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MULTIDIMENSIONAL IFRA PROCESSES!

By HENRY W. BLock AND THoMAS H. SAviTs

University of Pittsburgh

Two types of multidimensional processes are defined. The first of these
generalizes a univariate IFRA process due to Ross and relates to a multivariate
concept of IFRA due to Esary and Marshall. The second of these relates to a
multivariate concept of IFRA due to the present authors.

0. Introduction. Ross [4] has defined a univariate nonincreasing process to be IFRA
(increasing failure rate average) if certain lifetimes associated with the process are IFRA.
See Barlow and Proschan [1] for a discussion of IFRA lifetimes. Extensions of IFRA to
multivariate lifetimes have been proposed by Block and Savits [2] and Esary and Marshall
[3]. In this paper the univariate concept of Ross is extended to multidimensional processes
and related to IFRA multivariate lifetimes.

In Section 1 a characterization of univariate IFRA processes is given. The Ross concept
of IFRA processes is extended to vector processes and an alternate form is derived. A
closure theorem and various properties are established for these processes. It is shown in
Theorem 2.4 of Section 2 that lifetimes associated with these processes satisfy the condition
that any monotone system formed with these lifetimes is IFRA in the univariate sense.
Furthermore this property characterizes such processes. This property, called Condition B
in Esary and Marshall [3], was one of the definitions of multivariate IFRA discussed by
those authors. Another type of multidimensional IFRA process is defined. For this process,
the associated lifetimes satsify the MIFRA property of Block and Savits [2].

1. IFRA processes and the IFRA closure theorem. Let X(¢) be a nonnegative,
nonincreasing right-continuous random process. According to Ross [4], the process X (¢) is
called an IFRA process if and only if the random variable

1.1) T.=inf(¢t=0:X(¢) < a)

is IFRA for every a = 0. Equivalently, we have the alternate characterization below.

(1.2) THEOREM. X(t) is an IFRA process if and only if
(1.3) E[h(X(t))] = EV*[A*(X(at))]

for all nonnegative nondecreasing functions h and all0 < a <1, ¢t =0.

Proor. First assume that X(¢) is an IFRA process and consider 4 of the form A(x) =
I(a,»)(x), a = 0. Since, by right-continuity, X(¢) > a if and only if T, > ¢, we have

E[h(X(t))] = P(X(t) > a) = P(T.>¢)
< PY*(To> at) = PV*(X(at) > a) = E*[h*(X(at))]

forall0 < a =1, ¢=0. Now consider 4 of the form A(x) = I}« (x), @ > 0 (the case a = 0
is clear). Since I(a—1/n,«)(x) | A(x), the inequality (1.3) is also valid for such 4. The general
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result now follows by taking nonnegative linear combinations of such functions and passing
to the limit as in Block and Savits [2].

Conversely, if (1.3) is true, then (1.1) follows by taking A(x) = I(4,«)(x).

Ross [4] proved the IFRA closure theorem under the assumption of independent
components. We obtain the same results without the assumption of independence. First,
however, we need some definitions.

(1.4) DEFINITION. An upper set U C R" is a subset having the property that if x € U
and y = x, then y € U. If in addition U is an open subset, we call U an upper domain.

Now let X(¢) = (Xi(¢), ---, X,.(¢)) be a vector-valued stochastic process. We assume
that X(¢) is nonnegative, nonincreasing and right-continuous.

(1.5) DEFINITION. X(t) is said to be a (vector-valued) IFRA process if and only if for
every upper domain U, the random variable

Ty = inf{t = 0:X(¢t) & U)
is IFRA.

Clearly this includes the IFRA class considered by Ross [4] in the case n = 1. Again, as
in (1.2), we have the alternate characterization given below.

(1.6) THEOREM. X(t) is a (vector-valued) IFRA process if and only if
(1.7) E[h(X(t))] = EV[h*(X(at))]

for all Borel measurable nonnegative nondecreasing functions hand all0 <a=<1,t=
0.

ProoF. The proof is very similar to (1.2): first show that (1.7) is true if A(x) = Iy(x)
for U an upper domain and then use the argument in Block and Savits [2] for general A.

(1.8) REMARK. If (1.7) is valid for the subclass of continuous nonnegative nondecreasing
functions 4, then it is necessarily valid for all Borel measurable nonnegative nondecreasing
functions 4 (cf., Block and Savits [2]).

The next theorem describes some properties of the class of IFRA processes. We
henceforth dispense with the adjective vector-valued.

(1.9) THEOREM.

(i) If X(t) is an IFRA process and Y1, ---, Yr are left-continuous nonnegative
nondecreasing functions, then (Y1(X(t)), - - -, ¥x(X(2))) is an IFRA process.

1) If (Xi(¢), ---, X.(t)) and (Yi(¢), ---, Yn(t)) are IFRA processes which are
independent at each time t, then (Xi(t), - -+, X, (¢), Yi(¢t), - - -, Y,u(t)) is an IFRA process.

(i) If X,.(t),n =1, 2, ..., are IFRA processes and X, (t) — X(t) weakly for each t,
then X (t) is an IFRA process provided it is also nonnegative, nondecreasing and right-
continuous.

Proor. The proofs are clear and are left to the reader.

We say ® is a multistate monotone structure function of n-components if ®(x) = ®(x;,
.+, X,) is nonnegative and nondecreasing in each argument.

(1.10) COROLLARY.
(i) (IFRA closure theorem). If ® is a left-continuous multistate monotone structure
function and X(t) is an IFRA process, then ®(X(t)) is an IFRA process.
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(ii)) (Convolution theorem). If (Xi(¢), ---, X,.(¢)) and (Yi(t), -+, Y.(¢)) are IFRA
Dprocesses which are independent at each time ¢, then (X,(t) + Yi(¢t), - -+, X (t) + Y.(2))
is an IFRA process.

(i) If (Xi(2), ---, Xn(2)) is an IFRA process and J C {1, ---, n}, then (X;(t):j € J)
is an IFRA process.

2. IFRA processes and multivariate IFRA concepts. Let T be a nonnegative
random variable and X(¢) its indicator process, i.e., X(¢) = I;»)(T). Then clearly X(¢) is
an IFRA process if and only if T is an IFRA random variable since

To=inf{t=0:X(t)=a) =0 if a=1
=T if 0=a<l1
=+ if a<O.

Now let (T4, - --, T,) be a nonnegative random vector. If we assume that (T}, ---, T%)
is MIFRA in the sense of Block and Savits [2], then there are many ways of constructing
IFRA processes. For example, suppose that ¢(¢; x1, -+, x,), &, X1, +++, Xo = 0, is
nonnegative, Borel measurable and nondecreasing in x for fixed ¢, right-continuous and
nonincreasing in ¢ for fixed x, and satisfies

¢(t; xl/aa "')xn/a)s¢(at; X1, "'7xn)

foral0<a=1,t=0,x€ R}. Then X(¢) = ¢(¢; T, - - -, T,) is an IFRA process. Indeed,
let & be any Borel measurable nonnegative nondecreasing function. Then

E[r(X )] =E[h(¢(t; Ty, - -+, To))] < EV°[A° (6 (t; Ti/a, - - -, T/a))]
= EY[h*(¢(at; T}, - -+, Tn))] = EV*[h*(X(at))].
In particular, if x;., < x2.» < - - - < X.,, is a reordering of x;, - - -, x,, then
ot x1, -+, %) =n if 0<t<xin
=n-—k if xpn=t<xptin, k=1 :-,n—1
=0 if t=x.0

has the desired properties.

(2.1) ExampPLE. Let (S, T') be MIFRA and set
X() =2 if 0=<¢t<min(S,T)
=1 if min(S, T) < ¢ < max(S, T
=0 if ¢t=max(S, T).
Then X(t) is an IFRA process.

(2.2) ExaMPLE. Let (S, T) have the distribution with joint density
f(s, t) =30 if <s<Whd<t<l
=1 if <s<®h U<t<
=2 if 0<s<W,%<t<¥%,
Then S and T are IFRA and S < T with probability one. Consequently,
X(t)y=2 if 0st<S
=1 if S<st<T
=0 if T<t¢
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is an IFRA process. But (S, T') is not MIFRA since P(S > ¢t, T > 4t) has support that is
not an interval and we know that if (S, T') was MIFRA, then min(S, T/4) would be IFRA.

Recall that from Esary and Marshall [3], a nonnegative random vector (T4, ---, T»)
satisfies condition B if and only if 7(Ti, ..., T,) is IFRA for every life function 7
corresponding to a monotone binary structure function ¢. This condition can be charac-
terized in terms of IFRA processes as follows.

(2.3) THEOREM. LetT = (T, ---, T,) be a nonnegative random vector. Then T satisfies
condition B if and only if the indicator process X(t) = (Xi(¢), - -+, Xa(2)), where X;(t) =
Li¢,«)(T;), is an IFRA process.

PRrOOF. Suppose that the indicator process X(¢) is an IFRA process. If ¢ is a binary
monotone structure function with corresponding life function 7, then

P(r>1t) = E[¢(Xi(¢), -- -, Xn(2))]
= EY[¢*(X(at))] = PV (1 > at)

and so 7 is IFRA.
Now suppose that T = (T, ---, T,) satisfies condition B and let U be any upper
domain in R". If x = (xy, - -+, x,) is any binary vector of ones and zeros, set

ou(x) =1 if xeU
=0 if otherwise.

Then ¢y is a binary monotone structure function. Furthermore, if 7y is its corresponding
life function and Ty = inf{¢: X(¢) € U}, then Ty = 7y. But by assumption, 7y is IFRA and
so Ty is also IFRA. Consequently, X(¢) is an IFRA process.

Theorem (2.3) extends to the general case as follows. Let X (¢) be an IFRA process and
let U be an upper domain in R,. Then, according to Block and Savits [2], there exist
fundamental upper domains U, such that UjZ; U;= U and Ty, 1 Tu. Since the IFRA class
is closed under weak limits, it suffices to show that Ty is IFRA for every fundamental
upper domain U. But by definition, U is a fundamental upper domain if and only if U =
u’l_, Ui, where U, = {x € R":x; > 2;;} and x;; are real numbersfor l =i=<n,1=<1=<p.
Clearly Tv = maxi<i<p Tu,, and if we set T;, = inf{t = 0: Xi(¢) < zu}, then

Ty = maxXi<i<p min; << Tiz,,-
Consequently we may state the following result.

(2.4) THEOREM. X(t) is an IFRA process if and only if every finite collection of {T..:
1=1i=<n, z € R} satisfies condition B of Esary and Marshall.

(2.5) COROLLARY. In the finite state case, i.e., X;(t) € {0,1, ---, M} forallt=0,i=1,
-++, n, X(¢) is an IFRA process if and only if {T;j:1 <i=<n,0=<j< M} satisfies the
condition B, where

T, =inf{t = 0:Xi(¢t) =Jj).

Clearly, in the finite state case, if the finite collection {T;;:1<i=n,0=j< M} are
MIFRA, then they satisfy condition B. This leads to the following definition.

(2.6) DEFINITION. Let X(#) be a nonnegative nondecreasing right-continuous process.
Then we say that X(¢) is an MIFRA process if and only if for every finite collection U,
+++, Un of upper domains in R", the random vector (T, ---, Ty, ) is MIFRA.

As Example (2.2) shows, there exist IFRA processes which are not MIFRA. The
analogous result to Theorem (2.4) is stated below.
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(2.7) THEOREM. X(¢) is a MIFRA process if and only if every finite collection of {T,.:
l1=i=<n,z€ R} is MIFRA.

(2.8) REMARK. Note that for IFRA processes, the upper domains are defined with respect
to the state space, whereas for MIFRA vectors, the upper domains are defined with respect
to the time space.
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