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REPRESENTATIONS OF MARKOV PROCESSES AS
MULTIPARAMETER TIME CHANGES'

By THOMAS G. KURTZ
University of Wisconsin-Madison

Let Y;, Y,,- - - be independent Markov processes. Solutions of equations of
the form Z;(t) = Y;( f£$B:(Z(s))ds), where B;(z) > 0, are considered. In par-
ticular it is shown that, under certain conditions, the solution of this “random
time change problem” is equivalent to the solution of a corresponding martingale
problem.

These results give representations of a large class of diffusion processes as
solutions of X(¢) = X(0) + SN ,a,W;( §¢B:(X(s))ds) where a; € R¢ and the
W, are independent Brownian motions. A converse to a theorem of Knight on
multiple time changes of continuous martingales is given, as well as a proof
(along the lines of Holley and Stroock) of Liggett’s existence and uniqueness
theorems for infinite particle systems.

1. Introduction. It is well known (Volkonski (1958), Lamperti (1967)) that if
Y(¢) is a Feller process with infinitesimal operator 4 and 7(¢) is defined as follows

(1.1) (1) = inf{r: [gB(Y(s)) " ds > t},

where B(x) is continuous and satisfies 0 < 8, < B(x) < B, < oo for some By, B,
then,

(1.2) Z(1) = Y(7()) = Y(JoB(Z(s))ds)

is a Feller process with infinitesimal operator BA. (The conditions on B8 can be
relaxed at a cost of losing the complete description of the generator of Z(¢).) For
example, it is possible to represent diffusions with generators of the form Af = Bf”
as random time changes of Brownian motion.

In this paper we consider representations of Markov processes involving dif-
ferent, dependent, random time changes of several independent Markov processes.
In particular we show that a wide class of diffusion processes (those with uniformly
elliptic generators) can be represented as solutions of equations of the form

(1.3) X(t) = X(0) + =0 W( fsB(X(s))ds),

where the W, are independent scalar Brownian motions, and the a; are elements of
R“. (In general N will be much larger than d.) Note that X(#) can be written as an
affine transformation, X(¢) = X(0) + MZ(¢), of the N-dimensional process Z(?)
with components

(14)  Z(0) = W(JsB(X(5))ds) = W(JsB(X(0) + MZ(s))ds).
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MARKOV MULTIPARAMETER TIME CHANGES 683

This observation leads us to consider systems of equations of the form
(1.5) Z(1) = Y(JsB(Z(s))ds), 1<i<N,

rather than equations of more complicated forms such as (1.3). Throughout, the
Y,(¢) will be assumed to be independent, right continuous, Markov processes.
Multiple random time changes of this type appear first in the work of Helms
(1974) and in a somewhat different form in Holley and Stroock (1976). Representa-
tions of the form (1.3) were used in Kurtz (1978) to obtain strong approximation
theorems for Markov chains. Our approach follows closely that of Helms.
With reference to (1.5) define

(1.6) (1) = [oBi(Z(s)) ds,
and for u € [0, 00)" define
(1.7) g, = o(Y,(s;):s; <w;, i=12,---,N).

Intuitively, 7(¢) = (7,(2), (), - - ) is a F,, stopping time (as it always is for N = 1)
in the sense that {7(¢) < u} € %, for all u. (Here v < u denotes v; < u;,i =
1,2,---,N.) We will, in fact, require 7(¢) to be a stopping time as an additional
condition on our solutions. This allows us to use the optional sampling theorem
(Kurtz (1980)) to show that solutions of (1.5) are solutions of a corresponding
martingale problem. We also give a converse.

In Section 2, we collect various lemmas concerning Markov processes and the
martingale problem. In Section 3, we show that the solution of (1.5) is, in a certain
sense, equivalent to the solution of a corresponding martingale problem. In Section
4, we discuss the representation (1.3), in Section 5, we discuss the problem of
solving (1.5), and in Section 6, we show the relationship between our results and a
theorem of Knight (1970) on multiple time changes of continuous martingales.
Sections 4, 5 and 6 are independent of each other.

Throughout E (or E,) will denote a complete separable metric space which is
locally compact or a product of locally compact spaces. By E* we will denote some
compactification of E; usually E® will be the one point compactification (if E is
locally compact) or a countable product of one point compactifications (if E is a
product of locally compact spaces). B(E) will denote the Banach space of bounded
Borel measurable function with the sup norm; C(E) will denote the subspace of
bounded continuous functions; Cy( E) will denote the subspace whose elements are
restrictions to E of functions in C(E®). Note that if E,,i =1,2,- - - are locally
compact spaces, E” their one point compactifications, E = I1E, and E* = I1E?,
then the linear combinations of functions of the form f(z) = II,<, f(z;), where I is
finite and f; € Cy(E,), form a dense subspace of C,(E).

By a Feller process, we mean a Markov process with locally compact state space
E whose semigroup satisfies 7(¢)1 = 1, and is strongly continuous on é(E ), the
space of continuous functions vanishing at infinity (in the one point compactifica-
tion), and hence on C,(E) (E* being the one point compactification). D,[0, o)
(Dgs[0, 00)) will denote the space of right continuous functions having left limits
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with values in E(E®) given the Skorohod topology. DM(E) (IM(E)) will denote
the o-algebra of subsets of Dg[0, cc) (Dga[0, o)) generated by the coordinate
random variables.

2. The martingale problem. The notion of the martingale problem was intro-
duced by Stroock and Varadhan (1969) as a means of characterizing the Markov
process associated with a given generator. In this section we develop the results on
the martingale problem we will need in the later sections. Most of these results
appear in the literature for specific classes of processes (see, for example, Stroock
and Varadhan (1969) and Holley and Stroock (1976)).

Let D c G(E) be a collection of functions such that 1 € D and Dy (the linear
span of D) is dense in Gy(E); let A : D — B(E) satisfy A1 = 0. By a solution of the
martingale problem (A, D), we mean a measurable stochastic process X(¢) defined
on a probability space (2, %, P) such that for every f € D

2.1 F(X(0)) = [5Af(X(s))ds

is a martingale with respect to the increasing family %, = o(X(s):5s < ¢). If §, Cc ¥
is an increasing family of g-algebras such that §, O %, and (2.1) is a §-martingale
for every f € D, we will say X is a solution of the martingale problem (A, D) with
respect to §,.

Typically 4 will extend to a linear operator on Dg (possibly to a “multivalued”
operator) and it is immediate (linear combinations of martingales are martingales)
that any solution of the martingale problem for (A4, D) is a solution for (4, Dg). It
will be convenient, however, to allow sets D that are not linear.

LeMMA 2.2. Under the above hypotheses on D and A, a solution X of the
martingale problem (A, D) has a modification with sample paths in Dgs[0, c0).

Proor. For f € D extend f to E® by continuity and set Af =0 on E% — E.
Then X remains a solution of the martingale problem for the extended operator.
Since Dy is dense in Gy( E) there exist f; € D,i = 1,2, - - that separate points of E a
(again extending the f; by continuity).

Since (2.1) is a martingale for all f€ D and [jAf(X(s))ds is continuous, it
follows (see Breiman (1968) Theorem 14.7) that with probability one f(X(s)) has
right and left limits through the rationals at every ¢ (i.e., limg,_,,, f(X(s)) and
limgo,,,_ f(X(s)) exist for all # > 0). By countability we in fact have

(23) P{limQBS—>I+f;'(X(s)) and limQBS—ﬂ—f;'(X(s))

existforallt > 0,i = 1,2,-++ } = L.

Since the f. are continuous and separate points in E4 and E2 is compact, it follows
that with probability one

(2.4 limgs, ., X(s) = Y(¢)

exists for every ¢ and Y(¢) has sample paths in Da[0, o) by Breiman (1968)
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Proposition 14.4. Since
(25) limgg, . E(f(X(s))I%',) = f(X(1)) + limg,, ., E(ffAf(u)duIGJ;)
= f(X(2))

it follows that E( f(Y(2))|%,) = f(X(¢)) for all f € D and hence for all f € C(E>).
Therefore,

2.6) E((f(X(1)) = F(X(1))]F,)

= E(f2(Y(1)IF) — 2AX(E(fY())F) + fX(X(1))
=0
and Y(¢) = X(¢) a.s. []

In the light of Lemma 2.2 we will always assume that solutions of the martingale
problem (A, D) have sample paths in Dga[0, o) (if necessary extending f and Af as
above).

Let D* = {f€ D:inf, f(x) > 0}. If f€ D implies f+ c €D all'c >0 and
A(f + ¢) = Af, any solution of the martingale problem (A4, D*) is a solution of the
martingale problem (4, D).

An alternative characterization of solutions of the martingale problem is then
given by the fact that for f € D* and Hf = Af/f, (2.1) is a martingale if and only if

2.7) S(X(2))exp{ — [sHf(X(s)) ds }
is a martingale. See Theorem (1.1) of Holley and Stroock (1976) or, more generally,
this equivalence is a consequence of the integration by parts formula for semi-

martingales (see Meyer (1976), page 303). For example, denoting (2.1) by M, and
(2.7) by M,, we have

My(t) = Jo exp{ —fo"Hf(X(s))dv} aM(u).

LemMmA 2.8. Let X be a solution of the martingale problem (A, D) with respect to
S,. Suppose that X is unique in the sense that any other solution Y with Y(0) = X(0) in
distribution induces the same distribution on OU(E®*), as X. Then for any §, stopping
time T < oo a.s., we have

(2.9 E(f(X(r+ 1))IS,) = E(A(X(7 + 1))|X(7))
for all bounded measurable f. In particular, X is a Markov process.

ProOOF. In order to verify (2.9) for a stopping time 7 we must show that for
every F € §,

(2.10) [rf(X (7 + 8))dP = [pE(f(X(7 + 1))|X(7))dP.

For an arbitrary F € §, we will construct a new solution of the martingale
problem Y satisfying Y(0) = X(0) in distribution and use Y to verify (2.10)
(actually the equality of the Laplace transforms of the terms in (2.10)).

For a < o0, let Dzs[0,a) denote the space of right continuous E“-valued
functions on [0, a) that have left limits in (0, a]. Let &, = Dga[0, 00) X [0, 00) and
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identify ©, with the product space

(2.11) Q X Q = {[w,a]:w; € Dpa[0,a),a > 0} X Dpas[0,00)

using the one to one correspondence (w, @) <> ([w,, a], w,) defined by

(2.12) w(t) = w,(2), t < a
= w,(t — a), t > a

(let Dg4[0,0) be a set containing a single element).
Define the random variables

Y(1) = w(1),
(2.13) Y (¢) = wy(2) t < a
= w,(a —) t > a

V(1) = wy(1).
Note that by the correspondence in (2.12) these random variables are aefined on
both £, and £, X Q,. We leave it to the reader to show
(2.14) FDO = o(7y, Y(¢):¢ > 0) = a(n, Y;(t):¢t > 0) X o(Yy(¢):¢ > 0)
= §O x O,
For A € $@ and B € §©® define

Q(4 X B) = E(x(X("),7)
[ xrE(xs(X(7 + )|X(r)) + xpex5(X(r +-))]).
A theorem of Morando (1969) implies that Q extends to a probability measure on
GF® x & = O _Observe that on the probability space (2,, TPV, Q), (Y(¢1AT),
7o) has the same distribution as (X(¢A7), 7). In particular Y(0) = X(0) in distribu-
tion.
We will now show that Y is. a solution of the martingale problem (4, D).

Without loss of generality we can assume f € D implies f + ¢ € D all ¢ > 0, and
A(f+ ¢) = Af. For f € D* we must show that

(2.16) Z (1) = f(¥(1))exp{ — [cHf(Y(s))ds}

is a martingale with respect to %, = o(Y(s) : s < ¢). The optional sampling theorem
implies

(2.15)

2.17) SOt ArY)exp{ ~ J§*HI(X(s)) ds)
is a §,,, martingale and that
(2.18) f(X(r + t))exp{ — [g+Hf(X(s)) ds}

is a §_, martingale. Since (Y(¢Am,), 7,) has the same distribution as (X(¢ A7), 7),
Z;(tATp) is a martingale with respect to ¥ = o(Y(sAT), X(s,<s) S < £). Set
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W, =F PO X o(Y(ryg+5):s<t) If AEFP BEo(¥(1,+s):5s <t), then by
@.15)

(2.19) Ep(xaxsZi(r + t + u))
= E(x4(X(-),m)exp{ — [Hf(X(s))ds}
X[ xrE(x5(X(7 + )S(X(7 + t + w))exp{ — [T+ *“Hf(X(s)) ds }| X(r))
+ Xpexa(X(1 + DX (7 + t + u))exp{ — [T+ **Hf(X(s)) ds} ]).

Recalling that F € G, C 6, ,, and noting that x z(X(7 + -)) is §,,, measurable, the
fact that (2.18) is a §,, ,-martingale implies the right side of (2.19) is equal to

E(x4(X(-),7)exp{ — [gHf(X(s)) ds}
X [ XrE(xs(X(7 + ) F(X(r + t))exp{ — [T+ Hf(X(s)) ds }| X(r))
+ XX p(X(7 + )X(7 + 1))exp{ — [ Hf(X(s)) ds} |)

= Q(XAXBZf(”'o + 1)),

(2.20)

and hence Z;(7, + t) is an J(,-martingale. Since (¢ — 7,) V0 is an J(,-stopping time
the optional sampling theorem implies Z;(V7) is an I(,_, ),o-martingale. Let
A €9, .ThenAd N {1 <t} € H_, voand A N {7 >t} € 7 C H,_, o, CON-
sequently

JaZp(t + u)dQ = [40 (s, Zs((t + u)VTy) dQ
+ Lingonl Z (1 + W) V1) + Z((t + u) A%y) — Z,(7)) ] dQ
(2.21) = Jan (< Zs(tV 1) dQ
+ fangesnl Z1(EV %) + Z,(tA7,) — Z,(1y) | 4Q
= [4Z;(1)dQ

which shows Z(¢) is an J-martingale.
By the uniqueness assumption we have

E(J5e Mf(X(1))dt) = Ey(fe ™ Mf(Y(¢))dr)
= Eg(fgee Mf(Y(1)) dr)
(2.22) + Ey(e ofge™f(Y(ry + 1)) dr)
E(fge Mf(X(2))ar)
+ E(e™M] xpE(fe M(X(r + 1)) dt| X(7))
+ X pefoe M(X (7 + 1)) dt])
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and we conclude
(223) E(e ™ MxpE(fPe ™(X(7 + 1))dt| X(7)))
= E(e™Mxpfee Mf(X(r + 1))dt).
Since F is an arbitrary element of §, and e~*" is §, measurable we have
(224)  E(fe™™Mf(X(r + 1)) dt|X(7)) = E(fe Mf(X(r +1))dt|8,).

For continuous f, the uniqueness of the Laplace transform implies E( f(X(7 +
1)|8,) = E(f(X(r + £))| X(7)) which in turn implies (2.9) for all bounded mea-
surable f. []

REMARK. If uniqueness holds for all solutions, then (2.24) follows immediately
from the fact that E(xyxg(X(7 +-))/P(F) and E(xpE(xp(X(7 +-))
| X(7)))/P(F) are measures on Dga[0, c0) which give solutions of the martingale
problem with the same initial distribution.

LeEMMA 2.25. Let X be a solution of the martingale problem (A, D) with respect to
8,. Let h(x,u) be bounded and continuous on E X R™ with h(:,u) € D for all u.
Assume that Ah(x,u) is bounded in x and u and is continuous in u for each x. Let 7(t)
be a continuous R™-valued process adapted to G, and define g(x,t) = h(x,7(t)).
Suppose that g(x, t) is absolutely continuous in t for each (x,w) and that g’ = (9/01)g
is bounded in (x,t,w) and continuous in x for almost every t. Then

(2.26) g(X(2),1) — f3(48(X(s),s) + g'(X(s),s)) ds
is a G,-martingale. If inf_  h(x,u) > 0, then
(227)  g(X(1).1)exp{ — [(A8(X(s),s) + 8'(X(s),5))/8(X(s),s5) ds}
is a G-martingale.
ProOOF. Since X is a solution of the martingale problem, for each u
(2.28) h(X(t),u) — [LAR(X(s),u)ds
is a §-martingale for ¢ > #,. Approximating 7(z,) by §, measurable random
variables assuming finitely many values and using the continuity in « of 4 and 4A it

follows that
(229) g(X(t)’tk) - f,:Ag(X(S),tk)dS

is a §-martingale for ¢ > ¢,. Consequently for any partition 0 = 7, < ¢, </t -,
we can define a §-martingale M(¢) by setting

M(t) = g(X(2),4) — f,:Ag(X(s),tk)ds
(2.30) — 150 (8(X(t1e1)s i) — 8(X(141)5 1))
— B2y Ag(X(s), 1) ds
for t, < t <ty . As max|t,,, — tx| >0, M(¢) converges to (2.26) a.s. and in L,

by the continuity in ¢ of g(x, ) and the continuity in x of g’(x, ¢). Hence (2.26) is a
§-martingale. The proof that (2.27) is a martingale is the same as for (2.7). [J
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LemMa 2.31. Let X(t) be a Feller process with locally compact state space E and
infinitesimal operator A. Let ¥(x,t) and (39/0t)¥(x,t) = ¥'(x,t) be bounded and
continuous with compact support in E X [0, ), and let f € 5D(A). Then

(232) g(x,1) = E(exp{— [g¥(X(s),1 = 5)ds}f(X(1)))
is in D(A) for each ¢,

(2.33) lim, e '(g(x,t +¢) — g(x,t)) = g,(x,¢)
exists uniformly in x for each t,

(2.34) g(x,0) = f(x),

and

(2.35) g(x,1) = Ag(x,t) — ¥(x,1)g(x,1).

PrROOF. A simple calculation gives
g(x,1) = E(exp{— [§¥(X(s),1 — 5)ds }Af(X(1)))
~ E((¥(X(1),0) + J§¥'(X(s),1 — s) ds)
xexp{ — g ¥ (X(s),1 = 5) ds}f(X(2))).
To compute Ag, note that the Markov property gives
e[ Eg(X(e).0)) — g(x, )]
e[ E (exp{ = [/ *¥(X(s), 1 + & — 5) ds} (X (1 + €))) — g(x,1) ]
@37 - e 'E((1 — exp{ = fo¥(X(s5),t + & — 5)ds})
X exp{ — [[T*¥(X(s),t + & — s)ds}
X f(X(t + e))) + e '[g(x,t+¢) —g(x,1)].
Letting ¢ — 0, we obtain
(2.38) Ag(x,t) = ¥(x,t)g(x,t) + g,(x,1).

The uniform continuity of ¥ and ¥’ ensure the uniformity of the various limits.

0

LemMa 2.39. Let E be locally compact. Let @,(x),i = 1,2, - -, m, be positive and
continuous and ¢;,(x) = 1 for x outside some compact set. Let 0 = t, < t; <--- <'t,
< T. Then there exist ¥,(x,t) satisfying the conditions of Lemma 2.31 such that

(240) Qn = exp{ —foT‘I'n(X(s)’ T- S)dS} < Hﬁosupxl(pi(xn
and
(241) limn—»oan = H?;O(pi(X(ti))‘

ProOF. Let p > 0 be continuously differentiable with compact support in
(0, o0) and [5°p(s)ds = 1(p = 0 on (— o0, 0]). Take

(242) Y, (x,1) = =Z7Lonp((T =t — t;)n)lng,(x). i

(2.36)
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LEMMA 2.43. Let A be the infinitesimal operator for a Feller process with locally
compact state space E, and let D be a core for A. Then the martingale problem (A, D)
has a unique solution for each initial distribution, i.e., if X and Y are solutions of the
martingale problem (A, D) and X(0) is equal to Y(0) in distribution, then X and Y
have the same distribution on Dg[0, co).

RemMARK. This lemma is essentially the same as Theorem (4.2) in Holley and
Stroock (1976). The proof we give illustrates techniques we will need later.

PrOOF. Since P is a core, any solution of the martingale problem (A4, D) is also
a solution of the martingale problem (A4,%D(A4)). It is sufficient to let X be the
Feller process and Y another solution of the martingale problem. Let g(x,¢) be as
in Lemma (2.31) with f = 1 and define

(2.44) h(x,t) = g(x, T —tAT).
Then by Lemma 2.25
(245)  h(Y(¢t), t)exp{ — [5(AR(Y(s),s) + 3,h(Y(s),s))/h(Y(s),s)ds}

is a martingale. Therefore, since A(Y(T), T) = 1, and (2.35) implies the integrand is
Y(Y(s), T —s)for0<s<T

(2.46) E(exp{ —for¥(Y(s), T —s5)ds})

E(h(1(0),0)) = E(g(X(0),T))

E(exp{ — [q¥(X(s), T — s)ds}).
The result now follows by Lemma 2.39. []

3. Multiple random time change. For each 1 < i < N (N may be infinite, then
take 1 < i < o), let 4; be the infinitesimal operator for a semigroup on Gy(E;)
corresponding to a Feller process with locally compact state space E, (E/ the one
point compactification), and let 3; be a nonnegative Borel measurable function on
IIN. | E,. A process Z(t), with state space II\. | E; and defined on a probability space
(2,9, P), solves the random time change problem (A,,B;,1 < i < N), if there exists
a family of o-algebras %, c F,u € [0, 0)”, that is increasing in the sense that
%, c9,if u<ov(e,u <v,1<i<N), and right continuous processes Y; with
state space E, such that

(3.1) 72 f(Y(u))exp{ — [o" H,f(Y,(s)) ds }
is a martingale with respect to %, for n < N,n < oo,f, € D* (A4,); (H.f, =
A, £/5,DT (4) = {f € D(4,) :inf, f(x) > 0};)

(32) Z,(t) = Y(JoB(Z(s))ds);
and
(3.3) 7(t) = (n(1),m(2),- -+ ),

where 7,(¢) = f3B;(Z(s))ds is an I, stopping time for all ¢ > 0 (i.e., {7(?) < u} € ¥,
for all u).
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ReMARK. Condition (3.1) implies f,(Y;(¢))exp{ — f¢ H, f(Y;(s)) ds} is a martingale
with respect to I/ = o(¥,(s5;):0 < s, < 1)Vo(Y(s;):0 <s; < 00,j #i). By the
uniqueness of the solution of the martingale problem (4;,D(4,)) it follows that Y;
is Markovian with respect to JC; and, in particular,

(34) P(%(") € B|%G)
= P{Y(") € B|Y,(0), Y,(-)j #i} = P{Y,() € B|¥,(0)}
for all B € IIL(E;). In particular the Y; are independent if the initial positions Y;(0)

are independent.
For a stopping time in the sense used in (3.3), we define

(3.5) 9, ={d4:4An {r<u} €F,allu}

as in the one dimensional case. Let

(3.6) D = {lI". fin< N,n< oo,f €D(4,)},
and note that

3.7 D* = {IIL ,fin < N,n< oo,f, € D* (4,)}.
For [I7_, f; € D, define

(3.8) Al e = 25284, 511,

(e.g., if n=2,4f £, = B, LA, f; + B, /14, f.) For II_,f, € D let ¢ > max,| f||.
Then

(3:9) MLifi = T([fi+ el =€) = Sicaam(=0)" "M [ i + ],
where || is the cardinality of 7, and
(3.10) Alli. f; = 21C(1,2---n}(_c)n—'IlAHiEI[j;' +c],

(recall 4;c = 0). It follows that any solution of the martingale problem (4, D*) is
a solution for (A4, D).

The following theorem states that the martingale problem (A4, D) (or (4,D™))
and the random time change problem (4;,8;,,1 < i < N) are equivalent.

THEOREM 3.11. Let A; and B; be as above, and assume sup,B;(z) < oo.

(a) If Z(t) is a solution of the random time change problem (A;,f;,1 < i < N),
then it is also a solution of the martingale problem (A, D) with respect to S, = 9?,(,).

(b) Assume inf,B;(z) > 0. If Z(t) is a solution of the martingale problem (A, D),
then it is also a solution of the random time change problem with

(3.12) (1) = [oB(Z(s)) ds,
(3.13) Yi(t) = Z(vi(1)) where v,(t) = inf{r: [(B(Z(s))ds > t},
(3.14) G = o(Yi(s;):s; <upi=12,--)vn,S8 )

u

REMARKS. () {7(¢) < u} = N;{vi(u;) >t} = N {Viev(y) >t} € n,.gy‘(ui).
Hence 7(¢) is a 9, stopping time.
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(ii)) Theorem (5.5) and a portion of Lemma (5.10) of Holley and Stroock (1976)
are essentially a special case of our theorem although their definition of “stopping
vector” differs from ours (see Section 5).

(iii)) The theorem of Knight (1970) is a more general statement of part (b) of our
theorem in the case of finitely many Brownian motions (see Section 6).

(iv) The assumption in (b) that inf,8,(z) > 0 is used only to ensure that
J6°B:(Z(s))ds = oo and hence that Y, is defined for all ¢. This assumption can be
dropped at the (possible) expense of having to enlarge the sample space in order to
be able to define Y;(¢) for ¢t > [5°B,(Z(s))ds. Knight (1970) carries out a similar
argument The assumption sup,8;(z) < oo can also be relaxed in particular cases.

(v) 9, can be enlarged so that %, = N, 9%, for any decreasing sequence {u,} such
that hm = y. Then for a (real valued) - Stopping time y,7(y) is a

u-stoppmg time (see Helms (1974), Lemma 6).
PRrOOF.
(a) Since
(3.15) X(u) = M7= fi(Y(u;))exp{ — s H f(Y(s;)) ds; }

is an ¥, -martingale, the optional sampling theorem (Theorem (2.15) of Kurtz
(1980)) implies X(7(¢)) is a martingale with respect to §, =%,,,. A change of
variable s, = 7,(s) in each integral gives

(3.16)  X(r(2)) = -1 f(Z(1))exp{ — JoB(Z(s)) Hif(Z(s)) ds}.
Since X(7(#)) is a martingale if and only if
(3.17) 72 £(Z(2)) — foA(T. £ )(Z(s)) ds

is a martingale, part (a) follows.
(b) Note that (3.2) and (3.3) follow from the definitions and Remark (i) above.
It remains to show that X(u) given by (3.15) is an ¥ -martingale. We need the
following lemma.

LemMa 3.18. Let M,(t),1 < i < n < oo be right continuous processes such that
;e Mi(t) is a G-martingale for all subsets I C {1,2,--,n}. Let 19,7, + 7, be
stopping times, T = \/;7,, M; = sup, .| M(t)| and assume E(Il;c;M;) < oo for all
Ic{L,2,---,n}. Then
(3.19) E(H?=|M(Ti)|gfo) = III_ M(7;AT,).

PrOOF. Since M(7)) = M(7, V1) — M(7) + M(7, A7), (3.19) follows from the
optional sampling theorem in the case n = 1. Proceeding by induction on =,

assume (3.19) holds for n = m — 1 with (7y, 7, - -, 7,,_,) replaced by any collec-
tion of stopping times (74,7, * * ,7,_;) With v,7/ < 7. Then

(320) E(IL M(7)\S,) = E(M,(7)E(IL, M(7)]S,v.)IS,,)

= E(I, M7, A(r, V)18, ),
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where the second equality follows from the induction hypothesis. Let y = A;(7,V 7,)
= (A;7;) V1,. Repeating the procedure in (3.20) for each §, v We obtain

E(II7L M(7)I8,,) = E(II7Z M(7;A7)IS,,)
= E(II% \ M(7,A) X (sy=r3 | S:,)
(3.21) + E(II72 M ()X (ro <y 1S,
= 72 M7, A%) X (ry=yy + EWZ M (Y)18,0) X r0<m)
= [, M(7;A7).

Note that we have used the facts that {7, = v}, {7 < v} € §, and thatII]Z, M, is
a martingale. []

Returning to the proof of Theorem 3.11, let ¥,(x;,¢) satisfy the conditions of
Lemma 2.19 and f, € D* (4,). Define

(3.22) hi(x;,t) = gi(x;,u; — t) 1<y
= fi(x;) t > u;

where g,(x;,?) is the solution of

(3.23) 8 (xint) = Agi(xin1) = ¥ g2 1)

with g;(x;,0) = fi(x;) (see Lemma 2.31). Define Kh(x,t) = (8/9t)h(x,t)/h(x,1)
and let

(3.24) M(t) = hi(Zi(t)’Ti(t))exp{—f(;Bi(Z(S))[Khi(zi(s)"ri(s))
+ Hihi(Zi(S)’Ti(s))] d"}

For n < N,n < oo, Lemma 2.25 implies M,(¢),- - - , M,(¢) satisfy the conditions
of Lemma 3.18. Let # < v. Then

(3.25) E(T M (7:(9)[5,0) = Timy Mi(7,(1))

where ¥,(#) = A7 ,v,(#;). In particular,

E(I7-, £(Yi(0))exp{ — [ H f(Y,(s)) ds Yexp{ — Jg ¥, (Y (), u; — 5) ds}[S;, )
29 = E(I (Y (u))exp{ = [T (Y;(s),u; — 5) ds}| ;. )
From Lemma 2.39, we can conclude that
(327)  E(I-, £(¥,(v,)exp{ — 'Hf(Y(s))ds}nk-.qo.k(r(t,k))l S
= E(I ()7 @Y (1)) S5, y)

where @, are as in Lemma 2.39 and 0 < ¢, < u;. It follows that X(u) is an
%,-martingale. []
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REMARK. Since (3.12) is a martingale, the optional sampling theorem implies
E(X(t + u)|%,) = X(r) for any %, stopping time 7. This in turn implies the
multiparameter “strong Markov property” in Helms (1974, Theorem 4).

Existence of solutions of the martingale problem is quite easy to establish under
the assumption that the B;(z) are continuous.

THEOREM 3.28. Let A; and B; be as above, and suppose that the 3; are bounded and
continuous. Then there exists a solution of the martingale problem (A, D).

PROOF. Let ¢ satisfy sup,c ;= ,8:(z) < oo and define
1 -1 1 -1
(3.29)  Am™ = A,.(I— -—A,.) = me, (1——-,4,.) - 1.
me; m

Then A{™ is the Yosida approximation of 4, (see Yosida (1968), page 246) and
(3.30) lim,_ A™f = A,ffor f € D(4,).
Note that 4{™ is defined on B(E;) and since ||(I — (1/me;)4,)""|| < 1 we have
| A9 || < 2me,. We can also consider A{™ as an operator on B([)., E;) (A{™f(z)

is defined for f &€ B(lI _lE) by fixing all components of z but the ith) and
| 4¢™|| < 2me; in this space as well. Define

(3.31) A™f = 3\ BA™S
and note that
(3.32) |A™f(2)| < EXB(NA™S N < ZL,Bi(2)2me | f]-

Consequently || 4™ || < sup,22me;B;(z) < oo.
For [I].,f,€ D

(3.33) AP f; = 2B fiATS-

Since A™ is bounded it is the generator of a jump process Z™ for which

,-1 B;me; is the jump intensity, B, ,/(Z7-1B;¢;) the probability that the next jump
is in the tth coordinate, and me; [g°e~"'P(t,z;,T') dt the distribution of the jump
(P(t,z2,;,T) denotes the transition function corresponding to 4,). By Theorem (3.11)
Z™ is a solution of the random time change problem

(3.34) Zm(t) = Y f5BAZ(s)) ds),

where Y™ is a Feller process with generator A{™. If Y")(0) is independent of m,
then (3.30) implies ¥;(™ converges weakly to Y; (see Kurtz (1975) Theorem (4.29)).
From this representation, the boundedness of B; and the tightness of the ¥;(™, it
follows that for every 7 > 0 and T > 0, there exist compact K; C E; such that

(3.35) inf, P{(Z(™(t) € K;,i =1,2,-+-,t < T} > 1 — .
By (3.30),
(3.36) im,, A f;, = AIlZ, £,
for all [I"_, f; € D. Since the linear span of D is dense in Cy(E), it follows from
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Lemma (1.23) of Kurtz (1978) that the sequence Z™ is tight in Da[0, c0). From
(3.35), we conclude that, in fact, Z¢™ is tight in Dg[0, c0).

Let Z(™ be a subsequence converging weakly to a process Z. For g = II/_, f. €
D,h; € C(E)and 0 < 1} < t,- -+ < ;< 1y, (3.36) implies

0 hmk—»ooE([g(Z(mk)(t1+l)) - g(z(1)))
- a2 1 1 (200)
(3:37) = limk—mE([g(Z(m")(tlﬂ)) - 8(z(1)
— [ 4g(ZO(s)) ds [T} h)(Z2(1;)))
E([g(z(t1+l)) - g(z(1)) - fx:'HAg(Z(s))ds]Hj-lhj(Z(tj)))

provided P{Z(¢;)) = Z(t;-)} = 1,j=1,2,-- -,/ + 1 (see Billingsley (1968), page
124). By the right continuity of Z the right side of (3.37) is in fact zero for all
choices of f,,t,, -+ ,t,,- This in turn implies g(Z(t)) — f[oA8(Z(s))ds is a
martingale with respect to §, = o(Z(s):s < 1). [J

4. Representations of diffusion processes. In this section we consider diffusion
processes in R? with generators of the form

(4.1) Au(x) = %2,<,~,j<dc,.j(x)a,8ju(x) + 2 cabi(x)u(x).

Stroock and Varadhan (1969) have given very general conditions under which the
martingale problem corresponding to 4 (defined on an appropriate domain) has a
unique solution and hence determines a Markov process. We will show that a large
class of such processes can be represented as solutions of equations of the form

(4.2) X(1) = X(0) + .. W,(f5B(X(5))) ds

where the W, are independent scalar Brownian motions with variance and drift
parameters o2 and m,,a, € R? B, is nonnegative and measurable, and N < oo.
When the representation holds then

(4.3) ((Cij(x))) = C(x) = Eﬁ-lﬁk(x)ol?akaz
(we think of a, as a column vector and aj is its transpose), and
4.4 b(x) = (bl(x)»' c 3bj(x))T = Eﬁ-lﬁk(x)mkak'

Representations of this form were used in Kurtz (1978) to obtain pathwise error
estimates for diffusion approximations of Markov chains. In that case, the Markov
chains satisfied

(4.5) X(1) = X(0) + =i Yi( foBi(X(s)) ds),

where the Y, are Poisson processes and the diffusion approximation is obtained by
replacing the Y, by Brownian motions with the same mean and variance.
If

(4.6) sup; . |b;(x)] < oo
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and there exist 0 < p < A < o0 such that
4.7 BlE1? < 2y caci(x)EE < A|§|* forall ¢, x € R?

(i-e., 4 is uniformly elliptic) we will see that such representations always exist and
that B, and a, can be selected so that N < oo, inf, ,B,(x) > 0 and sup, ,B,(x) <
oo. This selection is based on the following lemma which is essentially a lemma of
Motzkin and Wasow (1953).

LEMMA 48. For 0 < u < A < o0, let S;(u,N) denote the collection of positive
definite (d X d) matrices ((a,;)) satisfying
(4.9) ul€|? < 2a;;§:¢ < Al€|? forall ¢ € RY.
Then there exist a; € R, 1 < i < N < o0, such that every A € S;(,A) can be
represented as
(4.10) A = 3X,B(A)al
where B,(A) > 0. Furthermore the ;(A) can be taken to be C® functions of the

coefficients.

REMARK. The representation is in no way unique, and N may be arbitrarily
large, the size depending on A /p.

PrOOF. We begin by observing that it is sufficient to prove only that 8,(4) > 0.
If all 4 € S;(p/2,2)) can be represented
(4.11) 4 = zfv-lYi(A)aiaiT’
where v,(A4) > 0, then there is an ¢ > 0 sufficiently small such that for any
A € S;(pA), 4= A4 — SN jea;af € S;(1/2,2)). Hence
(4.12) 4 = 2’1}/.1(8 + Yi(AO))aiaiT
and we have (4.10) with 8,(4) = ¢ + v,(4,) > 0.

Next observe that S;(u,A) is a compact subset of the m = n(n + 1)/2 dimen-
sional vector space of symmetric matrices; in fact, it is a compact subset of the

interior of the cone of positive definite matrices. Every 4 € S,(n,A) can be
represented as

(4.13) 4 = Ei”:-lmniT’

where the m;n are linearly independent, hence span the space of symmetric
matrices.

The sets
(4.14) U 5m,,) = {27'-101"'7:"7{301 > 0}
with the m,n] linearly independent form an open cover of S,(u,A). Let U =
Ui, -, m$),k =1,2,-- -, K be a finite subcover. Each 4 € U, has a unique
representation

(4.15) A = ZeP ()T,
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with ¢*¥)(4) > 0, and in fact the ¢(*)(A) are linear functions. Finally there exist
nonnegative C* functions A, (A4) such that A,(A4) has compact support in U, and
A (4) =1 on S;(u,A). Therefore, for every 4 € S,(u, ),

(4.16) A = SA(A)4 = SA(A)P(AmPn(T,
which is the desired representation. []
From Lemma 4.8 we conclude the following theorem.

THeOREM 4.17. Let C(x) = ((c;;(x))) and b(x) = (b\(x)," - - ,by(x)T satisfy
(4.6) and (4.7) for some 0 < p < A < co0. Then there exist B,(x), a,, of and
m;,1 < k < N < oo satisfying (4.3) and (4.4) with inf,  B,(x) > 0 and sup, . Bi(x)
< 00. The B,(x) can be taken to be C* functions of C(x) and b(x).

Proor. By Lemma 4.8 we can write
(4.18) C(x) = Z4,B(x)ayaf.

Let e; be the vector in R with jth component 1 and the other components 0. Let
¢(s) and ¥(s) be C* functions on R such that inf @(s) > 0, inf ¥(s) > 0, and
@(s) — ¥(s) = 5. Then

(4.19) b(x) = Z9_,19(b,(x))e; + =9 ¥(b;(x))(—¢;).

Leto?=1andm,=0for1 <i< Nyando?>=0andm,=1for Ny +1<i<
N =N, +2d; Bi(x) = 9(bj(x)) and @; = ¢; for i = N} +j,1 <j < d, and B;(x)
= ¥(b(x))and a, = —e¢,fori =N, +d +j,1 <j < d. [

Theorem 4.17 shows that to every operator 4 given by (4.1) with C(x) and b(x)
satisfying (4.6) and (4.7) we can associate an equation of the form of (4.2). We now
want to show that solving (4.2) is in a sense equivalent to solving a martingale
problem for A. Letting M : RV — R be given by

(4.20) M = (a0, " ,ay) = ((aik))
solving (4.2) is equivalent to solving

(4.21) Z (1) = Wil JoBLX(0) + MZ(s))ds)
and setting

(4.22) X(t) = X(0) + MZ(2).

We are interested in the relationship between the martingale problem for A4 given
by (4.1) (on an appropriate domain) and the random time change problem
corresponding to (4.21). Specifically, let C(R?) (Cy(R)) denote the space of
continuous functions on R?(R) having a limit at infinity in the one point com-
pactification. Let D = Gy(RY) N C%(R?), let 4, be the generator corresponding to
W, in Cy(R) (A, f = 30%f” + m, f’ for f such that f,f" and f” € Cy(R)) and set
,ék(z) = B(X(0) + Mz) (we will assume that X(0) is a fixed element of R¥).

THEOREM 4.23. Let (A,D), Ay, oy, B, and ,ék be as above; let N < o0 and
assume B, is nonnegative, measurable and sup, B,(x) = B, < oo. Suppose (4.3) and
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(4.4) hold. If Z(¢) is a solution of the random time change problem (A,, ﬁk, 1<k<N)
then X(t) = X(0) + MZ(t) is a solution of the martingale problem (A, D).

ProoF. Let D, = {g € C(R"): g(2z) = I} fi(zx). f € D(A,)}, and for g €
D,, define

(4.24) Ag = Eﬁslﬂl;ekf}ﬁkAkfk’
Then by Theorem 3.11 part (a),
(4.25) g(Z(1)) — [oA'8(Z(s))ds

is a martingale with respect to 9, = 6(Z(s):s < t) for all g € D,. Note that
CXR) = {fE€ GR):f,f" € C(R)} C D(4,) and if g(z) = ;. fi(20).fi €
C2(R) then

(4.26) A'g = SN_3Bi0toig + S Bmidis.

Define A’g by (4.26) for all g € C3(R") (the space of bounded, continuous
functions with two bounded, continuous derivatives). We claim that (4.25) is a
&, -martingale for all g € C*(R"). Let D, = (g € C(RY) :g(z) =
zm o cGIIN_ £z, £ € CA(R)). Clearly (4.25) is a 9-martingale for all g € D,. If
g € CX(RV), then there exist g, € D, such that sup,||g,|| < o0, sup,||3,&,| < o
and sup, ||0,9,8,1l < oo forall 1 < k,/ < N and

limn—aoo suPzer|gn(Z) - g(Z)|
(4.27) = hmn—»oo supzerlakgn(z) - akg(z)l
_ = lim, ., sup,er|9,9,8,(z) — 9,9,8(z)| = 0

for all compact I' ¢ RY and all 1 < k,/ < N. Noting that sup,_|Z(7)| < o a.s.
the fact that g,(Z(¢)) — fgA'8,(Z(s))ds is a martingale with respect to %, implies
(4.25) is also.

Finally, for f € D, define g(z) = f(X(0) + Mz). Then g € C*(R) and (4.25) is a
%-martingale, but (4.25) is just

(4.28) FX@) = [AF(X(s)) ds
and hence X(¢) is a solution of the martingale problem (4, D). []

The converse to Theorem 4.23 is more difficult primarily because the equation
X(t) = X(0) + MZ(¢) does not in general uniquely determine Z(¢) in terms of
X(¢). In fact, in order to obtain Z(z) with the desired properties (i.e., a solution of
the random time change problem), we will need to use a Brownian motion
independent of X(¢). We will need the following lemmas.

LEMMA 4.29.  Suppose sup, |c;(x)| < oo and sup,|bi(x)| < o forall1 <i,j<d
and that X(t) is a right continuous solution of the martingale problem (A, D). Then
X(t) is continuous, and

(4.30) )?,.(t) = X,(t) — X,(0) — [3b,(X(s))ds
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and
(4.31) X()X,(1) = foei,(X(s))ds
are martingales.

REMARK. In the notation of Kunita and Watanabe (1967), </\7i,)?j>, =
f(;cij(X(s)) ds.

ProoF. By approximating |x|” by functions in D, it is easy to show E(| X(7)|")
< o for all n > 0,¢ > 0, and by approximating [I7_,x" by functions in D that
(4.32) u(X(t)) — fjAu(X(s))ds
is a martingale for any polynomial u. In particular (4.30) and

M;;(t) = Xi()X,(1) — [oX,(s)b,(X(s))ds
(4.33) = JoX;(s)bi(X(s))ds

- fo‘cij(X(s)) ds
are martingales.
Note that (4.31) is

M,;(1) = X(1)X;(0) — X,(1)X,(0)
(4.349) = J3[(X(1) = Xi(s) = [, X (w) )by (X(s))
+ (X;(1) = X;(s) = [{6,(X(w)) du)b(X(s)) ] s.
The first three terms in (4.34) are clearly martingales. We leave the verification that

the last is to the reader.
Using the fact that (4.32) is a martingale for any polynomial it follows that

435)  E((X() - X)) = E([6c,(X())(Xi(s) — X,(u))"
+ 4b,(X())(X,(5) — X,(u))*] ds),

and (4.35) in turn implies that for 7" > 0 there exists c¢; > 0 such that

(4.36) E((X,(1) = X,(»))") < er(t —u)’

for all 0 < u < ¢ < T. The continuity of X now follows from Billingsley (1968)
Theorem 12.3. []

LEMMA 4.37. Let M = (ay,a,," -+, ay) have rank d and select v, € RN~ (if M
has rank d then N > d) such that
& @ "t Qy
(4.38) L=(y 2 M
is a nonsingular N X N matrix.
Let ¢; > 0,i = 1,2,---,N, and define C = 3. c,a,ar. Then there exist a
(N—d) X d matrix o and a (N—d) X (N —d) nonnegative definite matrix F such that

(4.39) G = C Co” ) — SN ,c-(aiaiT Oli'YiT)'
oC oCoT+ F = yiof ‘YiYiTj
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Proor. We must have
(4.40) oC = N c;vel.
Since c;a! is in the range of C we may take
(4.41) o = 3N c;v,0fC*,
where C* is the generalized inverse of C (see Penrose (1955)). While C* is not a
tontinuous function of C, it is measurable. Then
(4-42) F = 3N c,v,¥T — oCo”,
and it remains to show that F is nonnegative definite.
To see this, let y € RV~ ¢ and x = —o7y. Then
(4.43) (Ty7)G(3) = y'B > o.
ReMARK. If ¢; > 0, all i then F is positive definite.

THEOREM 4.44. Let (A,D), A,, ay, B, and B, be as above; let N < oo and
assume inf B,(x) > 0 and sup, B,(x) = ,Ek < o0. Suppose (4.3) and (4.4) hold. Let
X(t) be a solution of the martingale problem (A,D) and let B(t) be a standard
(N — d)-dimensional Brownian motion independent of X(t) and adapted to the same
filtration §,. Then there is a solution Z(t) of the random time change problem
(Ag, Bir1 < k < N) such that X(t) = X(©0) + MZ(¢).

PrOOF. We assume that the a, span R?. (If not, add additional terms to (4.2) in
which W, = 0.) Let v; and L be as in Lemma 4.37 and let

(4.45) G(x) = ﬁ.laiﬁk(x)(“"“f i )
Yk YeYk
and
(4.46) a(x) = ZLmBu(x) .
By Lemma 4.37 there exist o(x) and F(x) such that
(4.47) G(x) = ( ¢(=) C(x)o™(x) )
o(x)C(x) o(x)C(x)o™(x) + F(x)

Set K = L™ ! and note that KG(x)K 7 is the diagonal matrix with elements a28,(x)
and

b
(4.48) K( (")) = (mBi(x)- - mBu(x)"-
a(x)
As in Lemma 4.29, let )?(t) = X(¢) — [gb(X(s))ds. Define (see Kunita and
Watanabe (1967))

(4.49)  Y(1) = [fo(X(s5))dX(s) + [¢F(X(s))dB + [ja(X(s))ds
Y(2) + fga(X(s))ds
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(take F? to be the nonnegative definite square root of F) and set

_ -1 X() — X(0)
(4.50) Z(t)—L( YO )

Clearly X(¢) = X(0) + MZ(t). By Theorem 3.11, to show that Z(#) is a solution of
the random time change problem (4,, ,ék, 1 < k < N) it is sufficient to show that
it is a solution of the martingale problem (A4’,D,) (A4’ defined by (4.24)). Let
L™'= K = ((k;;)) and note that X(¢) — X(0) = X() + [¢b(X(s))ds.

From Lemma 4.29

(451) (X, X0, = Jger,(X(s)) ds

and Theorem 2.1 of Kunita and Watanabe (1967) can be used to compute
(4.52) T X = f3(a(X())C(X(s)))ds

and

4.53) T, T = f5(o(X(s)C(X(5))oT(X(5))),ds + [§F(X(s))ds.

For f € C*(R? x R¥~7), 1t&’s formula (Kunita and Watanabe (1967), Theorem
2.2) gives

S(X(1) = X(0), Y(1)) ~ f(0,0) = =, Jif. (X(s) — X(0), ¥(5)) dX;(s)
S5 5(X(s) = X(0), Y(s)) dYi(s)

+ 3231 cijcalifes (X(s) = X(0), Y(s))c; (X(s)) ds
+ Zicien-ai1<7<alo iy (X(s) = X(0), Y(s))

X (o(X(5))C(X(s)));ds
+3Z1cijen-alol,, (X(s) = X(0), ¥(s))

X (a(X(5))C(X(s))oT(X(s))) ;s

+ 33 ciyen-alid,, (X(s) = X(0), Y(s))F;,(X(s)) ds

(4.54)

S0 £(X(s) — X(0), Y(s))b,(X(s)) ds
=0k, (X(s) — X(0), Y(s))a;(X(s)) ds.
Write K = (K, K@) where KV is N X dand K@ is N X (N — d). Letg € D,

and set f(x,y) = g(KPx + K@y). Then g(Z(t)) = f(X(t) — X(0), Y(2)). The first
two terms on the right of (4.54) form a martingale (denote it M,(#)) and (4.54)
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becomes
(4.55) g(Z(2)) — £(2(0))
= M(1) + 3241008, (Z(s))(KPC(X(s))KDT), ,ds
+ 2410082, (Z())(K Po(X(5))C(X(s))KDT), ,ds
+ 32k,10082,:( Z(5))(K Po(X(5))C(X(5))oT(X(s))KPT), ,ds
+ 334, 10082, Z(s))(KPF(X(s))K®T),  ds
+ 2 o8 (Z(NKDPB(X(5))) a5 + 2 Jo8.(Z(s))(KPa(X(s))) . ds
= M(1) +32,1008:,.(Z(s))(KG(X(s))KT), ,ds
+ 24 J08. (Z(s)(K V(X (s)) + KDa(X(s))) ds
M(t) + 324 JooiBi(X(5))8.,.(Z(s)) ds
+ 2y fomiBi( X(s))g.(Z(s)) ds
M(1) + [oA'8(Z(s))ds.

It follows that Z(¢) is a solution of the martingale problem (A’, D,) and hence of
the random time change problem (A4,,8;,1 < k < N). []

REMARK. Suppose that m; = 0 for all i in (4.2) and that 8,(x) < B,. Then the
optional sampling theorem in Kurtz (1980) implies

(4.56) X(t) — X(0) = E(SY_ Wi Bet)|S,)-

This identity allows one to estimate moments of X(¢) in terms of moments of the
Brownian motion Z}_ a,W(Bi?).

5. Existence of random time changes: Liggett’s theorems. Theorem 3.28 gives
conditions for the existence of solutions to the martingale problem corresponding
to (3.6) and (3.8) and hence for existence in a weak sense of solutions of the
random time change problem. In this section, we consider briefly approaches one
might take in proving existence and uniqueness of random time changes in the
strong sense, i.e., given the Y,. At this point we have no good general theorem, but
some of the observations we make here may be useful in developing a general
theory.

Given independent Markov processes Y; and nonnegative measurable functions
B;, we would like to be able to solve

(5.1 Z(t) = Y([sB(2Z(s))ds), i=1,2,---,N < oo,

with the added condition that 7(¢) = ([3B,(Z(s)) ds, [4B(Z(s))ds,- -+ ) is a stop-
ping time for some family %, for which (3.1) holds. Typically one might take

(5.2) G, = o(N)VNo{Yi(s):is; <u; +ei=1,2,---}
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where 9 is the collection of sets of measure zero. (Assume that the underlying
probability space is complete.) Note that this definition of 9, ensures that %, =
NesoTuse(u + & = {u; + €}) which in turn implies that limits of stopping times are
stopping times.

An iterative approach

(5.3) Zr0(t) = Y(J3B(2(s))ds)

runs into trouble immediately, since there is no reason to expect the [i8,(Z"(s)) ds
to be the components of a stopping time. On the other hand, if N < co, the system

(5.4) z(1) = Y([nfgB(2"(s)) ds]/n)
has a unique solution and 7(¢) = [nf{B;(Z((s))]/n are the components of a

stopping time. One might be able to show the existence of lim,,_, . Z{"(¢).
Another approach is suggested by the equation

(5-5) %"1(’) = Bi(Yi(7i(2)), Yo (2)),- - - )-

From (5.5) we see that for each w,7(¢) must be the solution of an autonomous
system of ordinary differential equations. Helms (1974) uses this approach to prove
existence and uniqueness for finitely many Y; having bounded generators (i.e., jump
processes with expected holding times bounded away from zero).

Alternatively, we may think of 7(¢) as taking values in some linear space and
(5.5) determining a single ordinary differential equation

(5.6) (1) = F(r(1))

in that space. Of course we are interested in solutions that take values in J, the
collection of all stopping times. This is not unreasonable since for 7 € Jand ¢ > 0

(5.7) {r+eF(r)<u} = {r+eF(r) <u} N {r<u}
= {T <u-— sF('r)x(Ku)} €9,

(F(T)X(r<u) 18 %, measurable) and hence 7 + ¢F(r) is a stopping time. The
problem would be essentially solved if we could find a norm under which F was
Lipschitz continuous. To illustrate that possibility, we prove Liggett’s existence and
uniqueness theorems for infinite particle systems (Liggett (1972)). Existence and
uniqueness of the time change were considered by Holley and Stroock (1976) for
spin flip models, using other methods.

We first prove two theorems concerning time changes for infinitely many
Poisson processes, and then show how existence and uniqueness can be obtained
under Liggett’s conditions. (Of course, Liggett proves more in that he characterizes
a core for the infinitesimal generators.)

THEOREM 5.8. Let Y,,i=1,2,:--, be independent Poisson processes, let F,
satisfy G, = N,20%,+. and (3.1). Let B(z) > O be continuous functions on E =

{0,1,2,- - - ¥, and let
(5.9 a,; = sup,cg|Bi(z + e,) — Bi(2)]
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(where e, € E is the element whose kth component is 1 and other components are
zero) and

(5.10) b, = supz‘,zzeEIBi(zl) - Bi(zz)l'

Let || || denote the l,-norm for some 1 < p < oo and let || ||* denote the I -norm
where 1/p + 1/q = 1. If there exist ¢; > 0,i = 1,2, - - and M < oo such that
(5.11) lebilli < M

and

(5.12) I Neau/edlkll < M

or

(5.13) I /el it < M

(where ||m,,||; denotes || || applied to the sequence m,,,i = 1,2, - - for fixed k) then
there exists an almost surely unique solution of

(5.14) Zi(t) = Yi(JoB(Z(s)) ds)

with 7(t) = (f¢B(Z(s))ds) € Tall t > 0.

REMARK. The author would like to thank Larry Gray and the referee for
pointing out the possibility of eliminating a uniform boundedness hypothesis on
the ; used in an earlier version of this result.

Theorem 5.8 applies to spin flip systems (the spins being given by (—1)%/). To
obtain Liggett’s results for models involving speed change and exclusion we need a
somewhat different result. In the application Z,;, below, is the number of transi-
tions of particles from state i to state j.

THEOREM 5.15. Let Y,;,i,j = 1,2, - - be independent Poisson processes, let %, u
= {u;;}, satisfy 8, = N5 09,+. and the analog of (3.1). Let B, (z) > 0 be continuous
Sunctions on E=117°,.,{0,1,2,- - } and suppose there exist a; ks b,-jk, Cijs and
M < oo such that

(5.16) . supzeElBij(z +ey) — :Bij(z)| < a + by,
(5.17) ¢y = supy seglBiy(2') — Biy(2)l;
(5.18) sup,2;c;; + sup;Z;c;; < M,

(5.19) Sup;2; 1@ + sup; Z, ka5 < M,

and

(5.20) sup,X; b, + sup;Z; b, < M.

Then there exists an almost surely unique solution of
(5.21) Zij(t) = ),ij(f()tﬁij(z(s))ds)’
with 7(t) = (foB,;(Z(s)) ds) a F,-stopping time for all t > 0.
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The proofs of the above theorems depend on the following lemma.

LEMMA 5.22. Let Y, B,, a;, and ¥, be as in Theorem 5.8, and set F(1) =
Bi(Y(7)), Y5(7,),* - + ). Then for ¥, -stopping times ™ and @

(5.23) E(|F(r®) = F(r?)]) < ZayE(7" - 72)).
ProoF. Note that
(524) sup,|B(z + me,) — Bi(2)| < sup,|Bi(z +e) — B(2)|m = aym.
It follows that
E(|F(r®) = F(r®))) < E(EB(N(7?) -+ Yi(r) Yeur(R1) -+ +)
- Bi(Yl(Tl(z)) te Yk(TISZ))Yk+l(TI£?-I T )I)
E(Ekaiklyk(Tlgl)) - Yk('rlgz))l)
= 5,4 E(Y(1Ov1®) — Y (1OA12))
= S, B - 12).
Note that the first inequality uses the continuity of B8; and the last equality follows

from the fact that Y,(¢) is a Poisson process with respect to the filtration
m® =v, .3, and 7" and 7 are M* stopping times. Consequently,

(5.26) E(Y(t"v1®) = Y (1PA1P)) = E(rOvi@P-PAr®)
= E(f - ). 0

PrOOF OF THEOREM 5.8. For an R®-valued random variable £ set | ||z =
lle;E(|€; D]l For 7, 7@ € F inequality (5.23) and the triangle inequality imply

(5:27) | F(r®) = F(r®)|l g < Zillcian/ck ”ickE(ITISl) - "'/gz)l)-
If (5.13) holds then the Holder inequality gives

(5.28) | F(rP) = F(1P)ll g < M||7D — 7@ 4.
Similarly if we first apply the Holder inequality to (5.23)

(5.29) GE(|E(r® = F(r®))) < llean/ccllilr® — 7@ .

In this case (5.12) implies (5.28).
If 7™(¢) and 7@(¢) are solutions of (5.6) with values in J then (5.28) implies

(5.30) I7O() = 1@ e < [NF(7D(s)) — F(rD(s))|| pds
< MfGliT0(s) — 7O(s)|| gds.

Uniqueness of the solution of (5.6) would follow by Gronwall’s inequality if we
knew the right side of (5.30) was finite. But

(5.31) I7P®) = 1@l g < [IE(rO(s)) — F(rP(s))| g ds
< folleb;llids < Mt
which implies the right side of (5.30) is bounded by M?¢%/2.

N

(5.25)
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To prove existence let 8 = {;} where §; = inf, gB8,(z). Note that | 8,(z) — B,|
< b;. Let
(5.32) (1) = [JF(sB)ds 0<t<1/n,
and
(5.33) (t) = 1 (k/n) + f{,,F(r(k/n) + (s — k/n)B)ds

k/n <t < (k+1)/n.
Set y")(¢) = 7(®([nt]/n) + (¢ — [nt]/n)B and note

(5.34) (1) = [iF(y(s)) ds.

The fact that y(¢), 7(¢) € J follows from the fact that (")(z) > y("(¢) (recall
the definition of B) and {y(”(¢) < u} = {r((m]/n) <u— (1 - [nt]/n)B) € G,.
Finally observe that
(5.35) I7(8) = Y (Olle < Syl F(¥(s)) — Bl gds
< llebilli/n
so
1Y) = ¥yl g < 1770 = yP@ll g + 177() = Y™ ()l g

(5.36) + || fGF(v"(s))ds — JgF(¥"™(s)) ds]|

< 2lleblli/n + MY P (s) = ()| gds
and hence
(5.37) 7)) = 7Ol g < 2lleb;ll (1 + e™)/n.

Consequently 7"(¢) — 1¥(¢) is a Cauchy sequence in ||-||; and hence there
exists a stopping time 7(¢) such that 7,(¢) —» 7(¢) in probability (i.e., || 7(¢) —
D) = (7(2) = TO@)|| g = 0). Since ||[7(¢) — Y™(2)|| z — 0 it follows that 7(¢)
satisfies (5.6). [J

PrOOF OF THEOREM 5.15. In this case, the norm is
éle = SupiEjE(lgijl) + supjziE(lgijl)'
By Lemma 5.22 and the hypotheses, we have
E(|E,(+®) = F,()])
< 2k,lsuszIBij(z +ey) — Bij(z)lE(ITIS}) - 715?')

< ZpapZ E(|170 - 1)) + ZbZeE(I70 - 7))

(5.38)

< SupkzlE(l'T/S) - "'lg)l)zkaijk + suPIEkE(I"'/S;) - Tlg)l)zlbijl‘
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We now see that
(5.39) IF(r®P) = F(r@)llg < M7 — 7@ .
The remainder of the proof is similar to that of Theorem 5.8. []
COROLLARY 5.40. Let A, f(I1)(A4;;f(1)) = f(I + 1) — f(I). Under the hypotheses of

Theorem 5.8 (Theorem 5.15) all solutions of the random time change problem (A;, B;, i
=12,--- )((Aij,Bij, i,j = 1,2, ) have the same distribution.

PrOOF. Assume the hypotheses of Theorem 5.8. Theorem 5.8 implies existence.
To show uniqueness, suppose Z(¢) is a solution of the random time change
problem for (4;,8;,i =1,2,---) corresponding to an increasing family %, and

Poisson processes Y;, Y,,- - - . If F, does not satisfy §, = N, ¢J,.. replace &, by
g*=n49,, Note 5* = n,_F%. and G} satisfies (3.1). As in Lemma 5.22, let

F(1) = B(Y,(1), Yy(7), - - - ) and define 7¢")(¢) by (5.32) and (5.33). Note that the
distribution of {¥;(7{”(¢))} does not depend on what family of independent
Poisson processes is used to define 7(")(¢). The uniqueness in Theorem 5.8 implies

E(|13B(2Z(s))ds — 1(1)]) - 0

and hence E(|Z,(t) — Y,(74(¢))]) = 0. Consequently, all solutions of the random
time change problem must have the same distribution. []

Theorem 5.8, with ||-|| the / -norm, is essentially Liggett’s Theorem (4.2).
Liggett, however, considers speed changes for more general Markov processes than
Poisson processes. We will now show how a slight modification of our proof gives
existence and uniqueness under his conditions. Let U;(k) be independent discrete
time Markov chains and let V,(¢) be independent (of each other and of the U))
Poisson processes. Then Y;(z) = U;(V;(¢)) are independent Markov processes with
generators 4, f(x) = [(f(y) — f(x))P(x,dy) where the P(x,T’) are the transition
functions for the U,. (The U, may have arbitrary measurable state spaces E;). The
following theorem gives existence and uniqueness under the conditions of Liggett’s
Theorem (4.2).

THEOREM 5.41. Let U, V; and Y, be as above, and let G, satisfy 5, = N, 0T, 4.

and (3.1). Let B/(z) > 0 be continuous functions on E = II,E; (with the discrete
topology on E; and the corresponding product topology on E). Suppose

(542) Supisupz‘,zzeEIBi(zl) - B(2*)] <
and
(5.43) sup; 2 suszEsupyEEkIBi(Zl i Y gt t)
= Bz ZioyZi Zpegr )| < 0.
Then there exists an almost surely unique solution of
(5:44) Z,(t) = Y(JoBi(Z(s)) ds)

with () = (JiB(Z(s))ds) € T all t > 0.
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PrOOF. Observe that for 7P, 7@ € J
E(|F(r®) = F(r®)))

< E(EksuPIIBi(Ul(ll)' Ul + 1))
(5.45) = B(U(L)- - Uuh)- N Y1) = (@)
< 2 SuPzeES“PyeEJBi(Zl‘ ceyeet)

= Bz zr - E((rP) = Yil(@))-
The proof now proceeds as in Theorem 5.8. []

We now consider Liggett’s conditions for systems with speed change and
exclusion, and we will see that existence and uniqueness under the conditions of his
Theorem 3.7 follow from Theorem 5.15. We consider a countable collection of
particles moving among sites indexed by the integers. We assume that each site
contains finitely many particles.

If X,(¢) denotes the number of particles at site i at time ¢, then

(5.46) X,(1) = X,(0) + Z,Z;,(¢) — 2,Z;;(¢)

where Z,;(¢) denotes the number of particles that have jumped directly from site i
to site j up to time z. We will obtain the Z,; as time changed Poisson processes
using Theorem 5.15.

Following Liggett we define

(547) Bi;(m) = c(i,m)p(i.jsm).

Intuitively, c(i,n) dt is the probability that a particle at site i jumps in (7,7 + dt]
and p(i,j,n) is the probability that it jumps to site j. For this particle interpretation
1; = 0 should imply ¢(i,n) = 0, but we will not require this for our result (therefore
allowing a negative “number of particles” at a site).

Given 7, define n'* , o'~ and 7" as follows:

(5.48) =+l j=i
= J#F i

(5.49) nj.’ =mn; = 1 J = l,
=1 J#F i

(5.50) W= -1 k=i
=1 + 1 k=j
= N k # i,j

Note that 7/ = (¢~ )/* = (n/* ).

Liggett’s conditions are somewhat different from those stated below. In particu-
lar, his functions are only defined for  in which 0, = 0 or 1. Let n} = (4;,A1)vO0.
We leave it to the reader to show that if ¢* and p* satisfy Liggett’s conditions, then
c(i,n) = c*(i,m*) and p(i,j,m) = p*(i,j,n*) satisfy ours.
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THEOREM 5.51.  Let B;;(-) be as above and let Y, ; be independent Poisson processes.
Let 3, satisfy 9, = N, 0%,+. and the analog of (3.1). Let X(0) be fixed and define

(5.52) H(z) = X,(0) + Z;z;; — Z;z;;.
Suppose there exist c(i) and p(i,j) such that
(5.53) e(i,n) < c(i),p(ij,m) < p(is))s
(5.54) 2 sup,le(i,n’* ) — e(i, )| < e(i);
2 sup,le(i,n’™ ) — c(i,m)| < c(i);
(555 Sesup, | p(ijs ) — p(isj,m)l < p(isj);
Sesup, | p(io),m* ™) — p(ijsm)l < p(i.)).
If
(5.56) sup, 2 ;¢(i)p(i,j) < oo andsup;Z;c(i)p(i,j) < o,

then the random time change problem
(5.57) Z,(1) = Y,;(JoBy,(H(Z(s))) ds)
has a unique solution.

ReMARK. This result implies existence and uniqueness for the martingale prob-
lem corresponding to Z and existence for the martingale problem corresponding to
X follows easily. In order to prove uniqueness for the martingale problem corre-
sponding to X, we need an analog of Theorem 4.44. That is, given a solution of the
martingale problem corresponding to X, we must construct the processes Z;; and
show that they are a solution to the appropriate martingale problem. This construc-
tion is given in Theorem 5.71 below.

Proor. Considering condition (5.16), we have
SuPzI:Bij(z +ey) — ,BU(Z)I
= sup,|c(i,n*)p(i,j,n*") — c(i,n)p(i,j,m)|
(5:58) < sup, (i1 )p(ijn*™ ) = e(i,m)p(i,,m)
+ sup,|e(i, 0 )p(injsn™ ) = c(i,m)p(inj )
=a; + b
To obtain (5.19) consider
il < Eksupnlc(i,n"‘) = c(i,m)|p(i,))
(5.59) + Zee()p(iojom*™ ) — p(i.j,m)l
< 2¢(i)p(in))-
Condition (5.19) now follows by (5.56), and (5.20) is verified similarly.
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Since B;;(z) < c(i)p(i,j), (5.56) implies (5.17) as well, and Theorem 5.51 follows
from Theorem 5.15. []
Let B,;(n) satisfy

(5.60) sup, 2 ;sup, B;;(n) + sup,Z;sup,B;;(n) < oo.

Let D, be the collection of bounded functions f(1) that depend on only finitely
many 7; and define

(5.61) Anf(n) = Zijﬂij(n)(f(nij) —f("l))
Note that the sum is convergent by (5.60) and the fact that f depends on only
finitely many coordinates.

Let D, be the collection of functions of the form f(z) = II; ), f;(2;;) where I is
finite and define

(5-62) Azf(z) = EBij(H(Z))(f(z + eij) —f(z))

The domain of the closure of 4, defined on the linear span of D? will contain D,,
the collection of f(z) depending on only finitely many z,,;, with 4, on D, being
given by (5.62).

Under condition (5.60), any solution of the martingale problem (4,,D?) (or
equivalently (4,, D,)) with Z; (0) = 0, all i,j will satisfy

(5.63) ‘sup,.E(ZjZﬁ(t)) + sup,E(2,Z;,(1)) < 0.

Consequently X;(z) = H,(Z(t)) is well defined and the proof of the following
theorem is straightforward.

ijs

THEOREM 5.64. Let Z be a solution of the martingale problem (A,,D,). Then
X = H(Z) is a solution of the martingale problem (A4,, D,).

We now must show how to construct a solution of the martingale problem
(4,, D,) given a solution of the martingale problem (4,, D,). We leave the proof of
the following lemma to the reader.

LEMMA 5.65. Let X be a solution of the martingale problem (A, D,). Then for
fED,
(5.66)

F(X(6) = X(5)) — (2B (X(w)(S(XY(u) = X(5)) = f(X(u) — X(5))) du

is a martingale for t > s.
Let ¢, be a bounded function on Z such that ¢,(0) = ¢,(—1) = 0 and ¢,(1) = 1 and
let o_ (k) = ¢,(—k). Then

(5.67) E(lim,_, 5 @1 (X((k + 1)/n) — X,(k/n)))
= E(f4=,8:,(X(s))ds)
(5.68) E(lim,_ 5, ,.9_(X:((k + 1)/n) — X,(k/n)))

= E(J{=,B,(X(s))ds),
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and
E(limn-—mozk<ntq)—l(‘xli((k + 1)/”) - Xt(k/n))
(5.69) @i((X;((k + 1)/n) = X,(k/n)))
= E(foB,/(X(s))ds).

Since the limits in (5.67) and (5.68) are independent of the values of ¢,(k) and
¢_,(k) except for k = —1,0,1, we can conclude that, with probability one, the
Jjumps in X;(#) have magnitude one. Taking all three equations together, we see that
at the instant of each decrease of X;(#) (of necessity by one) there is a correspond-

ing increase of some X;(¢). Consequently, we have the natural interpretation that a
particle has moved from i to j, and we define

(5.70) Z (1) = lim, 3 . ¢_( X:((k + 1)/n)
— X;(k/n))ei(X;((k + 1)/n) — X;(k/n)).

THEOREM 5.71. Let X be a solution of the martingale problem (A, D,), and let Z
be defined by (5.70). Then Z is a solution of the martingale problem (A,, D,).

Proor. Let
(5.72) Gij(n) = o_i(n)ei(n;),
and define
(573) Z"(1) = G(X(r) — X([nt]/n)) + 24, G(X(k/n) — X((k — 1)/n)).
Then for f € D,,
AZOW) = Sy B XN S(G(X(s) = X([ns]/n))
+ Z(")([ns]/n)) —f(Z(")(s))] ds
~ Sk cn S mEB (XN A(G(XU(s) ~ X([ns]/n))
+Z™([ns]/n)) = f(2"(s)) ] ds

is a martingale and letting n go to infinity, we have Z"(¢) — Z(¢) and hence Z(¢)
is a solution of the martingale problem (A4,, D,). []

(5.74)

6. Knight’s theorem. We refer the reader to Meyer (1976) for the definitions of
local martingales, predictable processes, etc. used in this section.

Let X;,X,,- - -,X, be continuous local martingales with respect to the same
filtration &, with X;(0) = O for all i. Let (X, ;X;» be the unique predictable process
such that (X, X;), = 0 and
(6.1) X,X; = {X.X;)
is a local martingale, and define
(6.2) v,(t) = inf{s:{X;X;); > t}.

Note that (X, X,) is necessarily nondecreasing and continuous and for simplicity
we will assume lim; , (X, X,), = oo.

I—00
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Knight (1970) (see also Meyer (1971)) shows that {X;X;> = 0 (that is X; and X,
are orthogonal) for i # j implies X;(y,(z))i = 1,2, - - , N are independent Brownian
motions. This result is closely related to Theorem 3.11, Part (b), and in this section
we adapt the proof of Theorem 3.11 to prove Knight’s theorem as well as its
converse (corresponding to Part (a)). As a corollary, we show that (X, X;> = 0 for
i # j implies [I;¢,X; is a local martingale for all finite I C {1,2,---,N}.

THEOREM 6.3. (a) Let %, be an increasing family of o-algebras indexed by [0, o)™
and let Y;,j = 1,- - -, N be Brownian motions (of necessity independent) for which

(6.4) ®f(u) = M, exp{ibY,(u;) +302u;}

is a %, martingale for all finite 1. Let 7(t),t € [0, ) be ¥, stopping times such that
7(t) is a nondecreasing continuous function of t for almost every w. Then 11 ;¢ ,Y;(7,(1))
is a continuous local martingale with respect to G, =%, ,, for each finite subset
Ic{,2,---,N}.

(b) Let X;,i = 1,2,-- -, N, be continuous local martingales with respect to 8,, such
that X;(0) = 0 for all i,{X,X;) =0 for i # j, and lim,_, (X, X;), = oo for all i. Let
v,(t) be given by (6.2) and define

(6.5) () = <X, X,
(6.6) Yi(2) = X(v()),
(6.7) G, = o(Y,(s) s <wpi=1,2,---)v N8,

Then (6.4) is a 9,-martingale (which implies the Y, are independent Brownian
motions) and 1(t) is a G, stopping time.

REMARK. Note that if ®/(u) is a martingale indexed by u for each # then
Y,Y,: - - are independent processes with independent Gaussian increments and
hence are independent Brownian motions.

COROLLARY 6.8. If X,,i = 1,2,---,N, are pairwise orthogonal continuous local
martingales (i.e., X;X, is a local martingale for i+ j), then Il,c;X; is a local
martingale for all finite subsets I C {1,2,---,N}.

ReMARK. This corollary can also be obtained directly from It6’s formula
(Kunita and Watanabe (1967), Theorem (2.2)).

PROOF. (a) Since ®)(u) is a ¥ -martingale for all § € R’, if I c {1,2,---,N},
then

(6.9) HjeIYj(uj) = (Hjel’g%;)q)()l(u)lo-o

is an ¥, martingale.

Let y(r) = inf{¢: max;¢,7(¢) > r}. Then {Y(r) > t} = {max;c,;7(z) > r} €6,
= 9, and hence {y(r) < t} N {7(¢) < u} € F, for all r, ¢ and u. We claim that
T(tAY(r)) is a ¥, -stopping time for all 7 and r. Note that {r(¢AY(r)) < u} = {7(¢)
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< u} U {r(y(r)) < u} so it is enough to show {7(Y(r)) < u} € 4,. Since Y(r — ¢)
< Y(r) for e > 0 we have {r(y(r)) < u} = N, U{((r — &) <5} N {7(s) <u} €
%, where the intersection is over rational ¢ with 0 < & < r and the union is over
rational s > 0.

The optional sampling theorem Kurtz (1980) implies

(6.10) Hje,Y-(q-.(t/\\[/(r)))

is a F,ymartingale. Let 4 € &,,,. Since {¢(r) >t} € G, \yiry) C Friryr WE
have

An {Y(r)>t} n {r@Ag(r)) <u} = An {Y(r) >t} n {7(t) <u} €9,
Therefore A N {Y(r) > t} € G, pyry Fors > ¢,
LadLerY(r(sA¥(r)) P = Jun g er¥((sA¥(r))) aP
+ Lanwor<olljerY(1(¥(r))) dP
(6.11) = JunworsollerX(5(tAd(r))) dP
+ Lanwey<nerY(5((r))) dP
= LYy (( AY(r))) dP.

Consequently (6.10) is a §, martingale and hence II;c 1Y(7(2)) is a 6, local
martingale.
(b) Let u €[0,00)Y and 0 = t§ < t{ < - -+ < t}, = u;. Define

(6.12) o(s) = or, () < s < v(tih) k < m;
=4, yj(t,j”) < 5.
Then Itd’s formula, Kunita and Watanabe (1967), Theorem (2.2), implies
(6.13) e exp{ifop,(s)dX;(s) +3 /597 (s)dX; X, >} = T, M(t)

is a local martingale for all finite J C {1,2,- - -, N}. Therefore for v > u, Lemma
3.18 implies

(6.14) E(Hjelj‘lj(?’j(”j))lQA,Enxu,)) = e Mi( Ajervi(u)))-
From the definition of ¢;(s) and y;, we see that (6.14) implies
E(x4ILc exp{i6,(Y,(v)) — Y,(w))) +367(v; — u)))

(6.15) ® exp{Zk,ozq)jk(Y(tkH) - Y(tk)) + 395t — t,{)})

= E(xero{Zidiou(Y () = Y(th)) + 35t — )})
for all 4 € N,8, ., From (6.15) it follows that
(6:16)  E([ 8(w)/@y(0) Xl erfil 1,(t41) = ¥(t£)))

= E(xLe; (G (t41) = Yj(t,{)))
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forall4 € N; Qy () and all bounded measurable functions f,. (Note, for example,
that functions of the form f(y) = fe'”h(¢)dp,h continuous with compact sup-
port, are dense in L,.) From (6.16) and the definition of %, we conclude

(6.17) E(‘I’o(“)/q’o(vﬂ o) =

and hence @, is a ¥, martmgale
To see that 7(¢) is a 9, stopping time, note that

(6.18) {r(t) < u} = n{v(u;) >t} = {Av(w) >t} €G,. a0

Meyer (1971) proves an analog of Knight’s theorem for Poisson processes (see
also Aalen and Hoem (1978)). The corresponding analog of Theorem 6.3 is as
follows:

THEOREM 6.19. (a) Let 9, be an increasing family of o-algebras indexed by

[0, 0)¥, and let Y,,j=12,---,N, be Poisson processes (of necessity independent) for
which
(6.20) ®f(u) = T, exp{i6Y,(u,) — u (e — 1)}

is a 9,-martingale for all finite I. Let 1(¢),t € [0, 0), be ¥, stopping times such that
1'(1) is a nondecreasing continuous function of t for almost every w. T hen

;e [(Y(75(2)) — 7,(2)) is a right continuous local martingale, with respect to g = (,),
for each ftmte subset Ic{L2,---,N}.

(b) Let X;,i=1,2,--- be counting processes (right continuous processes that are
constant except for jumps of + 1) such that no two X; have jumps in common. Let A; be
continuous increasing processes, and suppose that the X; — A, are all local martingales
with respect to the same filtration §,. Suppose X,(0) = A;(0) = 0 and lim,_ A,(¢) =
oo for all i. Define

t—>0

(6:21) n(t) = A(2),

(6.22) w(t) = imf{s: A,(s) > 1},

(6.23) Yi(2) = X,(v:(2)),

(6.24) g, = a(Y}(s',-):S,- <u;,i=1,2, )V NS ()

Then (6.20) is a ¥,-martingale (which implies the Y, are independent Poisson
processes), and 7(t) is a 5, stopping time.

Proor. The proof of part (a) is the same as in Theorem 6.3. For part (b), the
change of variable formula (Meyer (1976), page 285) implies

(6.25) I, exp{ fgig;(s) dX,(s) — f§(e'® — 1)dA(s)}

is a § martingale for ¢; defined as in the proof of Theorem 6.3. Part (b) then
follows as in the proof of Theorem 6.3. []

We would like to thank P. A. Meyer for bringing his results and those of Knight
to our attention.
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