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LIMITING BEHAVIOR OF A PROCESS OF RUNS!

By B. G. PITTEL

Ohio State University

Let X, X3, --. be independent identically distributed (i.i.d.) random
variables with a continuous distribution function. Let Ry = 0, R, =
min{j: j > R_; and X, > Xj.,} and T» = Rx — Rx—1, k = 1. We prove that a
process T" = {T4+.}i-1 converges, in the sense of distribution functions,
exponentially fast to a strongly mixing ergodic process. It is shown that
(maxi<e=n T%)/log n(loglog n) ™' — 1 almost surely and in L,, p > 0. Also, the
number of runs T}, 1 < k < n, larger than or equal to some m is proven to be
Poisson distributed in the limit, if n/m! converges to a positive number.

1. Introduction. Let {X,}%-o be a sequence of i.i.d. random variables with a contin-
uous common distribution F. Consider events A, = {X, > X;.+1} and their set indicators
Ur=Xa,k=0,1,2, .... Asequence {U,}i-o is a stationary process, whose distribution
does not depend on F. Moreover, this process is ergodic, as its every tail event is a tail
event of Xo, X1, - - -, and hence, by Kolmogorov’s zero-one law, has probability zero or one.

Let Ry =min{n: U, =1,n >0}, Ry =min{n: U,=1,n> Ry_1}, k=2 and let T, =
R,, Tx = R, — Ri—1, k = 2. Following an accepted terminology, R,’s are called the
occurrence times, and T}’s are called the recurrence times, of the events A,. Contrary to
intuition, {T%}7-: is not a stationary process. We shall prove, however, that all distribution
functions of {Tk+.}%-1 converge, as n — +, exponentially fast to those of a stationary
ergodic process { T%}%-1. Its distribution is the distribution of the original process { T%} =1
conditioned on the event {U, = 1}.

In literature, the process {T%}§-: is known as the runs up process, and was probably
first studied by MacMahon (1908), (1915), who obtained a well-known determinantal
formula for its distribution functions. Many relevant results and references can be found
in Wolfowitz (1944), David and Barton (1962), Barton and Mallows (1965), Knuth (1973).

In Pittel (1980), it was proved that a process W™ (¢) = (Rp.; —2[nt])//(2/3)n, t € [0,
1], converges, in the sense of distribution functions, to the standard Brownian motion. In
the present paper, we study the limiting behavior of the recurrence times 7T}, T%. We show
that, for large n, the most probable values m of M,, = max;<x<, T% are such that m! and n
are of the same order. More precisely, lim,_,. M,/log n(log log n) ' = 1 almost surely and
in L,, p > 0. Also, let lim,_,. (2n)(m!)™' = A and let V, be the number of the recurrence
times T, j < k, larger than or equal to m. We prove that a process V™ (t) =
Vinel, t € [0, 1], is asymptotically Poisson distributed with parameter A. This last statement
is similar, in essence, to results of Wolfowitz (1944) and David and Barton (1962) concerning
runs generated by a finite sequence X;, ---, X,.

2. Preliminaries. Let /;, ---, [, be positive integers, # = 2, and L, = Y, L, 1 <
s=<k.Denote I = (1, .-+, ), QU*) =P(T;=,1<j<k—1, Tp = ). Since X1, Xz,
-+ are i.i.d. with a continuous distribution function, we have

QU™ =P(T, = bil1=j=k—=2The1 = 1) -P(Xp, ji1= --- =X, ,44)
—P(Ti=b,1=j=k—=2;Th1= b1+ I),
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120 B. G. PITTEL

or
QU™ = QU™ M)/l — QUE™),
(2.1) %D = (L, ooo, )
0 = (b, ooy bmgy Bmr + B

Together with an initial condition @(IV’) = P(T, = l,) = 1/1,!, this relation leads to an
explicit formula for @(I**’), due to MacMahon (1908). Namely, if 2, is the set of all
partitions p = (I, - - -, I,) of the set (1, - - -, k) into consecutive “intervals” I, = (1, - - - , ),
L=t+1 -, ti+t), -, L=+ -+t +1, e, ti+ o0 + 61+ t), (b +
«eo + t, = k), then

(2.2) QUY) =3 pe s, [rep, D/ UD),
where
W) = Yier .

LEMMA 1. Let %.(T) be the o-field generated by T, - -+, Tv, Zo(T) = (2, D). Then,
for all positive 1, k,
(2.3) 1/ =P(Tr= 1| #a(T)) = 1/(I - D

Proor. The statement is obvious for 2 = 1. Let k=2 and let /3, - - -, ;- be positive
integers. Then

P(Ti=L1=j=k-1,Ti=zl)<P(Ti=l,1=sj=<k-1,
X, 42=<---=X,, )=P(Ti=l,1=j=<k-1)/(I-1),

which proves the right-hand side estimate in (2.3).
Further, by (2.1), we have

P(Ti=l,1=j=sk-1,Tr=1)
=P(Ti=l1<j<k—2;Th-1= b1/

(2.4) —PTi=Ll=jsk—=2Tp 1=l + 1)

=P(Ti=ll<=j<sk-1)/l+P(Ti=b1<j<k-2;Th 1= b1+ 1)/1!
—P(T=b,1<j<k—2;Th-1= b1+ ).

But, again by (2.1),

PTi=l,1=j<k—-2Th1= b1+ 1)/U!
—P(Ti=b,1<=j=k—-2,Tr1=lL1+1)
=P(T)=L,1<=j<k—=2;Th1= U1+ 1)/1!

(2.5) —P(Tj=l,1<j<k—2%Th1=lh+1+1)
+P(Ti=l,1<j<k—2%Thr=bh+1+1)
—P(Ti=l,1<j<k—2,Th1 =l +1)

= P(A1) — P(Ay),
where
A={Ti=li,1<j<k—2,The1=lLa+ 1, Tr=1},
A={Ti=l,1=j=<k—2;Th1= b1+ I}.
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Assuming, without loss of generality, that X;, X, ... are uniformly distributed on
[0, 1], we get after some simple integrations, (L, = 0), that

PA| #(Xy,y -+, X, y+1) = fi(X1,_,+1) Xa, =12,

where

(1 — x)h% - x)le-1¥t
Ll G+ DI’

a- x)l‘*"”_l a- x)lHﬂ

G+ 1=1)" (e + !

filx)=Px=X1=..- =X,  >X; nn=..-=X, )=

Lx)=Px=Xi<--- =X, w-1>X;_+) =

Furthermore,

1 a- x)t
L-1'1' (L +1—1)!

filx) — fa(x) = (1 — x)”"[

=(1- x)’*'[(lk_ll+ l) = (loor + l)]/(l,,_1 +0!=0, Vxe[o,1].

Hence,
P(A,) — P(A2) = E[(i(XL, ,+1) — fo(XL, ,+1))Xa]l= 0.
So, by (2.4), (2.5),
P(Ti=li,1<j<sk—-1Tv=l)=zP(Ti=l,1=j=<k-1)/01,
which proves the left-hand side estimate in (2.3).

REMARK. Neither of the estimates in (2.3) can be improved, since P(T, = [) = 1/1!
and

P(T.=!l|T\= ... =Tk_1=1)=(ﬁ)/(l—l)!—»l/(l—l)!,

as k — o. The last fact is really disappointing, because on the other hand P(T) =
l| #r-1(T)) = 2/1!, whenever Ty, = 2.

COROLLARY 1. Given two finite disjoint subsets A, B of the set of natural numbers,
we have
(2.6) Maca 1/l X [Jeee (1 — 1/(le — 1)) = P(Te=lo,a €EA; Ty < Iy, bE B)
= HaEA ]-/(la - 1)! X HbEB (]- - ]-/lb!))
wherel;=1,2, --.,1€ A U B. (Thus, the behavior of T, Ts, - - - is somewhat close to the
one of i.i.d. random variables t,, tz, - - -, having P(t; = 1) = 1/1! = P(T, = 1)).

3. Convergence of the procéss T = {Th,,}5-1. Since the stationary process
{Ur}%-0 is ergodic, then the process {7T%}%-1 considered on the sample space Qo = {w €
Q; U, = 1} is stationary and ergodic under the probability P(-| Uy = 1), (Breiman (1968)).
Denoting this process by T' = {T,}§-1, we have then: for B € #(N),

(3.1) P({Ty}z-1 € B) = P({T+}i-1 € B, Up = 1)-P~Y(U, = 1)
=2P({Tx}?-1 €E B, Uy = 1),
as P(U, = 1) = P(Xo > X1) = Y. In particular, for positive integers m, I, - - -, Im,
P(T,=l,1=ss=sm—-1;Tn=lx)

(3.2)
=2PXo>X;; Ts=l,1<s=m—-1,Tn=1,)
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=2P(T1=1) Ts= s—lyzsssm; Tm+121m)

=2QU"™"),
where [™*D =(1, I, ---, In) = (1, I"™). Moreover, given m = 1, B € #(N'™), we have
. ) - _
3.3) lim, e - 70 P((T14jy »++ Tm+;) € B) = P(TY, ---, Tw) € B),

(Breiman (1968)).
Using some special properties of { T} %-1, we prove a stronger result.

NoTtAaTION. Given a sequence {s:}7-; and numbers a < b, denote s(a, b) = (Sa, Sa+1,
cee, Sp).

THEOREM 1. (a) Given m = 1, we have
(3.4) P(T(1+n,m+n)€B)=P(T(1,m) € B) + O(q") n— o

uniformly over B € #(N'™), for some q € (0, 1).
(b) More generally, givenk=1,m; =1, ..., m; = 1, we have

@5 P(T(T5=6 (mj+n)) + 1, 3555 (mj + ) + m,) € By, 1= s=< k)
= P(T(1, m;) € By)-[]%-2 P(T(1, m,) € B,) + O(g"), n = minj<s<i Nz — ,

uniformly over Bs € Z(N™), 1< s=< k. (my =ny = 0).

From (3.1), (3.2), and (3.5) follows

COROLLARY 2. Part (b) is valid, if T on both sides of (3.5) is replaced by T

REMARKS. (1) From (3.4) follows that
limyw P(T,=1) =P(Ti=1) =2((IN"" = ((I+ 1)H)™),

which is a known result. Barton and Mallows (1965) found the generating function of the
sequence {ET,}n-1, and it was later used (Hooker (1969), Knuth (1973)) to show that
E(T,) =2+ O(p™), where

p=min{|z|™1—-2ze'"*=0,|z|>1} <0.125.

(2) From the proof of the theorem, we shall see that relations (3.4), (3.5) are valid
whenever g € (p, 1).

(3) Corollary 2 implies that the process { T}~ is not only ergodic, but, moreover, has
a strong mixing property, (Billingsley (1965)).

Proor oF THEOREM 1. It suffices to prove (3.5). To avoid too complicated notations,
we confine ourselves to the case k& = 2.

LEMMA 2. Let 6™ = (o1, ---, 0m,) € C™, 7™ = (11, -+, 7)) € C™. Then the
generating functions fm (), fm,(+), fn,m,(+, ) defined by

fm,(6™)) = E([[741 077),
g (172) = Ty [[021 72 P(T(1, my — 1)
=" T, = 1,),
(3.6) Fmy (6™, 7m2) = $ pmisg pmng [[721 oF [[221 72 P(T(1, my)

=k™ Tmy+h+1,m+h+m—1)
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=10 T vhimy = b)),
(AmV = (b« bnyr)),
are analytic everywhere, and
(3.7) (0™, 772) = fr (6) oy (772) + O((4)"), h—

uniformly over any bounded domain of variables ¢™ 7™,

Before proving (3.7), we shall show how this leads to (3.5). Let D™ = {¢'™: | 6,| < 2,
1=r=m;},D"™ = {7'™):|1,| <2,1=5=m;)}. According to the Lemma 2 and Cauchy’s
integral formula in polydiscs (Hormander (1966)) we have

P(T(1,m) =k™; Tmi+h+1L,mi+h+m—1)=1""" Tpihim, = ln,)

= (27ri)_‘""+"‘2’-J [y (0™, 7)) [ 721 doy/ofr*!
aD‘"l\)anUllz)

072, drg/ritt

= [<2m'>""'. f fony (0 ™) TT 124 dor/o,r”]
ap™
(3.8) X [(2m’)‘"‘2 f < fng (1) T2 d’i's/’rffﬂ]
aD{mz)

+ O((%)h-z—(k+l))
=P(T(1,m) =k™).P(Tmi+h+1,m+h+me—1)
= l(mz_l)’ Tml+h+m2 = lm2)

+ O(()*-2=4D), h= e
where
k=Y k, 1=321.

Subtracting from both sides of (3.8) the similar expressions obtained by writing in (3.8) I,
+ 1 instead of /,,, we get

39) P(TQm)=k"; T(mi+h+1,m+h+m)=1")
= P(T(1, m;) = k™). P(T(1, mg) = I') + O((%)"-27%*D), h - .
From (3.9) follows easily that
P(T(1,m) €EB;; Tmi+h+1,m + h+m) €EB;)
= P(T(1, m1) € By)-P(T(1, my) € By) + O((%)"*), h— oo,
uniformly over B; € #(N™’), B, € #(N™),
PrOOF OF LEMMA 2. Let v = 1, n = (94, -+, 1,) € C". Gi\:en positive integers
ni, -+, n, let
A= {j: TS ns + 1 =j=Fion,), l=a=y,

no =0, and
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(3.10) Q(n™, n®) = Tuw ([[i=1 12" QU™),

where n” = (ny, ---,n,),n=n,+ ---,+n,,and L, =Y jea, b.
According to (2.6),

o | [To=1 75 QU™) = Syow [[ =1 02/ (3, — 1)!
= (=1 n4/(L= )" = (n,e™)" < o,

where n* = maxi,<, |n,|. Hence, (3.10) defines a function of 7, which is analytic

everywhere. But then, so are the functions fy,(+), fn,(+), f%'m,(+, -), because:
(3.11) ;,{'l)mz(o(mn, ™) = @™, n®),

forv=mi+ 1+ msn” =", 1, 7)), nps1=hn=1lifs*=m + 1
(3.12) fr (™) = Saimy TI71 ok Q((R™), 1))

= linlu,,,‘ﬂ—»o (Um,+1)_1Q(0(m'+U, n(m*),

forn;= .-+ =nps1=106"" = (6", 6,,+1); and (see (3.2), (3.6))

(3.13) fnp (™) = 2.1im, 0 (10) 'Q (r™*D, pime¥ V),

for Ny = ccs = Npyr1 = 1, T(m2+l) = (1’0, ‘T(mz)).
Furthermore, as the series (3.10) converges absolutely, by (2.2) we have, for n;, =
cee =, = 1’

(3.14) Q(n”,n”) =Yye », [L1ep w1,
wr = wr({n,}yer) = (D Fyoyjer Tleer na /UD
Also, we shall need the following formula (Pittel (1980)):
(3.15) QR(n™, y”) = Tor ([[2e1 ¥2) Q@ (0™, n®)
=Yoe7 Ro(n”, y) -ILiesvmr@ Ay, m).

Here |y.| <1, |n.| = 1,1 < a =y and 7, is the set of all “quasi-partitions” ¢ = (I, ...,
L) of the set (1,2, ..., ), Uie1 I, = (1, 2, ..., v), where subintervals I, ..., I, are not
necessarily disjoint, but such that 1 = min{;: j € I} < --- < min{j: j € I,} and
| It n Ly | =00r1l,1=<¢t<p=p(q). S(q) is the set of elements of (1, ..., ») belonging to
one-element sets I, and B(q) is the set of all endpoints of two or more-element sets
I, 1 =<t=p. Also

(3.16) A(y,m) =1 =y)1 - y-expm(1—y))7",
and
(3.17) Ry=[lreawr, o= (D"""(Liermy)r({ni(1 = 3)}ser),

vr({x),en) = To=rjer [Lerxf /U

Now, according to (3.11) and definition of @ (", y*), the function ¥ ss1 y"f %) m,(a™,
™) is the coefficient of ([[7: &) y"([[™: 8-) in the Taylor series for @ (n, y), if » = m,
+ 1+ ms, n(m|+1+m2) — (o(m,), 1, T(mgj)’ y(m,+1+m2)= (a(m,), ¥, B(mz)), (a(mk) = (al, e, am,),
B™ = (By,..., Bm,)). By (3.15), this coefficient is a sum, over all quasipartitions g, of the
coefficients of ([]™; ;) y*(I]7™2: B,) in the Taylor series of the functions R,(n®, y*)
[Liesury@ A (), 1;). Looking closer at relations (3.16), (3.17), we conclude that nonzero
contributions to this sum can be made only by quasipartitions ¢ having the following
property: each element of the set (1, 2, ..., ») different from (m; + 1) belongs to just one
of the sets I, t = 1, ..., u(q). It is also clear that those nonzero contributions are, as
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functions 6™, 7™, y, analytic everywhere, provided that (m; + 1) & (S U B)(q).

Let I3, +1+m, be the set of all quasipartitions g, for which (m; + 1) € (S u B)(q) and
the sets I, ..., I, are disjoint, except possibly two neighbors I,, I,.; with I, n L., =
(m; + 1). Then, by previous argument,

(3.18)  Th=1¥"fim, (0™, 7™) = A(y, 1) Yeesz +14m: [l1eq 0F + F(a™), 10, y).

Here F(¢'™, 1™, y) is analytic everywhere and

wf = wr({g;},en), for IC(,...,m),
(3.19) = wr({Tj-m,-1},eD), for IC(mi+2,...,m+ 1+ m,),
= y(0m,+1) "wr({o;},e1), for (mi+1)e€IcCq,..., m+1),
=y(r0) 'wr({Tjmm,-1}se1), for (mi+1)EIC (mi+1,...,mi+1+ m).

Om+1=To =1 —y. (See (3.14) concerning w;.) In particular,

w?‘ml+1) = y(0m1+1)_1w(ml+1) (Uml-i-l)
(3.20)
= y(10) 'wim+1 (10) = y(1 — y) e — 1) = x(y). .

In view of (3.14), we have after simple transformations
Th=1 Y fiim, (07, 1) = A (3, 1)(3(0my+1) Q0™ ™Y, g™+ 1))

(3.21)
X (y(10)7Q(r ™D, bt D)) 4 Fr(gim), pim) ),
Hel’e 0(m|+1) = (O(ml), 0m|+1)) Ay =+ = aml+1 = 1) T(mz+l) = (TO) T(M2))) bl = e = my+1 = 1
and
3.22) F*@™,r™), ) =F™), 1, y) + A(y, V(1 = x(3)-Yoerstn, [lieq of,
T rrtemy, = {q € T s1emy: I, ..., Ly are disjoint}.

Now, by (3.16), poles of A(y, 1) coincide with roots of the equation 1 — ye'™ = 0. An
obvious root y = 1 has multiplicity 2, and all other roots have their absolute values
exceeding some y- > 1. (According to Knuth (1973), y- > 8.07.) From (3.16), (3.20) follows
that y = 1 is the first order pole of A(y, 1), that x(y) is analytic everywhere and that
lim,_.; x(y) = 1. Hence, the function F*(c'™, 7™, y) in (3.22) is analytic with respect to
all its arguments in the domain | y| < y-.

Denoting the right-hand expression in (3.21) by fu,m,(c'™’, 7™, y), we have therefore

"1’11)"‘2(0(":1)’ 1.(mz)) = (2mi) -1 J fmlmg(o(m')» T(mz)’ y)/yh+1 dy,
oD
where
D= {y:|y|l<%}.

Using the explicit formula for fi m,(c'™, 72, y) and applying the residue theorem to the
domain D* = {y: % < | y| < 8}, we find that

"ﬁ)%(o(rm), T(mz)) = [lim)'_uA(y, 1)1 - y)]'[liln"ml+|—>0(0ml+1)_l
@23) X Qo ™", a™*M)] X [limy,-o(ro) Q™+,
b(mz+1))] + O((%)h), h— o,

uniformly over any bounded domain of ¢'™’, 7™, An observation that lim,_ A (y, 1)
(1 — y) = 2 together with (3.12), (3.13) lead to (3.7), which completes the proof of Lemma
2 and Theorem 1 is proved.
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4. Limiting behavior of max(T1, ..., Ty), max(T,, . . ., T,). By Theorem 1, (Part (a)),
the double inequality (2.6) still holds true, if all 7”s are replaced by T’s. Since all the
statements below are valid for both T = {T%:}%-: and T = {T%}%-1, we shall use, if
convenient, a common notation J = {Z;}%=1, so that 7 =T or T.

THEOREM 2. If M, = maxi<z<n .~% and c, = log n/log (log n), then
(4'1) limn—mo Mn/C‘n = 1

with probability one, and in L,, ¥ p > 0.

Proor. By (2.6), for a positive integer m, we have
(4.2) 1-1/(m-1)Y)V'=PM,<m)=<(1-1/m)"

Let € € (0, 1). To estimate P (M, < c,(1 — €)) from above, denote m,(€) = [c.(1 — €/2)].
Clearly, m,(€) = c,(1 — €) for all n = no(e). By the right-hand side of (4.2), for those n’s, we
have

(4.3) P(M,<c,(1—¢€))=(1-1/m,(e))" < exp(—n/m,(€)!).
Now, by the Stirling’s formula,
log(n/m.(e)!) = log n — m,(€)log m.(e) + O(mx(€))
=log n — c,(1 — €/2)log ¢, + O(cx)
=log n — (1 — ¢/2)log n(log log n) '[log log n — log log log n] + O(c,)

log n + o(log n) = -;— log n,

N

for n = n;(€e) = ny(e). Hence,
(4.4) P(M, < c,(1 — €)) < exp(—exp(e/3 log n)) = exp(—n*?), n = ni(e).

Almost similarly, using the left-hand side of (4.2), one can show that given € > 0 we
have

4.5) PM,<c,(1+¢€))=exp(—n<"*)=1—-n"", n=n; (e,

for all € € [, x).
Let p > 0. Given € € (0, 1), for n = max(n(€), nz(¢)), we get

M., I " M,
E( — -1 )=pj x”'lP< —-1 Zx)dee”
Cn A Cn
+p f xP7'n7*3 dx + exp(—n®).
. M, _|° n
So lim sup,—.- E ( —-1 ) = €’ and, consequently,];i — lin L,.

Furthermore, by (4.4),
Y1 P(M, < cn(1—¢€)) < oo, Yee (0,1).

By Borel-Cantelli lemma, we can conclude that lim inf,_,.. M, /c, = 1 with probability one.
Thus we have only to show that lim sup,.. M, /c, = 1 with probability one, too. In this
case, the estimate (4.5) does not guarantee that ¥ %-1 P (M, = c,(1 + €)) < «, because the
series Y %_; n~%® is divergent for € < 3. Fortunately, we can avoid this difficulty, using a
method suggested by Kingman (1973) in connection with the longest ascending subsequ-
ence in a random permutation. Namely, choose a positive integer ! such that le/3 > 1.
Since
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(4.6) Y1 P(Mp=cr(l+e€) =35 k7P <+ o,

P(My = cu(l + ¢ infinitely often) = 0. Define k(n) by conditions: (k(n) — 1)! < n =
(k(n))'. Clearly, lim,_. k(n) = o, and one can see that cx/c. — 1, as n — . Since
M, = M, [, we obtain

P(M, = cn.(1 + 2¢)i.0.) = P(Min)t = Crmyi(1 + €)i.0.) = 0.

Therefore, lim sup,_,» M, /c, < 1 with probability one, and Theorem 2 is proved.

REMARK. T, —1,k=1,2,..., can be considered as the lengths of consecutive zero-
runs in the stationary sequence {U}%-0 with P(U, = 0) = P(U, = 1) = %, see
Introduction. It is worth mentioning that if L;, L., - - - are the lengths of consecutive head-
runs in a fair coin-tossing game and M,, = max(L, ..., L,), then M, log 2/log n — 1 with
probability one, see Erdos, Révész (1975), Komlés, Tusnady (1975). Thus the longest head-
run grows somewhat faster with n than the longest run-up.

Denote by ., the length of the longest run (up) generated by a finite sequence X,
..., Xn. It is known, Dixon (1975), that #./c, — 1 in probability. Theorem 2 enables us
to prove a stronger statement.

COROLLARY 3. lim,_,. #,/c, = 1 with probability one.

Proor. By ergodicity of { U} %-0, we have (Breiman (1968))
lims_,m 1/82;;1 7‘1=E(T1)=2 a.s.

Let s, = sp(w) =min{s:s=1and T\ + ... + T, = n}. Clearly, lim,_,. s, = © a.s. and, by
Theorem 2,

lim supr e Ts,/Sn < lim supn—. Ms, /s, =0 a.s.

1/8. Y521 Ty = n/sn + O(Ts, /sn),
we have therefore that lim,_,. s,./n = 1/2 a.s. It shows that

limy e €s,-1/€n = liMnw €5 /e =1 a.s.,

which together with an obvious relation M, -, = .#, = M, and (4.1) enable us to conclude
that lim,« #,/c, =1 as.

REMARK. It is interesting that the length %, of the longest ascending subsequence in
Xi, ..., X, grows much faster. Namely, according to Hammersley (1972), Kingman (1973)
(see Section (2.4)) and Kesten (1973) (commentary on the Kingman’s paper), lim,—«
Z./n'? = ¢ as., and it has been found recently that ¢ = 2, (Logan and Shepp (1977),
Versik and Kerov (1977)). '

THEOREM 3. Let m and n tend to infinity in such a way that lim,_,.. n(m!) ' =y, y €
(0, ). This implies that m/c, — 1,n — x. Let V' be the number of I7's larger than or
equal to m, for 1 < j < k. Then the process V™ (t) = V{¥y, t € [0, 1], converges, in the
sense of distribution functions, to the Poisson process V(t) with parameter A = 2y.

Proor. We shall show first that V3 converges in distribution to the Poisson distrib-
uted random variable V with parameter A = 2y. For that, it suffices to show that the
factorial moments of V{ approach those of V, or explicitly, that

4.7 limo E(VI2(V = 1) - (VI = (s = 1)) =N, §=0,1,2,---.

Let W) be the set indicator of the event A{” = {J; = m}, 1 =j < n. Then V{" =
W + ... + W and, by Frechet’s formula,
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(4.8) prs(VY = E(VE(VP = 1) -+« (V) — (s — 1))
= 8! Yisji<e..<ip=n P(ASP «- - AP).
For brevity, consider only a case J = T. Choose a positive integer A < n and let
D'={(ji,...,Js: 1= <--s <js=n, Milizass1 (ar1 — ja) = A},
D*={(ji,...,js):1=h<-- <jo=n, Midizg=e1 (ar1 —Ja) < h}.

Obviously,

n\ _n° 1 n .
w0 19910 (1)< (1 0(2) ) 1=+, % o) o

By Corollary 2, stationarity of 7' and (3.2), we have
¥ = Sisen PASY -+ A) = Bi,en [P(Tiz m) + O(q")]

(4.10) = l' (nP(T\ = m))s(l + 0<%>) + O(n°q*)

_Q(f:>( +O< >>+O(nsq"), n— o,

Also, since (2.6) holds true for T}, by (4.9) we have
(4.11) Y=Y er P(AP «.. AP) = O(| D?| ((m — 1)))™°)

(( '> h) (m h) <log nh) .
m n n n
Choosing A = [log’n] we find that

hmn—»oo ,u[s]( V;;n)) = S! (]im 21 + lim, 22) = (2‘y)s = As’

(see (4.8), (4.10), (4.11)).

The assertion of Theorem 3 follows from the following more general statement. Let 7 be
a positive integer and let I, .. ., I be disjoint subintervals of the set (1, . . ., n). Denote

v™(I{”) the number of Tys, j € I, larger than or equal to m. If lim,_... | I | /n = p, >

0, 1 ='a < r, then the random vector V™ = (v (I{"))5-1 converges in distribution to a
vector Y = (Y,)a-1 with independent components, Y, being Poisson distributed with
parameter Ap,, l = a=r.

A way to prove this is to show that

(4.12) limy o ,U-[s]( V(n)) = H:=1 (}‘pa)s"’

where s1, . .., s, are given positive integers, s = (s1, . . ., s) and p;1( V™) is the multivariate
sth order factorial moment of V™,

s (v™) = E([[a=1 0™ (IP) .o 0™ (1) — (50 — 1))).
A multivariate analogue of the formula (4.8) is
prs (V™) = ([Ta-1 821 - > P(Nici A -+ AfR ).

J(, ) < -0 < (s, @)
J(1, @), -ee, g(s,, a)EI""
l=sa=sr

In view of the last formula, the relation (4.12) can be proved along the same lines as in case
of (4.7). We omit corresponding details.
Theorem 3 is proved.

REMARK. Other related problems are known where Poisson distribution occurs natu-
rally as a limiting distribution. For instance, Wolfowitz (1944) has proved that the number
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of runs up and down of the length m generated by a finite sequence Xj, . . ., X, provided
n/m! = v, has in the limit Poisson distribution with parameter 2y. A similar result for this
scheme was obtained by David and Barton (1962) for the number of runs larger than or
equal to some m.

Acknowledgement. The author must thank the referee for many valuable com-
ments.
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