $* generated
by the function p — p(A4) as 4 ranges over B. Hewitt and Savage call B presentable
if, for every exchangeable P on (S*, ®>) there is a probability u on (S*, B*) with
P = P,. In this terminology, Theorem (14) says that the Baire o-field of a compact
Hausdorff space S is presentable. We do not know whether the Borel o-field of S is
presentable: (20) only deals with regular probabilities. We also do not know if the
Borel o-field of a locally convex topological vector space is presentable. For a
partial result in this direction, see Hulonicki and Phelps (1968).

We propose to show that if a o-field % of subsets of S is presentable, so is the
universal completion %. For our purposes, P may be defined as the o-field of
subsets of S which are §-measurable for any probability # on %. Of course, § has a
unique extension 8 to .

(23) THEOREM. If B is a presentable o-field of subsets of S, and X is a o-field of
subsets of S with b c = C B, then = is presentable.

ProOF. Recall that S* is the set of probabilities on (S, B), endowed with the
o-field B* generated by the functions ions p —p(A) as A ranges over M. Let B* be the
universal completion of %*, and B the universal completion of B®. If 4 € B,
we claim that p —p®(4)is ‘B*-measurable on S*. Indeed, let u be a probability on
®*. Choose 4, and 4, in B> with 4, C 4 C 4, and P,(4,) = P,(4,). Then

p*(4o) £ p¥(4) = p=(4,) forallp € S*
and
p°(4,) = p*(4,) for p-almost allp € S*,

s0 p — p®(A)is p-measurable.
Suppose P is exchangeable on (5%, B*). Since B is presentable by assumption,
there is a probability p on (S*, B*) with

(29) P(A) = [0, g p™(A)u(dp) forall4 € B*.
We claim
(25) P(A) = fiso 75" (A)i(dp) foralld € B=.

Indeed, let 4y and 4, be in B> with 4, C 4 C A4, and P(A4,) = P(A,). Using (24),
P(4,) = [p=(Ao)n(dp) = [p™ (A)i(dp)
= [p*(4)u(dp) = P(4,) = P(4,)

so equality holds throughout. Iki_s completes the proof of (25).
Next, we claim that B° c 9% Indeed, let

A=A X+ XA, X SXSX---  withd, € B.
Let Q be a probability on %*, with i th marginal Q,. Because 4; € ®, there are sets
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B, and C, in B with B, C 4, C C;and Q,(C; — B;) = 0. Let
B=B X -+ XB, X§XS8X---
C=C, X+ XC,XSX8X---.

Then B and C are in $*®, and B c A C C, and a moment’s thought shows that
Q(C — B) = 0. Hence A € $*. Then R* B¥by a routine argument.

To complete the proof of the theorem, suppose B C = c B, and Q is an
exchangeable probability on . Let P be the restriction of Q to $*. Confirm that
P is exchangeable, and P(A4) = Q(A) for A € . In (25), confine 4 to %, and
verify that p®(A) = p*(A), so

(26) Q(4) = P(A) = [(s g7y p°(A)i(dp).

To review the notation, p € S* is a probability on (S, ®), which extends to a
probability p on (S, ®). In the integral, the space S* has been equipped with the
universal completion %* of B*. Let W* be the space of probabilities g on (S, =),
equipped with the weak* o-field Z*. For p € S*, let pp be the restriction of p from

B to =. In particular, p°(4) = (pp)*(4) for A € =*. From (26),
(27) Q(4) = [(s+, 37)(0p)”(A)ii(dp).

Verify that p — pp is a (B*, =*)-measurable map of S* to W*; let » = o~ !. From
(27),

o(4) = f(W.’z.)q“’(A)v(dq). g

So far, we have considered only countably additive probabilities. There is also a
circle of results involving finitely additive probabilities. For example, Hewitt and
Savage (1956) showed that any finitely additive probability on the field of cylinder
sets of §® is a unique countably additive mixture of finitely additive power
probabilities. This can be derived from the case of finite S by a compactness
argument.

A variant of Theorem (13) leads to a different kind of representation, in terms of
finitely additive mixtures of countably additive powers. To state this variant of
(13), let S be a set and B a o-field of subsets of S. Let S} be the set of those
countably additive probabilities p on B which have finite support. (The “d ” stands
for “discrete.”) In other terms, p € S} iff for some positive integer n and points
$y,° 5, in S and nonnegative weights w,,---,w, with w; +--- +w, =1, we
have

p(4) = Zi_wl,(s).

Let %% be the o-field of subsets of S¥ spanned by the functions p — p(A4) as 4
ranges over B. If B is a separable o-field, then S¥ € B*: see Dubins and
Freedman (1964).

(28) LEMMA. Let P be a finitely additive probability on (S",B"). Then there is a
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finitely additive probability p, on (S}, R}) such that
1P — P il = k(k—1)/n  forallk £ n.

The proof is omitted, being identical to that for (13).

REMARK. The same result holds if 9 is only a field: then %" too is only a field.
One appropriate definition for B} is the smallest field containing all sets of the
form {p: a £ p(A4) < b} as a and b range over the rationals and 4 ranges over B.

(29) THEOREM. Let B be a o-field of subsets of the set S. Let B’ be the field of
finite-dimensional product-measurable sets in (S®, ™). Every finitely additive ex-
changeable probability P on (S®,B’) admits the representation

(30) P(A) = [qp®(Au(dp) forallA € B/

where . is a finitely additive probability on (S*,®*). This p is not unique, and need not
be countably additive even when P is.

PrOOF. Apply (28) to the projection P, of P onto the first n coordinates. We get
a finitely additive probability u, on (S*, B*) such that

| P, — B, 4l <k(k—1)/n forallk < n.

The set of finitely additive probabilities on (S*, B*) is compact in the topology of
setwise convergence, and the rest of the existence proof is like that in (14).

To see that the mixing measure g is not unique, and need not be countably
additive, let S be [0, 1] and % the Borel o-field. Let P make the coordinates of S
independent, with common distribution A, where A is Lebesgue measure on (S, B).
Then P is countably additive and exchangeable on (S§*,%/). The “obvious”
representation (30) uses mixing measure §,—point mass at A. To construct another
representation, use the compactness argument to get a finitely additive probability
measure g on (SF, D}) for which (30) holds. Now u # 8,: indeed, u(S}) = 1; and
0,(S¥) = 0 because A & SF. Likewise, u cannot be countably additive: if it were, it
would have to be 8,, by the uniqueness part of the Hewitt-Savage Theorem (14). []

REMARK. In (29), we define B/ as the field of subsets of S* of the form
AXSXSX-++,A€EDB", n=12,---. The theorem remains true if B~ is the
(smaller) field generated by the sets

A X XA, X SX SX-++, A, €B,n=1,2,---.
In this form, the theorem is true even if % is only a field. See the remark after (28).

4. The rates are sharp. We begin by showing that the bound 23(n, k) in (13) is
best possible. The example involves a sample of size k from a population of n
elements. Let H,, represent the distribution of k draws made at random without
replacement from an urn U, containing » balls labeled {1,2,- - - ,n}. Thus, H, is an
exchangeable probability measure on S¥, where S, = (1,2, - - ,n}. Let M, be the
distribution of k£ draws made at random with replacement from U,.
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(31) ProposITION. For every probability u on S, and for all k < n,
(32) | Hue = Bl 2 1 Hye = Myl = 2B(n, k).

In particular, among all mixtures of power probabilities, the pure power probability
M, is closest to H,,: and its distance to H,, is just the bound in (13). So (13) is sharp
—if the state space S is not constrained.

Proor. Fix n and k. Consider the set

B={weESkw=w forsomei,j withl<i<j<k}.

(“B” is for “birthday”: in the birthday problem, n = 365 and B is the event that at
least two people in a sample of size k& have the same birthday.) Clearly, H,,(B) = 0,
and Freedman (1977) shows that
| Hye = My ll = 2M,,(B) = 2B(n,k).
To complete the proof, we use the inequality
(33) p*(B) =2 M, (B) for any probability p on {1,2,- - - ,n}.
This can be deduced from the Schur convexity of 1, with the help of Rinott (1973,
page 68). A direct proof is in Munford (1977). The inequality (33) shows that
P, (B) 2 M,,(B). Thus
| Hye — Byl 2 2M,(B) = ||H, — M|
REMARK. As noted in Freedman (1977),
1 — exp(—1k(k — 1)/n) = B(n,k) £ 1k(k —1)/n.
If k = O(n?), then B(n,k) is essentially 1 k(k — 1)/n; otherwise, B(n, k) does not
tend to 0. That is why the rate k(k — 1)/n is sharp for inequalities like the one in
(13).

We next show that the rate k/n in Theorem (3) is sharp: the state space S is
constrained to have at most ¢ = 2 elements. The example involves a sample of size
2k from the urn U,, which contains n red balls and n black balls. For the rest of
this section we assume k < n/2. Let H,, ,, be the distribution of 2k draws made
at random without replacement from the urn U,,. Let B,, be the distribution of 2k
draws made at random with replacement from U,,. So H,, ,, and B,, are
probabilities on S2*, where S = {red, black}. (The H is for hypergeometric, B for
binomial.) :

Of course, S* is isomorphic to [0,1]: f 0 S0 £ 1, let

py(red) = 8§ and  py(black) = 1 — 4.
As usual, if p is a probability on [0, 1], we define the probability P, ,, on 2k
P,‘,zk = f[o,l]ngH(dB)-

So P, 54 = B,, when y = §,—point mass at 1/2.
Later, we will prove
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(34) THEOREM. || H,, 51 — P, okl 2 | Hy, 2 — Bakll, and the inequality is strict
unless u = 8,.

In particular, among all mixtures of power probabilities, the pure power proba-
bility B,, is closest to H,, »;.

We will also prove

(35) THEOREM. As n tends to infinity,

(36) | Hapox = Boxll = vk/n + O(k/n)  ifk = o(n)

37) | Hyp ok — Borll = ¢(a)  ifk/n—> a with0 < a < 1/2,
where

(38) y = 5'(277)_§f|1 — u?lexp(—u2/2)du = (2/me)

and for 0 < a < 1/2

(39 e(@) = @m) 7|1~ (1~ o)} exp(eu?/2)lexp(~u?/2) du |
and

exp(x) = e*.
Theorems (34) and (35) show that k/n is the best rate possible in (3):

(40) THEOREM. Let n tend to oo and let k = o(n). Then, for any probability p. on
(0, 1],

(41) | Hypok — By 2kl 2 Yk/n + o(k/n).
Likewise, if n — o0 and k/n— a with 0 < a < 1/2, then
(42) 1 Hyp 2k — B2kl 2 0(a) + o(1).

Note. In (36) and (41), we do not assume k — oo.

(43) LemMA. For w € S?*, let R(w) be the number of reds in w. Let P and Q be
exchangeable probabilities on S**. Then

IP— Q| = PR = QR7'|.

Proor. The conditional distribution of P given R coincides with the condi-
tional distribution of Q given R. []

(44) LeMMA. Let p be a probability measure on the Borel sets of [0, 1]. Let [i be the
image of |1 under the map x — 1 — x. Let i = Yp + [i). Then
Il H2n,2k - P,z,zk” = ”H2n,2k - Pp.,ZkII‘

Proor. The measure H,, ,, is invariant under the transformation 7' which
switches red and black. But T transforms F,, into F;;. Thus

”HZn,Zk - P,.,zk” = ”H2n,2k - P,:,zk”-
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Since F; ,, is the average of P, ,, and P; ,,, we have

1
”HZn,Zk - Pﬁ,2k” = ”HZn,2k - E(Pp,zk + P,:,zk)”
1 1
S 3 Hapok = Bkl + 31 Hypyoie = P2kl
= |[Hyp 26 — Pp,Zk”‘ 0

To simplify the writing, let
ho(J) = Hy, 2 {R =k +j}
bi(J) = By{R =k +j}.
So h,,(Jj) is the chance of getting k + j red balls in 2k draws made at random
without replacement from U,,; and b,() is the chance when the draws are made
with replacement. Notice that H,, ,, and B,, are probabilities on S2*. However,
h,, and b, are probabilities on the integers between —k and k: indeed, A, is a
centered hypergeometric distribution and b, a centered binomial.

The next result is included to make the relationship between 4,,, and b, easier to
visualize: it will not be used later.

(45) LEMMA. There is a unique index j* = j*(n, k) such that
huli) 2 b (G)  for|jl < Jj*
ha(J) < bi(J)  for|jl 2 j*.
PrOOF. Let L, ,(j) = h,(j)/bi(Jj)- By algebra,
s = () Gy
Therefore, L, ,(/j) increases strictly to its maximum as j increases from —k to 0
and then strictly decreases. (We have used the assumption k& < n/2, to ensure

n—k+j;j>0)10
The next result shows that j*(n,k) < (k/2)%.

(46) Lemma. If |k| 2 |j| 2 (k/2)3, then h,(j) < bu(j).

Proor. Define L, , as above. By algebra,

L,(J) _ n? / 2n(2n— 1)
Looi(j)  (n=k=j)n—k+j) (2n-2k)2n~2k~-1)’

Notice that n — k = j > 0 because |j| <k <n/2. So L, ,(j)/L,_;(j) > 1 if
and only if

k? —j* > (k—2%)n.

In particular, fix j and k with | j| Z (k/2)%. Then L, ,(j) > L,_,(j)- So L, .(j)
is strictly increasing with n. But lim,_ L, ,(j) =1 since the hypergeometric
merges with the binomial as the urn U,, becomes infinite. Thus L, ,(j) < 1 and
ho(J) < B i |l 2 (k/2)% D
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We next consider symmetric two-point mixtures of binomials. Let
N 2k k+j(1 _ k—j
b, ) = (25 )P0 - p .

For —1 £ x £ 1, define

47) mk,x(j) = %[bk,(ux)/z(j) + bk,(l—x)/z(j)]'
Clearly,
(48) mk,—x(j) = mk,x(j) = mk,x(—j)'

(49) Lemma. If|j| £ (k/2)7 and |x| < |y|, then my (j) < my ().
Proof. Putj = 0. Then
min(0) = ()1 = 2y,

and the monotonicity is easy. In view of (48), we may suppose 1 <j < (k/ 2)% and
0 = x <y £ 1. The case x = 0 follows by taking limits, so we may even suppose
x > 0. Fix j and k. The derivative of m, ,(j) with respect to x is a constant times

(1 - xz)k-l[(1_+’f)j(j — kx) — ( ; ;::)j(j +kx)}.

1—x
To show that this derivative is strictly negative, we must argue that

(50) (1+x)jj<(:ti)jkx+(l_x)j(j+kx).

1 —x 1+ x

The right side of (50) is made smaller if k is replaced by 22, because | j| = (k/2)?
by assumption. Make this substitution and divide the resulting inequality by j,
which is positive by assumption. So (50) will be proved if we demonstrate

(51) (1+x)j<(1t§)j2jx+(-!———x)j(l+2jx).

1 —x 1 1+x

But (51) is equivalent to each of the following three inequalities.

(52) 1 <2jx+(::_z)2j(l+2jx),

(53) 1+ x)¥ < (1 +x)2)x + (1 —x)¥(1 + 2jx),
(54) A+ x)7 = (1= x) < 2jx[(1 + x)Y + (1 —x)¥].
Clearly,

2j ) ( 2j ) . .
<2 fori = 2,---,j,
(21‘—1 NaiZ2 ! J
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with equality for i = 1. Now (54) follows:
A+x) -1 -x) = 22{_1( 2J )xzi“'

2i— 1
S 2j i—2

< 4 le;'l( )xz‘
Ml Y

= 2jx[(1 + x)¥ + (1 —x)¥]. 0

PROOF OF THEOREM (34). Fix n and k. Recall that H,, ,, is the distribution of
2k draws at random without replacement from the urn U,, which has n reds and »
blacks; B,, is the distribution with replacement; and R is the number of reds.
Abbreviate

h(j) = hyu(J) = Hy, 2 {R =k +j}
b(j) = b(j) = By{R =k +j}.
Thus, 4 is the centered hypergeometric distribution and b is the centered binomial.

Let J be the set of j’s with A(j) = b(J). As (46) implies, | j| < (k/2)? forj € J.
Now (49) shows that for j € J and x # 0,

(55) m (7)) < my o(j) = b(J).
Suppose p is a probability on [0, 1], symmetric around 1/2, with p{1/2} < 1.
Abbreviate
¢(J) = Pow(R =k +)).
Of course,
b= f%(b‘%—y + 8%+y)"'(@)
SO
o(J) = fmy o, 1(J)n(dy).
Relationship (55) implies
(56) o(J) < b(j) forjel.
Now
i Hopow = Pooill 2 Hypyu{fR—k€J} = P, {R-kEJ)

= Zeh() = $(J)

> 3,e,h(j) = b(j) by (56)
LR

= I Hynok — Myl by (43).

This completes the argument for symmetric u. The essence of it is that A(j) > b(j)
implies b(j) > ¢(j), where ¢(j) is any symmetric mixture of binomial probabil-
ities.

Unsymmetric p’s are handled by (44). []

ProoF oF THEOREM (35). Define 4 and b as for the proof of (34). As (43)
implies, ||H,, ,, — Byl = ||h — b|. We propose to estimate ||h — b|| by the
central limit theorem. The argument is a bit technical, and the following heuristic
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discussion may help explain the results. The probability distributions 4 and b are
both essentially normal with the same mean 0. The variance of b is 2k~(%). The
variance of A differs by the finite population correction factor, which is essentially
1 — a where a = k/n. Thus, ||h — b|| is essentially the variation distance between
two normal distributions with the same means, and variances differing by the
factor 1 — a. This distance is ¢(a). When « is small, ¢(a) = ya.

We begin by proving (37). As noted in the proof of (45), h(j)/b(j) = N/D,
where

(57) N = (n2Z;iI;)(%)2n—2k,
(58) D = (20)(3)™.

We are assuming k < n/2. The binomial probabilities N and D may be estimated
using the local Berry-Esseen theorem, as on page 197 of Petrov (1975):

(59) D = (7n)"7 + o(n"%)
(60) N =[n(n—k)]"* exp(—x2/2) + o(n™%)
where
(61) x =[2/(n=k)]%.
The error term in (60) is uniform in j. Thus
(62) %% = % = (1 - §)~i exp(——;-xz) + o(1),
the error term being uniform in j. Now

Y LIC) N Py
() I = bl = 5|58 = 1h0)
SO

. 2

(64) 1h - b)) - El(l — )7} exp[—z?—f—&—)} ~1

where Z is normal with mean 0 and variance 1. This follows by an elementary
argument from de Moivre’s central limit theorem: relative to b, the random
variable defined by (61) is almost normal, with mean O and variance k/n — k —
a/1 — a. The limit in (64) is the ¢(a) of (39), as one sees by the change of
variables x /(1 — a)% = y. This completes the proof of (37).

The argument for (36) is similar but more delicate. We are assuming that n — co
and k = o(n); however, k need not tend to co. We must estimate to within o(k/n).
Let C(k, n) be the set of j’s with

(65) |jl £ 2[klog(n/k)]".
Clearly
|h=b||=T,+ T,, where
(66) T, =2,¢c, n)lh(j) - b(j)l
T, = 2jeC(k, n)lh(j) - b(j)l .
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Now
Ty £ Zjeck, mh(J) + b(j)
= Hy2a{IR — k| > 2[ klog(n/k)]}}
(67) + By {|R — k| > 2[ klog(n/k)]*)
< 2By, IR - k| > 2[ klog(n/k)]*}
< 4(k/n)t
= o(k/n).

The third step in (67) follows from (46); for more general results in this direction,
see Hoeffding (1963). The fourth step follows from Bernstein’s inequality, as will
now be explained in more detail. Bernstein’s inequality appears, for instance, as
Theorem 15 on page 52 of Petrov (1975). In our case, the X ’s of that theorem are
* 3 ! with probability 5 €ach, so his constants g may all be taken as 4, and T as co.

More explicitly,

(68) E[exp(1X)] = exp[%tz] for0 £ ¢ <
because
(69) @m)!/m!> 2" form = 2,3,

Now R — k is the sum of 2k of these X’s and G = S}*g = k/2, so
B, {R—kzx} = exp{—x?/k}.

Put x = 2[klog(n/ k)]% and use symmetry to complete the argument for (67).

This disposes of 7}, and we turn to 7,. Again, h(j)/b(j) = N/D, where the
probabilities N and D in (57-58) must be estimated to within o(k/n). This can be
done using the Edgeworth expansion, as on page 508 of Feller (1966) or pages
205-206 of Petrov (1975): -

(10) D = (7n)" (1—§1—)+o(n—-)

H4(x )
24(n — k)
where the error term in (71) is uniform in j, the variable x was defined in (61), and
H, is the fourth Hermite polynomial:

(72) H,(x) = x* — 6x* + 3.
We assume j € C(k,n), that is, j satisfies (65). All our estimates below will be

uniform over j’s in this region.
We claim

(73) \ h(j)/b(j) = 1+ 3(k—2j%)/n + o(k/n).
Indeed, A(j)/b(j) =N / D, where N and D are estimated in (70-71). Clearly

= (wn)? (1 + L) + o(n~3).

+ o[(n - k)’%]

(71) N =[n(n—-k)]~ [exp( x2/2)][
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Since k = o(n), the error term in (71) is o(n'g), and

N k"1 1.2 Hy(x)
5= (1=5) Tow(-x )]{l'm

Clearly,
(1 —-E)-i =1+ %ﬁ + o(ﬁ).
n n

(1 + 8_ln) + o(n~3).

Relation (65) implies j2/n — k = j?/n + o(k/n); relations (61) and (65) imply that
k. n
2 — of 10
(74) x 0( p log % )
so x* = o(k/n) and
J: k
exp(—2x?) =1-% + o(—).
Likewise, (72) and (74) imply

H

B 1, O(E)_

24(n—k) 8n n

Putting these estimates together proves (73): note that 1/n* = o(k/n).
We can now estimate T, in (66):

n,. _ n |h(J) _ .
(75) sz = szC(k,n)k b(j) ll b(J)
so
n 252 .
(76) 7D = 1% ccum|l = S| 6() + o(D),

because estimate (73) is uniform over j in C(k, n).

Recall that B,, is the distribution of 2k draws made at random with replacement
from the urn U,, which contains » red balls and n blacks: R is the number of red
balls among the draws.

Let Z, = (R — k)/(k/2):. Now [Z}dB,, is uniformly bounded, so |1 — Z2| is
uniformly B,,-integrable. The sum on the right side of (76) is the B,,-integral of
[1 — Z2| over the region |Z,| < [8log(n/ k)]2. By de Moivre’s central limit theo-
rem, Z, is almost normal with mean O and variance 1, so our B,,-integral converges
to the y of (38). [

REMARK. An argument similar to the one for Theorem (40) gives results for the
nonsymmetric case. Let the urn U, contain r, red balls and b, black balls, where
r, + b, = n. Suppose there is an ¢ > 0 for which e £7,/n £ 1 — e. Suppose too
that k, — co with k,/n—0. Let H, , be the distribution of k, draws made at
random from U, without replacement, and B, , the distribution with replacement.
Then

(7 | Hak, = Buie, Il 2 1 Hyk, = By Il + o(k,/n)
(78) | Hy ok, = By i, Il = Ykn/n + o(k,/n).

[\
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The error terms are uniform over the indicated region. The assumption that r,/n be
bounded away from O and 1 is essential. Indeed, suppose r, =1 and k, =
n — 1. The variation distance on the left side of (78) is of order (k,/n)?. And the
closest binomial measure to H, , is at variation distance of order (k,/n )3, so (77)
and (78) are false.
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Note added in proof. Sandy Zabell called to our attention a paper by Stam with
results which overlap ours.
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