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ISOTROPIC GAUSSIAN PROCESSES ON THE HILBERT SPHERE!

By SiMEON M. BERMAN

New York University

The subject of this work is a study of four properties of an isotropic Gaussian
process on an infinite dimensional sphere in Hilbert space. The process is
deterministic in the sense that its values on an arbitrary nonempty open subset of
the sphere determine its values throughout the sphere. An harmonic property is
defined, and is characterized in terms of the covariance function of the process.
If fis a function of a real variable which is square-integrable with respect to the
Gaussian density, then the average of f over the values of the process on an n-
dimensional subsphere converges with probability 1 for n — «. Under further
conditions on the process the average of f has, with appropriate normalization, a
limiting Gaussian distribution for n — .

1. Introduction and summary. Let S be the unit sphere in an infinite-dimensional real
separable Hilbert space, and let X(t), t € S, be a Gaussian process with mean 0. X is said to
be isotropic if its covariance function EX(s)X(t), s, t € S, is invariant under orthogonal
transformations of S, or equivalently, is a function of the inner product (s, t). The starting
point of this study is Schoenberg’s theorem characterizing covariance functions on S (Schoen-
berg (1942)). Using this theorem we obtain a decomposition of X into a sum of independent
isotropic processes with covariances proportional to (s, t)™, m = 0. Using the decomposition
we prove that X is deterministic in that it is determined for all S by its values on an arbitrary
neighborhood of any point in S. The first result of such a type was obtained by Lévy for the
Brownian motion over Hilbert space (see Lévy (1966)). Similar results for stable Gaussian
processes over [, have been obtained by Bretagnolle, Dacunha-Castelle, and Krivine (1966),
Bretagnolle and Dacunha-Castelle (1969), and Berman (1969).

We introduce the concept of harmonicity. The process is said to be harmonic of order m if
the value of the process at any point t of the sphere may, for any set of m distinct concentric
subspheres with center at t, be expressed as a linear combination of certain averages of the
process over the latter subspheres. Then we study the relation between the order of harmonicity
and the form of the covariance function.

Let f(x) be a real valued measurable function. The last three sections of the paper are
about the limiting behavior of the average of f(X(t)) over finite-dimensional subspheres of S
of dimension n, for n — «. We prove an ergodic theorem, namely, that the average converges
with probability 1. This is much more general than results that have been known up to now,
which have been limited to the function f(x) = x. (See McKean (1963), Berman (1969), and
Jadrenko (1972).) Finally we show that the average of f(X(t)) has, under general conditions,
a limiting Gaussian distribution for # — co. As far as we can determine, there is no precedent
for the latter result.

The infinite dimensionality of the parameter space is used throughout the paper, and, as
far as this writer can determine, the results have no related analogues in the case of finite
dimensionality. As noted above, the entire investigation rests on the form of the covariance
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1094 SIMEON M. BERMAN

function obtained by Schoenberg. One of the striking facts implied by his results is that the
isotropic covariance over infinite dimensional space is of a very simple form, generally simpler
than that over a finite dimensional space. The reason for this is that isotropy over a larger
space implies more restrictions than isotropy over a smaller space. The results that we obtain
on determinism and its relation to the harmonic property follow from the special form of the
covariance and are true only in the infinite dimensional case.

The proofs of the ergodic theorem and the central limit theorem are based on the expansion
of the function fin Hermite polynomials. This approach was suggested to the author by Henry
P. McKean. It has also been used recently by Taqqu in a series of papers on a related class of
limit theorems for stationary Gaussian processes on a one-dimensional parameter set (1975),
(1977), (1979). Some of the calculations in our proofs are similar to special cases of those
considered by Taqqu (1977). His processes and ours share the property of long term depen-
dence.

2. Orthogonal decomposition of the process. Let S be the sphere of radius 1 in a separable
Hilbert space H. If s and t are two members of H, then their inner product is denoted (s, t).
An orthogonal sequence in S will be represented as {e,, n = 1}.

Let X(t), t € S, be a real Gaussian stochastic process such that EX(t) = 0 for all t. X is said
to be isotropic if for any orthogonal transformation U on S,

EX(Us)X(Ut) = EX(s)X(t)

for all s and t. In particular EX?(t) is constant in t so that we take it to be equal to 1. It follows
that EX(s)X(t) is a function of (s, t). According to the classical theorem of Schoenberg (1942)
this function has the representation

2.1 P((s, t)) = Xm=o cm(s, )"
where
22) m=0 and Ym-ocm=1.

Conversely, every series (2.1) which satisfies (2.2) is the covariance of an isotropic process on
S. In particular, (s, t)™ is such a covariance.

The representation (2.1) of the covariance implies an orthogonal decomposition of the
process itself. For each m = 0, let £,.(t) be a Gaussian process with mean 0 and covariance

23) E&n(s)ém(t) = (s, )™,
and take these processes to be mutually independent. If we define the process X as
@4) X(6) = =0 (n)"%n(t),

then it follows from (2.3) that the latter process is Gaussian with the covariance function (2.1),
so that it is equivalent in distribution to the original process X. We will use the version (2.4)
throughout the paper.

Note that for m = 0 the right-hand side of (2.3) is equal to 1, so that £, = £,(t) is almost
surely the same for all ¢

3. Averaging and filtering. An operation which we use several times in this work is that
of ergodic averaging. If {e,, n = 1} is an orthogonal sequence in S, then, by isotropy, the
Gaussian sequence {X(e,), n = 1} has the constant covariance sequence equal to P(0);
therefore, it is stationary, and so

. 1
X= llmn_,w ; 2,"‘=1 X(e,)

exists with probability 1. By the same reasoning it follows that if f is a fixed point of S such
that

(f, e,) = 0, n=1,
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then, for any real ¢, | ¢| < 1, the Gaussian sequence { X(:f + (1 = t*)/%e,), n = 1} has constant
covariance P(t%), and the average has a limit with probability 1:

3.1 X(@f) = lim, .. % S X(f + (1 — %) %),
Let us apply this averaging operation to the particular process £, with covariance (2.3). By
direct calculation we find, for real s and ¢,
EE (sD)En(tf) = limp e n72 Y701 (sF + (1 — s2)2%e,, tf + (1 — £2)/%e))™ = (st)™.
This implies
E[€n(tf) — "En(H)F = 0,

so that, with probability 1,

En(tf) = t"En(f).
Furthermore, by the definition of £.,., we have &,.(f) = &,.(f). It follows that
(32) En(tf) = t"En(f)

with probability 1 for each ¢ and f.
Let us now apply the ergodic averaging operation to both sides of equation (2.4):

X(tf) = ZmZO (CM)I/zg_rn(tf)'
Thus, from (3.2), we obtain
(33) X(18) = Y=o (cm)*1"m(f).

Comparing this with the representation (2.4), we see that the terms in the expansions of X(f)
and X(«f) differ only by powers of ¢. For ¢ = 0, (3.3) and the equivalent form (3.1) reduce to
(€0)"*0.

LemMa 3.1, If {e,} is an infinite orthogonal sequence, and (f, e,) = 0 for n = 1, then for m
such that ¢, > 0, the random variable §,.(f) is in the Hilbert space spanned by the random
variables

X(tf + (1 — 5 %ey,), n=1, t€I

for every nonempty open subinterval I contained in [—1, 1].

Proor. It follows from the definition (3.1) that X(¢f), ¢ € 1, is certainly in the indicated
Hilbert space of random variables. According to (3.3) (cm)"/*£m(f) is the general coefficient in
the power series expansion of X(f), | ¢| < 1, and so is uniquely determined by the values of
the series in an arbitrary nonempty open interval /.

The component process £, can be filtered from the process X by taking successive
derivatives of X(¢f) with respect to ¢. For example, it follows from (3.3) that

d\" -
(E‘) X(tf)lt-O

En(f) = W,

4. Determinism of X. Now we prove a result on the deterministic character of X.

THEOREM 4.1.  Suppose for some f, X(t) is given for all t in some open neighborhood of f in
S'; then X is determined throughout S.

Proor. It suffices to take f = ey (by isotropy), and to consider a neighborhood of e, of the
form {t:(t, e;) > d} for some d < 1. This neighborhood contains every point of the form se,
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+ (1 — 5%)"%e, for every n = 2 and every 5, d < s = 1. Under the hypothesis of the theorem,
the random variables X(se; + (1 — 5%)"/%e,,) are given for all d < s < 1, and all n = 2. Therefore,
by Lemma 3.1, £..(e:1) is determined for all m such that ¢, > 0.

Since every open neighborhood of e, contains some neighborhood of each of its points, the
argument above also implies that £,(t) is determined for all t in some open neighborhood of
e, for every m such that c,, > 0. Therefore, it suffices to prove the theorem for the particular
case of the process &, (t).

We will show that if §,(t) is determined for all t in a neighborhood of e, then it is
determined at an arbitrary point g in S. In proving this it suffices to consider only the case
where g is in the subspace spanned by e, and e;. Indeed, if £, is determined at some point g
by its values around e, then, by isotropy, it is also determined at every point which can be
obtained from g by a rotation of S which leaves e, invariant; therefore, since every point in §
can be obtained from the subspace spanned by e; and e; by such a rotation, it suffices to
consider only points g in the subspace.

Define the Gaussian process Z(¢) with the real parameter ¢ as

Z(t) = &m(eicos t + epsin 1), 0=t=2m

The process has mean 0 and covariance function EZ(s)Z(t) = cos™(¢ — s), which is analytic,
and so Z(¢) has analytic sample functions. Since £, is determined in a neighborhood of e;,
Z(t) is determined in some interval 0 < ¢ < h, for h > 0. Therefore, by analyticity, Z(¢) is
determined for all £, 0 < ¢ < 27, which implies that £, is determined on the intersection of S
with the subspace spanned by e; and e..

5. The harmonic property. In this section we introduce the concept of harmonicity of a
Gaussian process with an infinite dimensional time parameter, which is implicit in earlier
results of the author (1969). (There is also a reference to the early work of Lévy which,
unfortunately, contained a basic error.) There it was shown that a certain class of processes
had the property that the value of the process at a point of the parameter space was equal to
some average of the process over an infinite dimensional sphere centered at that point. We
now extend this concept to the Gaussian process on the sphere and to harmonicity of order m,
for m = 1, and then show how it is related to the form of the sequence {c,} which characterizes
the covariance (2.1).

DEFINITION 5.1. X is harmonic of order m if and only if for each set of real numbers u;,
-+, un such that —1 <u; < ... <u, <1, there exists a set of real numbers di, - - -, d,, such
that with probability 1

G.D X(e)) = YL di X(use),

where X is defined by (3.1).

If X is harmonic of order m, then, by isotropy, e, may be replaced in (5.1) by any point of
S; X(ujer) is then replaced by an ergodic average over the subsphere in the corresponding
orthogonal subspace.

THEOREM 5.1. If, in the representation (2.1), ¢, = 0 for all n = m, then X is harmonic of
order m.

Proor. Consider the Gaussian process Y(u) = X(ue,), |u| = 1. If ¢, = 0 for all n = m,
then, by the representation (3.3),

Y(u) = X' (c))" (e, lul =L
This is a polynomial in u of degree m — 1; therefore, its value at any point u is determined by
its values at any other m distinct points. In particular, for any set u;, - - -, u,, such that —1 <
u; < -++ <un <1, we can solve the system

Y(wi) = 375" (¢)) (e, l=i=m,
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for {£(e1)}, write the latter as linear combinations of {Y(u;)} and substitute in the
equation

Y(1) = X750 ()%, (en)
to obtain
Y(1) = X% 4 Y(w),
or, equivalently
X(e1) = ¥k diX(we0),
for some di, - - -, dy,. Noting that X(e;) = X(e:), we observe that the relation above is identical
with (5.1), and the proof is complete.

THEOREM 5.2. If X is harmonic of order m, then ¢, = 0 for all but m indices n = 0.

Proor. By the representation (3.3) and Definition 5.1, for every set of u’s in the latter
statement, there exist d’s such that ¥ »=0 (cx)"*[1 — X721 djuf]é.(e1) = 0 with probability 1.
Since the £’s are independent and each has positive variance, the latter equation implies

Ynzo e[l = Xk du}? =0
which implies
(52) SR duf —1=0
for all » in the set
N={n:c,>0}.

Let n1 < np < --- be the successive nonnegative integers belonging to the set N. We will
show that no member of N is larger than r,,, and this will complete the proof.

Let us assume the contrary, namely, that N has a member 7,,+1 > n,; we shall deduce a
contradiction. Consider the homogeneous system of m + 1 equations

(5.3) Yo du} =0, Nn=N1, e, Bpi1,
where 4o = 1; here the coefficient matrix is
(5.4) U= (u,"")iy=0,1,..m.

We assert: for arbitrary ny < .-+ < nm+1, there exists a set of m distinct real numbers u;,

«+, Um such that |u,| <1 and such that det U % 0 for uo = 1.
Note that det U = 0 if u; = u, for some pair i and j.
The proof is by induction on m. The result is true for m = 1: If

(1 up
o= (1 3%)

then det U = u7* — u1', which does not vanish for all u; because n; < n.. Suppose now that the
assertion is true for an integer m — 1, where m = 2. The determinant of the matrix U in (5.4),
which corresponds to the case of the integer m, may be expanded in minors of the last column.
The determinant is then of the form of a polynomial in u,, of degree n,,.; and where the
coefficients are determinants of matrices of the form (5.4) in the m — 1 variables u;, « + +, tpm—1.
If the determinant of m variables were identically equal to 0, then, as a polynomial in ., the
coefficients would have to be identically 0, and this cannot occur under the induction
hypothesis.

It follows from the assertion above that there exists a set of distinct #’s with u, = 1 such that
the homogeneous system (5.3) has only the trivial solution d; = 0. But this contradicts the
result above that for each set of u’s there is a set d, - - -, dn such that (5.2) holds; indeed, the
latter implies the existence of a nontrivial solution of (5.3) with dp = —1.
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CoROLLARY 5.1. If X is harmonic of order 1, then c, = 0 for all n = 1, and so X(t) has the
same value at every t € S.

Proor. By Theorem 5.2, at most one coefficient c, is different from 0, and so, by (2.4),
X(t) = £m(t). On the one hand, by Definition 5.1, £,.(e;) may be expressed as a multiple of

. I,
llmn—>oo ’n' 2/=2 gm(ej)-

On the other hand, if m = 1, then {.(e:) is independent of the ergodic average because
E¢n(e1)én(e)) = (e1, €)™ = 0if j > 1 and so ¢, > 0 only for m = 0.

It is interesting to think of the latter result as a stochastic analogue of the classical result
that the only bounded functions which are everywhere harmonic are constants.

Theorem 5.1 implies the following harmonic property of any isotropic Gaussian process X
on §: for any sequence of distinct subspheres S; of S, centered at e;,

' S,={t:tES,(t,e1)=a,-}, jZl,

where {a,} is a sequence of distinct real numbers in (—1, 1), there exists an array of real
numbers {b, ;; 1 =j=n, n= 1} such that

X(el) = lim,._.m 2,"‘=1 b,.,j)?(ajel)

with probability 1. Indeed X(e:) may be approximated by the first m terms of its expansion
(2.4). (The convergence with probability 1 follows from the independence of the terms.) The
finite sum formed from the first m terms of the expansion is, by Theorem 5.1, harmonic of
order m; therefore, it is representable as a linear combination of X(a,e;) for any m distinct a,.
If we now extend our definition of harmonicity of order m to m = oo, it follows that

COROLLARY 5.2.  If ¢, > O for infinitely many n, then X is harmonic of order m = o,

A special class of processes X over /, was shown by Berman (1969) to have a spherical
averaging property with respect to a single sphere. The current result applies to any isotropic
process on a sphere in [, but the averaging is over an infinite sequence of spheres.

We conclude this section with some comments on related work. Jadrenko introduced a
definition of Markovity for isotropic Gaussian processes on the Hilbert sphere (1972). He
defined the process to be Markovian if the values of the process at two points s and t of S are
conditionally independent given the values on some subsphere of S such that s and t lie on
opposite sides of the subsphere. He showed that such a property implies c,, = 0 for all but one
index m = 0, and derived certain properties of the process stated in terms of the index m. We
will show that the only possible case is m = 0, for which X is the trivial process £(¢) having the
same value at every point. For m = 1, (2.3) implies that (i) £.(e) and £,(f) are independent if
(e, f) = 0; (ii) ém(e) = En(—e) if mis even; (iii) £n(e) = —&n(—e) if m is odd. Since the Markov
property stated above implies that £.(e) and £.(—e) are conditionally independent given
{&n(f): (e, f) = 0}, the Markov property contradicts (i), (ii) and (iii) unless m = 0.

6. Spherical averages of nonlinear functions of X. The results up to this point can be
formulated not only for Gaussian processes, but also for general processes with mean 0 and
covariance function of the form (2.1). This can be done by replacing independence by
orthogonality, and almost sure convergence by mean square convergence. In the remainder of
this work we shall derive several limit theorems which depend strictly on the Gaussian
character of the process.

We use the customary symbol ¢ for the standard Gaussian density:

$(x) = @m) T
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¢(x, y; r) for standard bivariate Gaussian density with correlation coefficient r; and ¢(xi,
«++, Xm; (rij)) for the m-variate Gaussian density with 0 mean vector, unit standard deviations,
and covariances r;; for i # j.

We now record some results about the multivariate Gaussian distribution and the Hermite
polynomials. Let Hx(x) be the Hermite polynomial of degree k defined by

(6.1) 6 ®(x) = (=1)*Hu(x)$(x).
In particular, we have
6.2) Hox)=1  Hi(x)=x, Hyx)=x*—1.

The sequence { H.(x)} satisfies
6.3) f J' H,(x)H,( y)p(x, y; r) dx dy = n'r"8pm n,

where § is the Kronecker delta; this is an immediate consequence of (6.1) and the well-known
expansion (see Cramér (1946), page 290)

1
(6:4) 8% 3 1) = Tnzo 17 67 (X" Irl<L.

For our later use we need this result about H(x) and the 4-variate Gaussian density.

LeEMMA 6.1.  The multiple integral
f ce J Hl4=1 Hy(x.)p(x1, X2, X3, Xa: (ry)) dx1 dxs dxs dx,

is a linear combination of the terms

2 2 2 2 2 2
(6-5) F12r34T13r24, F12r34r 14123, ri3raariaras, ria2rss, risraa, riaras.

Proor. See Taqqu (1977), Lemma 3.2.

Let {e,:n = 1} be an infinite orthogonal sequence in S, and let S, be the intersection of S
with the subspace spanned by e;, - - -, e,. X is stochastically continuous on S, so that it has
a measurable version on S,. If f(x) is a real valued measurable function, then there also exists
a measurable version of the composite process f(X(t)) on S,. If

(6.6) j | f()l$(x) dx < oo,

then by Fubini’s theorem, f(X(t)) is integrable over S,, and so its average over S, is defined
as

(6.7 f SX(0) dt/A(S,),
S,

n

where the integral is taken with respect to Lebesgue measure on S,, and where A4(S,) is the
surface area of S,.

It is convenient for the purpose of calculating the moments of the spherical average above
to refer to the uniform distribution over S,; indeed, the average of any function over S, is the
expectation with respect to this distribution.

Lemma 6.2, Let T1, Ty, -« - be independent and uniformly distributed random points on S,
Jfor some n = 2. Then the random variables {(T., T;):1 < i < j < ®} have the common density
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function

r(% + 1)

(6.8) n-l — 7 A1 = xH)IR [x| <l
n (” +1
()

Proor. If T"is a fixed point of S,, then, by a standard calculation involving n-dimensional
polar coordinates, it can be shown that (71, T') has the density (6.8), which is evidently
independent of 7". If 71 and T; are independent, then the conditional density of (71, T») given
T is also equal to (6.8), and is identical to its unconditional density.

In the calculations below we will refer to expectations of two kinds. The first is taken with
respect to the probability measure on the space of the process X, and the expectation operator
is denoted by E. The second is taken with respect to the probability measure on the space of
a sequence of independent and uniformly distributed random points {7} in S,.; and the
expectation operator is denoted &,. If Q is a function defined on S, X ... X S, (k factors),
then the expected value of Q(T4, ---, Ty) is denoted 6,Q(T1, ---, Tz), for any k = 1. In
particular &,h(T:) represents the spherical average of a function A(t) over S,. If we drop the
subscript and let 7 be a random point with the same (uniform) distribution as 77, then the
average (6.7) is denoted by ;

6.9) Enf(X(T)).
{X(¢),t € S} and {T.)} are assumed to be independently distributed.

LemMa 6.3.  If f is continuous, and for some positive integer p, f(x) = O(| x|?) for | x| —
o, then, for every m = 1, »

E(8,f(X(T)}"
=J f S@1) =+ fGn) X Eu{ (@1, -+, Xm (P(Ts, T)} s =+ dm,

where Ty, + -, Ty, are as in Lemma 6.2.

Proor. By the independence of the 7”s we have, for fixed X(-),
{&ESX(TNY™ = 6 f(X(T0)) - - - f(X(Tn)).

Apply E and interchange the order of E and &, on the right-hand side; this is permitted under

the hypothesis on f.
Now we consider particular cases of Lemma 6.3 when f'is an Hermite polynomial.

LEMMA 6.4. The random variables &, H.(X(T)), k = 1, have expected values 0, variances
equal to

n

. p(_H 1

(6.10) k! = TTTIN 72 J P*x)(1 — x3)n=372 g, k=1,

n
F( ) _1

2

and are uncorrelated. (Note that H, = 1.)

PrOOF. Hi(x) = O(| x|*) for | x| = o so that Lemma 6.3 may be applied.
It follows from (6.1) that

E[&HW(X(T))] = r Hi(x)¢(x) dx = (=1)* fm ¢ (x) dx = 0;
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(6.3) implies that the random variables &, Hx(X(T)), k = 1, have covariances equal to 0.
To verify (6.10) we apply Lemma 6.3 for m = 2. The second moment is

J f Hi(x1)Hi(x2) Enl d(x1, x2; P(T1, T2))] dx: dxs,

which, by an interchange of order of integration and expectation and by (6.3), is equal to
k&, P*(Th, Tp)).

An application of Lemma 6.2 now completes the proof.

Finally we have this special result for k = 2 and m = 4:

LEMMA 6.5. E{&,Hy(X(T))}" is dominated by a constant, which is independent of n, times

P(f+1> ?
n—1 2 !

(6.11) 221 ——> w2 f Pl — x)"9" dx

n n+1 .
r(%3

Proor. By Lemmas 6.1 and 6.3, the fourth moment is a linear combination (with
coefficients independent of n) of terms

(6.12) &P(Ty, T2)P(Th, T3))P(Tz, T.))P(Tz, Ta))]
and
(6.13) &P (T1, To))P*(Ts, Ta)).

By the Cauchy-Schwarz inequality, the expression (6.12) is at most
{6LP*((T1, T2))P*((Ts, TO)IE[P*(Tr, To)P*(T, Ta )]}

which, by the symmetry of the joint distribution of the 77, is equal to (6.13). Since the T”s are
mutually independent the expression (6.13) is equal to

[6.P*(T:, T))

which, by Lemma 6.2, is equal to (6.11).

Several calculations in the proof of the ergodic theorem and central limit theorem depend
on the asymptotic estimate of the variance (6.10) and the term (6.11). The coefficient of the
integral in (6.10) is asymptotic to k!(n/2m)"*. The integral, by a change of variable, is equal
to

/2

2\ 2
n_l/zj Pk(x/n1/2)<l ———) dx,
_nl/2 n

n 1/2
(6.14) n? j P*(x/n'?exp(—%x?) dx.

—nl/2

which is asymptotic to

7. The ergodic theorem. According to the last remark in Section 2, the process &,(t) is a
fixed standard Gaussian random variable, and we write £, = £,(t). By (2.4) the process X may
be decomposed into a sum of two independent terms, (c,)"/*¢, + X'(t), where X'(t) = ¥ =
(¢m)*€m(t). In proving the ergodic theorem, it is convenient to consider first the case of a
process of the form X’ where the c,-term is absent, and then deduce the general case from this.

We begin with a special version of the ergodic theorem where fis the Hermite function of
degree 1 or 2.
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Lemma 7.1, If ¢, = 0, then, with probability 1,
li-tnn—mo gnHk(X(T)) = 0, k = 1, 2

Proor. Case k = 1. Here &,H\(X(T)) = &,X(T), which, as the integral of a Gaussian
process, has a Gaussian distribution. By Lemma 6.4, the mean is equal to 0. The estimate of
(6.10) based on (6.14) implies that the variance of &, X(T) is asymptotic to

nl/2
(7.1) f P(y/n"*)$(y) dy.
_ni/2
By virtue of (2.2) and the assumption ¢, = 0 it follows that
(7.2) | P(x)| = | x| for |x|=1,

so that (7.1) is at most equal to
n= J |y 6(y) dy.

Since &, X(T) has a Gaussian distribution its central moment of order 2m is proportional
to the mth power of its variance; therefore, for m = 3 we have

E[&X(T)I = 0(n™"),

which implies that the series ¥, [ &, X(T)]° converge with probability 1. This completes the
proof of the lemma for k = 1.

Case k = 2. According to Lemma 6.5, E[ &, Ho(X(T))]* is of the order of (6.11), which, by
(7.2) and the estimate (6.14) is O(n~?). Therefore, the series Y [ 62 Ha(X(T))]* converges with
probability 1, which completes the proof.

THEOREM 7.1. (Ergodic theorem). If f satisfies
(7.3) f L(x)$(x) dx < o,
then, with probability 1,

(1.4) lim,_.o & f(X(T)) = f SU(€) 0 + x(Tm=1 cm) ) (x) dx.

Proor. We observe that (7.3) implies (6.6), so that &, f(X(T)) is well defined. Let us show
that if the result is true for the case ¢, = 0 then it is true also for ¢, > 0. According to the
opening remarks of this section we have the decomposition X(t) = (c,)"/%¢, + X'(t). Condition
X by fixing &,, and apply the result for the case ¢, = 0 to the function f'(x) = f((c,)"?¢, +
x(Xm=1cm)"?) and to the process

Y(1) = X'(0)/(Zm=1 em)"™.

Then &, f'(Y(T)) — [Z. f'(x)$(x) dx with conditional probability 1; hence, by bounded
convergence, this also holds unconditionally.

Now we consider the case ¢y = 0. First we collect some preliminary facts about Hermite
polynomial expansions. For any function f satisfying (7.3), let fi be the Fourier coefficient
with respect to the kth normalized Hermite polynomial:

(1.5) fre = (k)72 f SX)Hr(x)p(x) dx.
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Then f(x) has the expansion in La(¢),
(7.6) Jx) = Tzo fr Hr(x)/ (k)2
It follows from (6.1) and (6.4) that
an j f FEU Do, 3 r) dx dy = Tzo fir.
We formally replace x by X(T') in (7.6) and apply the averaging operator &:
(1.8) Ef(X(T)) = Tkzo fobn He(X(T))/ (k)2

This equation holds in the sense that for each n the series on the right-hand side converges in
mean square to the random variable on the left:

1.9) im0 E[&f(X(T)) — Yho frbn Hi(X(T))/(K!)'/*]* = 0.
To prove this we apply Lemma 6.3 for m = 2 and with
S(x) = Zi—o feHr(x)/ (k)"
in place of f(x); then the expectation in (7.9) is, by application of (7.7), equal to
Lheme1 f26:PH(T1, T2), ‘

which tends to 0 for m — o because
Ticofi= f P00 dx <
Using the explicit forms (6.2), we write (7.8) as
(7.10) & f(X(T))
= f” Sx)b(x) dx + f16, X(T) + % fo b Ho(X(T)) + Yi=s fobu Ho(X(T))/ (KN,
Lemma 7.1 implies that the second and third terms on the right-hand side of (7.10) converge

to 0 with probability 1 for n — c. By Lemma 6.4, the last term in (7.10) has expectation 0 and
variance equal to

n
I‘<5+1)
n—1

n n+1
()

which, by the inequality (7.2), is dominated by

F(f + 1)
n—1 2 '
22— g2 f x3(1 = xB) "2 4. Vs f3.
n r(” +1 o
2
By the estimates leading to (6.14), we infer that the expression displayed above is of the order
n~*? for n — co. By applying the argument used in the proof of Lemma 7.1 we conclude that

the last term in (7.10) converges to 0 with probability 1. This completes the proof of (7.4) for
the case ¢, = 0.

1

7 Vs fr J PH(x)(1 — x%)"=372 gy,

-1

(7.11)

8. Central limit theorems. The Hermite expansion (7.8) can also be used to prove versions



1104 SIMEON M. BERMAN

of the central limit theorem for the average &,f. Using the explicit forms (6.2), we write
@D &AXT) = j J)$(x) dx + frén X(T) + T=s fubn Ho(X(T))/ (K1)

According to the proof of Lemma 7.1, 6, X(T) has a Gaussian distribution with mean 0 and
variance asymptotic to (7.1). If the last term in (8.1) has a variance of smaller order than (7.1)
for n — oo, then the difference

Ef(X(T)) = f S(0)¢(x) dx,

divided by the square root of (7.1), has a limiting standard Gaussian distribution.

If, in (2.1), ¢y > 0; then, by Theorem 7.1, &, f(X(T)) has a limit which is a random variable
whose distribution is not necessarily Gaussian. Therefore we will consider only the case ¢, =
0, and define

8.2) b = min(k: ¢, > 0).

Various types of conditions on b or f are sufficient to ensure the validity of the estimates
following (8.1). We present two theorems to illustrate two sets of hypotheses. It will be clear
from the proofs that other variations of these hypotheses may be used.

THEOREM 8.1.  Assume in (8.2) that b = 2. If b is even, then
(8.3) n” (& f(X(T)) - fm S()¢(x) dx)
has a limiting Gaussian distribution with mean 0 and variance
84 eft J°° x°p(x) dx.

If b is odd, then b is to be replaced by b + 1 in the statement above.

PRrOOF.  Case with even b. By application of (8.1) the random variable (8.3) may be
expressed as the sum of two random variables,

(8.5) n®f, & X(T)
and
(8.6) n®* hzs fr b Hu(X(T))/ (KN,

By the remark following (8.1), the random variable (8.5) has a Gaussian distribution with
mean 0 and variance asymptotic to

8.7) fin®? J P(y/n'"*)(y) dy.

—nl/2

This converges to the expression (8.4) for n — . Indeed, by (2.1) and (8.2), we have P(x) ~
cox” for x — 0; and, by (2.2), | P(x)| = | x|® for |x| =< I.

To complete the proof for even b we will show that the second moment of (8.6) converges
to 0. By the argument leading to (7.11), we find that the second moment is equal to n*? times
the expression (7.11) with summation over k = 2 in place of k = 3. The latter product, by
virtue of the inequality | P(x)| < |x |°, is of the order n %2, which tends to 0 for # — o,

Case with odd b. We replace b by b + 1 in (8.5), (8.6) and (8.7). P has the expansion

P(x) = cox’ + corrx®™ + O(] x|**).

Since b is odd, the leading term of P(y/n'/?) in (8.7) vanishes upon integration, so that the
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asymptotic variance of (8.5),

nl/z
frntorr J P(y/n'"*)¢(y) dy

—nl/2

converges to (8.4) with b + 1 in place of b.

To complete the proof we verify that when b is replaced by b + 1 in (8.6), the random
variable has a second moment of order #n"~®? which tends to 0. This follows from the relation
P(x) ~ cox® and the fact that the series

1

Zkzzfij PHx)(1 — x2)"9/2 gx

~1

appearing in the expression in the second moment is dominated by

f P2(x)(1 — x®)"32 gx. ¥ 4as fi.

-1

Now we state and prove a version of the central limit theorem which covers the case b =
1, but where a restriction is placed on f.

THEOREM 8.2. Iff; = 0, then the conclusion of Theorem 8.1 is valid for all b = 1.

ProOOF. Since the case b = 2 has already been covered, it suffices to take b = 1 and show
that

(8.8) n'*(Ef(X(T)) — j SO (x) dx)

has a limiting Gaussian distribution with mean 0 and variance (8.4) with b = 2. By the current
hypothesis f> = 0, the last term in (8.1) is to be summed over k = 3, and is identical with the
last term of (7.10). Our estimate of the variance of the latter, given by (7.11), is O(n™*?). It
follows from (8.1) that the limiting distribution of (8.8) is identical with that of n'/*f, &, X(T).
The latter distribution is found exactly as in the proof of Theorem 8.1 for odd 5.

We remark that the hypothesis o = 0 means that f is orthogonal to the subspace of La(¢)
spanned by the single element Ha(x) = x* — 1. Every odd function and every constant
function in L,(¢) satisfy this condition.

We note that the variance (8.4) of the limiting distribution is proportional to cf}. Thus the
variance is equal to 0 if i = 0 or if b is odd and cs+: = 0. It would be of interest to investigate
other normalizations of &,f(X(T)) which, in such cases, would lead to nondegenerate limiting
distributions. I do not know if such distributions are necessarily Gaussian. If f;, = 0 for k = 0,
1, -+, m, then the dominant term in the limiting distribution of &, f(X(T)) is, by (8.1), that
of & Hx(X(T)). A nondegenerate limiting distribution for the latter has not been found by the
method we have used above.

Taqqu (1979) recently found a class of nonnormal limiting distributions in the case of sums
of nonlinear functions of a stationary Gaussian process with a real time parameter. His
derivation is also based on the Hermite expansion.

Acknowledgment. I am grateful to the referce for uncovering several gaps in the first
version of this paper.
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