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THE DEGENERATE NEUMANN PROBLEM AND DEGENERATE
DIFFUSIONS WITH VENTTSEL’S BOUNDARY CONDITIONS

By KuN1o NISHIOKA

Tokyo Metropolitan University

A stochastic solution of the Neumann problem is obtained, when the
second order elliptic operator L is degenerate at the boundary of the domain.
Let D be a domain in R” with the smooth boundary 8D, and the second order
elliptic operator L be defined in R". We construct a diffusion X"(¢) = (&,
D(®")) in D such that (i) D(&") D D(A") = {f € C*(D); 8f/dv = 0 for x € D},
(ii) f€ D(A") = @& f = Lf. With that diffusion, the stochastic solution of our
Neumann problem is defined, and the existence and the uniqueness conditions
of that are obtained. The analytic meaning of our stochastic solution is
explained. The diffusions in D, satisfying the other Venttsel boundary condi-
tions are also constructed, which are useful for the degenerate third boundary
value problems.

This paper treats the following Neumann problem in the case where the elhptlc second
order differential operator L is possibly degenerate at D u aD:

(N) Lu=F inD, and %ﬁ= in 2, u3X;CaD,
v

where D is an open bounded domain in R" with the smooth boundary D, L = % ¥,
a;j(x)(8%/ 3x,9x;) + i1 bi(x)(8/9x:), v is the inward normal vector to 8D, and a part of the
boundary 2,u X; is defined later.

When L is nondegenerate in D U dD, Ikeda [6] gave the stochastic solution of (N), and
Freidlin [3] extended Ikeda’s result to the case where L is degenerate inside D. Thus, our
interest comes to the remaining case where L may be degenerate at D U dD, especially at
the boundary aD.

As far as the author knows, no study has been done with respect to such a Neumann
problem. But, the particular Dirichlet problem

Lu=F inD, and u=G inZ;u Z3CaD

is called the “Fichera problem” when L is degenerate at D. It has been studied by analytic
methods (2, 9, 14, 15, etc.] and by probabilistic methods [4, 5, 19, etc.]. So we apply to our
Neumann problem (N) the results which have been obtained in the Fichera problem.

In order to precisely formulate the Fichera problem, Fichera [2] and the others [9, 14,
etc.] divided the boundary aD into four disjoint subsets:

33 = {x € aD; (321 azviv))(x) > 0}

2 = {anD—Za; I:Z:lj l(b -3 0

29 al,)v,:l(x < 0}

a
2= {x€dD — Z5; [Y}j=1 (bi — 55}: a;)vi](x) > 0}

a
Zo={x €D — Z3; [2}j=1 (b; — 5'556; a,)vi](x) = 0}.
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On the other hand, Pinsky [17] has made clear the probabilistic meaning of =, — =;. Let
7 =inf {t = 0; x(¢) € D}, where x(¢) is the diffusion corresponding to L. He proved that
P.{x(1) € (Zp U Z1)°, r < ®} =0 for any x € D. Roughly speaking, diffusions behave near
3y — 33 like the natural boundary, the entrance, the exit, and the regular in the one
dimensional case, respectively. Our approach is based on those properties of Sy — =;.

In Section 1, we construct the diffusion X on the upper half space G of R" with the
infinitesimal operator (&, D(®)) such that

(i) D(®) D D(A) = {f€ C}(G); Af =0 at 3G},
(i) fED(A)=f=Lfon G,

where A is the Venttsel type boundary operator defined by (1.1). In the case dG = =,
Watanabe [21] constructed such the diffusion stochastically. Thus our construction is done
in the case 3G # ;. In Section 2, we discuss the usefulness of Venttsel’s boundary
condition. A Venttsel’s boundary condition corresponds to a diffusion in the case of 23, but
it is not necessarily true in the case of 3y — =,.

In Section 3, we construct the diffusion in D associated with the boundary condition
(3.2). Using that diffusion, we give the stochastic solution of (N) in Section 4. The meaning
of the stochastic solution of (N) (Definition 4.3) is natural from the viewpoint of the
probabilist, but its analytic meaning is not clear. In Section 5, we discuss that problem. In
the Appendix, we replace the stochastic conditions of the main theorems (Theorems 4.1
and 4.2) by the conditions on the coefficients of L.

Preliminaries. Let D be a subset in R”, and let its boundary be denoted by aD. The
ith component of the vector x is denoted by x,, and the transformed matrix of the matrix
A is denoted by A*. Dif, D,f (i,j = 1, - -, n) denote df/dx;, 8*f/9x,x,, respectively. Cy(D)
is the set of bounded continuous functions on D, C}(D) is the set of C,(D)-functions with
bounded continuous first derivatives on D, and C3(D) is similarly the set of those with
bounded second derivatives.

(R, F, P: F,) is a complete probability space, where {F,}.=o are increasing right
continuous sub o-fields of F and each F, contains all P-null sets. B(t) = (B1(¢), - - -, Ba(¢))
is an F-adapted n-dimensional Brownian motion. Let 7 be an Fi-adapted Markov time
such that P{T < 0} > 0; then B(t) = B(t + 1) — B(r) is an F-adapted Brownian motion
on (2, F, P: F,), whereQ = {w; 7(w) < o}, F =F/Q, F,=F,../Q, and P(.) = P(- )/P ()
(see [22]).

Let (X,, P,) be a diffusion on D, with the infinitesimal operator (&, D(®)) of (X,, P,)
defined as follows:

D(®) = u € Cy(D); v € Cy(D) such that u(X,) — u(Xo) — f v(X,) ds
0

is a continuous L2-martingale on (2, F, P, F,) for any x € D;
Su=v.

In the definition 7 = inf{t = 0; X, € B}, it is understood that = inf{¢ = 0; X, € B} if
{}#¢pandr=wif {} =¢

1. Degenerate diffusion with the Venttsel boundary condition. Define G = {x
€ R"; x, >0} and 8G = {x € R"; x, = 0}. Let X(¢t) = (&, D(®)) be a conservative diffusion
in G with continuous trajectories at the boundary. Venttsel [20] proved that if a function
f(x) € C3(G) n D(S), then

(L1)  Af(x) =[% Y0 =1 ayDyf + Y1 B.Dif — yf+ 8D.f](x) =0  for x € dG,

where (a,(x)) is a symmetric nonnegative definite matrix and y(x), 8(x) are nonnegative
functions. Conversely, Watanabe [21] and others [6, etc.] constructed the diffusion X(¢)
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= (&, D(®)) on G such that
(i) D(®) D D(A) = {f€ Ci(G); Af(x) =0  for x€ 3G},

(1.2) ~
(ii) f€ D(A) =@f=Lf for x€QG,

where (), (8:), v, and 8 are suitably given on 8G. However, they assumed that 4G = ;.
In this section, without assuming that G = X3, we construct the diffusion on G which
satisfies (1.2).

Our assumption is:

(A.1). (a,(x)) is a symmetric nonnegative definite matrix. a, (x) € C3(R") for each i, j
=1, ..., n,and (b,(x)) is Lipschitz continuous.

ReMARK 1.1.  Phillips and Sarason [16] proved that if (a;;(x)) satisfies (A.1), then there
is a Lipschitz continuous matrix (o;(x)) such that a = ¢-0.

THEOREM 1.1. Let (A.1) hold. Assume that _
(B.1) 8G = Z,. Then, there is a diffusion X'(t) = (&", D(&")) on G, such that

(i) D(®") D D(A") = {f€ C}(G); Duf(x) =0 for x€ 3G}

(1.3)
(ii) f€ D(A") =@ f=Lf for x€G

Proor. Step 1. By (B.1), we have
(1.4) on(x) =0, ba(x) <0 for x€ 4G (t=1,.--,n).
The following stochastic differential equation has the unique solution x(¢:x) = (x;(£:x),
eoe, Xa(t:x)) in R™:

(1.5) x(t) —x, = j 2, 0,(x(s)) dB;(s) +f b.(x(s)) ds i=1,-.--,n).
0 1)

Let 7 = inf{¢ > 0, x,(¢) = 0}; then B(¢t) = (B1(t), - -+, Baoi(t)) = (Bi(t + 1) — Bi(r),
++, Bp1(t + 11) — Bo-i(71)) is a Fiu.-adapted (n — 1)-dimensional Brownian motion. Let
x(¢:x) = (x1(t:x), - - -, Xn—1(¢:x)) be the unique solution of the stochastic differential equation
t
() —x; = j N2 04 (Ei(s), + -, En-1(8), 0) dB,(s)
0
(1.6)

+Jt bi(£1(s), +++, Xn-1(s), 0) ds @i=1..-,n—-1).
0
Define
Xi(t:x) = x,(t:x) for t=7,
= x,(t — 711; x(11:%)) for t>1;
Xh(t:x) = xa(t:x) for t=7,
=0 for t> 1.

Step 2. It is easy to show that X'(¢), defined above, is a diffusion on G. Thus we prove
that X" (¢) satisfies (1.3). Let 71 = 71 A N with a constant N, and M;(¢t) = B;(¢t A 7)) i =1,
--,nand N;(¢) = B;(t v 1) = B(r1) i=1, ---, n — 1. M,(¢t) and N;(¢) are continuous L>-
martingales for ¢ € [0, N] such that d(M;) (¢) = d(t A 71) and d(N;) (t) = d(t Vv 7)) (see
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[10]). Our X" (¢) satisfies the following stochastic differential equation for ¢ € [0, N]:
dX[(8) = Y1 05 (X7 (8))(dM;(¢) + dN;(t))
+ b(X"(@))(d(t A T1) + d(EV T1)), i=1,...,n—1
dX7(t) = X-1 00 (X7(8)) dM;(t) + bu(X7(8)) d(E A T1).
By the generalized It formula, we have for any f € C3(G)

f(X7(8)) — f(X7(0)) = f (LA)(X7(s)) d(s A T1)
o
+ f [% Y%5k=1 oo Dy f + Yot b:D fIUX"(s)) d(s V 71)
o

+ martingales =f (L)X (s)) ds —j [6.D.fI(X"(s)) d(s V 71)
0 0

+ martingales, for t€[0, N].
For the last equality, we use (1.4). Noting (1.4), we have
fED(E") & Duf(x1, - -+, Xn-1,0) = 0.
It is also clear that (ii) holds.

THEOREM 1.2. The diffusion X' (t), obtained in Theorem 1.1, is unique in the following
sense. Let Y (t) = (&', D(®")) be a diffusion on G such that

(L.7) (i) D(®&') D D(A")
(i) fED(A") = &'f=Lf.
Then the processes X'(t) and Y (t) are stochastically equivalent.

Proor. Let ¢(x) be a Ci-function such that ¢(x) = (x,)% for | x| = 1, and ¢(x) € D(A").
Let Y(t) be a diffusion associated with (1.7). By (A.1) and (B.1), there are positive
constants € and ¢ such that b,(x) = —c < 0 and 0 = a,,(x) = c(x,)? for |x| =€ Set r* =
inf{t = 0; | Y(¢)| = €}. From the definition of the infinitesimal operator, we have

tATe

(Y (tAT)) —¢(Y(0) = j (L$)(Y(s)) ds + martingales.

0

Take expectations of both sides:

taTe

EO[ Yn(t A T()]Z =E, [j (ann( Y(S)) + 2Yn(s)bn( Y(S))) ds]

0

= —ch[f (Yn(s))? ds].
0

Thus, we obtain
(1.8) P, ....x, , 0[Ya(t) =0 for any t = 0] = 1.

Let ¢:(x) and ¢;(x) (i,7 =1, -+, n — 1) be Ci-functions such that they belong to D(A")
and ¢;(x) = x;, ¢y (x) = xx; for | x| = 1. Applying the It6 formula to ¢;(x) and ¢ (x), we
obtain the martingale M (¢) on 8G such that
t
M, (t) = Yi(t) — Yi(0) —f b.(Yi(s), -+, Yu-1(s), 0) ds

0
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t

(M, M;) () = % f ay(Yi(s), -+ -, Ya-1(s), 0) ds.

()
According to [22], if we have the suitable Brownian motion B(¢), then it follows that
dYi(t) = Y5 0y(Yi(8), - - -, Yaor(2), 0) dB;(t)

(1.9)
+ bi(Y1(8), -+ -, Ya-u(2), 0) dt, i=1-.-,n—1

dY.(t) =0.

Since the solution of (1.9) is unique, we have Y(¢) = X"(¢) in dG in the sense of stochastic
equivalence. By a similar method in G, the uniqueness is proved.

Define the differential operator A on dG by (1.1). Let (a;(x)) %j=1, (B:i(x))i=1, y(x), and
8(x) be given in dG as follows:

(A.2) (ay) is a nonnegative definite symmetric matrix. y(x) and §(x) are nonnegative
functions (see [20]).

(A.3) [-bu(x)ai(x) + 8(x)ay(x)]/[—7(x)bn(x) + 8(x)), i, j=1, ---, n — 1, are C2(0G)-
functions. .

(A.4) [=b.(x)B:(x)]/[—7(x)br(x) + 8(x)],i =1, ---, n — 1, are Lipschitz continuous in
aG.

THEOREM 1.3. Assume that (A.1)—(A.4) and (B.1) hold. Then there is the diffusion
X(¢) = (&, D(®)) on G such that (1.2) holds.

ProoF. Step 1. Since a,, = a;» = 0 in dG (i = 1, ..., n), heuristic considerations
indicate that in 4G,

(1.10) 2 !

P = o) [L — % Yot aii(x) Dy — Y bi(x) D;).
n n

Substituting (1.10) into “Af = 0 for x € dG”, we have
Lf(x) =% Y754 &x)Dijf (x) + Y25 B(x)Dif (x)  for x € 3G
where we set for x € 3G
i (x) = [=ba(2) s (x) + 8(x)ai,(x)]1/[—y (%) balx) + 8 (x)]
Bi(x) = [—ba(x)Bi(x) + 8(x)bi(x)]/[—y (x)ba(x) + & (x)].
By (A.1) — (A 4), (B.1), and (1.4), it follows that (&;, (x)) is a nonnegative definite symmetric
matrix and belongs to C%(G), and (Bi(x)) is Lipschitz continuous. By Remark 1.1, there is
a Lipschitz continuous (6;;(x)) on 4G such that & = 6 6. We consider the following stochastic
differential equation on 0G:
t t
(1.11) %,(t) — £.(0) =J N2 6i(E(s)) dB,(s) +f Bi(x(s)) ds
0
’ G=1,...,n—1)

where B(t) = (Bi(?), ..., Bai(t)) = (Bi(t + 1) — Bi(71), . .., Baoi(t + 71) — B,_1(71)) is the
F..,-adapted Brownian motion. Let x (¢:x£(0)) be the solution of (1.11). We define

Xi(t:x) = xi(t:x) for t=m i=1,...,n—1)
= Xt — T1:x(T1:X)) for t=m;
Xo(t:x) = xn(t:x) for t=m

=0 for t=n.
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Step 2. Tt is easy to see that X (¢) is the diffusion on G. Let M;(t), N;(¢) be the same
martingales as in Step 2 of the proof of Theorem 1.1; then X (¢) satisfies, for ¢ € [0, V],
dXi(t) = ¥)=1 0,(X () dM;(2) + Y521 6,(X () dN;(2)
+ b(X(2)) d(t A 71) + BuX(2)) d(tV 1) (¢=1,...,n-1)
dX,(t) = Yt 0,,;(X(£)) AM; () + b.(X())d (¢ A T7).
By using the generalized It6 formula, we conclude that X (¢) satisfies (1.2).

THEOREM 1.4. Let (A.1) hold. Assume that

(B.2) 4G =Z;, or

(B.3) aG = Z,.

Then there is a diffusion X (t) = (&;, D(®,)) on G, associated with (1.2).

Proor. Let X(¢) be the solution of (1.5). Since (B.2) or (B.3) holds,
(1.12) P.[X(t) € oG for t=0]=1 for any x € G (see [15]).
By Tanaka’s method (see, for example, [5]), we have

P.[X.(t)=0 for t=0]=1 for any x € 9G.

Thus X (¢) is the diffusion on G, and it is clear that X (¢) satisfies (1.2).

2. Supplement to Venttsel’s boundary condition. If G = X3, then the unique
diffusion in G satisfies (1.3) and it satisfies (1.3) only. But this is not necessarily true if 8G
# 3. If G = 3, then the diffusion X"(¢) constructed in Theorem 1.1 satisfies (1.3). But
X'(¢) satisfies the other representation of Venttsel’s boundary condition. In fact, let a(x)
and B(x) be Cy(dG)-functions such that

2.1) a(x), B(x) =0, and a(x)+ B(x)>0 for any x € a4G.
Set for f € C3(8G) and x € 3G
Aopf(x) = a(x) [% i @iDuf + Tist b:Dif — Lf](x)
+ B(x)Dnf(x) = [% Yij @ ai;Dijf + ¥i a b, Dif — aLf + BD.f](x).

By (2.1), the coefficients of A, satisfy (A.2), and the boundary condition
(2.2) Agf=0 for x € G
is Venttsel’s type. Set D(A,z) = {f € C}(G): (2.2) holds}; then X"(¢) satisfies
2.39) () D(®) D D(Aup);

(i) FED(Aup) = G f=Lf for x€G.

Conversely, using the same method as in Theorem 1.2, we can prove that the diffusion
associated with (2.3) is unique, i.e., X"(¢).

On the other hand, if dG = X, then the diffusion on G associated with (1.3) is not
necessarily unique. In fact, let R” = R? and Lf = % [Dy: f + x3D»f] + D:f. By Theorem
1.4, the solution X (¢:x) = (X,(¢:x), Xa(£:x)) of the stochastic differential equation

Xi(t:x) = x1 + Ba(t)
Xo(t:x) = x2 + f Xo(s:x) dBa(s) +t

0
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is associated with (1.3). Now we define the diffusion X (¢:x) = (Xi(¢:x), Xz(¢:x)) as follows:

Xi(t:x) = x1 + Bi(t)
Xa(t:x) = Xo(t:x) for x>0
=0 for x,=0.

X(¢:x) also satisfies (1.3), and X(¢:x) # X(t:x) for x € 8G.

3. The construction of the diffusion X"(¢) on D. Let D be a bounded open domain
in R" with the smooth boundary dD. When L is nondegenerate in D, Ikeda [6] gave the
stochastic solution u of (V). Let X"(¢) be the diffusion on D, associated with (3.2), and
07(t) be the local time of X"(¢) at dD. He proved that

u(x) = —Exf F(X'(¢t)) dt — Exj G(X"(t)) di"(¢),
0 0

if the right-hand side above exists. In this section, we construct the diffusion X"(¢) on D
associated with (3.2) in the case that aD # Z;. We assume the following:
(C.1). There is a smooth function p(x) such that

(i) D={x€R"; p(x) >0}
(ii)) 8D = {x € R"; p(x) = 0}
(iii) | Vp(x) | = 1 for x € aD.

Because of (C.1), we have local charts (y, U) such that U is an open set and ¢ is a smooth
mapping of x € U N 8D to Y (x) = (x%, ..., xr) € R", where

(3.1) x,>0xeUND
x, =0 x€ UNaD.

(C.2). There are mutually disjoint, connected, and closed sets aD.(k = 0, .., 3) such
that aD = U,dD,, and 4D, = 2.

THEOREM 3.1. Let (A.1), (C.1), and (C.2) hold. Then there is the diffusion X'(t) =
(&}, D(®))) on D such that

of

() D(®)) D D(A") = {fe Ci(D); (Vp,a

) =0 for x€ aD}
(3.2)

(i) fEDAN=>@if=Lf for x€D.

ProoF. Step 1. We construct the diffusion X3(¢) = (&, D(®)) in a neighborhood V3
of aD;, which satisfies (3.3) below and stops at dV3 N D.

f

(i) D(G%) D DA% = {fe C3(Vs N D); (vp, %) =0 for x€ aDa}

(3.3)
(i) fE DAY= G =Lf in VinD.

For simplicity, let aD; be covered by two local charts, say (¢’, U’) and (", U”), which
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satisfy (3.1). Consider a local stochastic differential equation for U":
dxi(t) = Y =1 o}, (x'(t)) dBj(t) + bi(x’'(¢)) dt i=1,...,n-1,

dxn(t) = Yjo1 ony(x'(2)) dBj(t)) + bu(x'(¢) dt + db(t)

(3.4) . ¢
J’ xx, =0 (x'(s)) di(s) = 0(¢), f Xz, =0 (x'(s)) ds =0,
0 0

where L is expressed in (y’, U’) by
L="% 2 aij(x)Di, + 2 bi(x)D;

with a’ = ¢’-0’*. Watanabe [21] proved that there is a unique solution x’(¢:x) of (3.4). Let
G=inf{t=0;x’(t) 2U'}.If x' (1) €E(U' U U”), stop x'(t) andput {,,=0n=2,3,....
But if x’(¢:) € (U”)°, consider a solution x”(¢:4” (" (x’({1:x)))) of a local stochastic
differential equation for U”, where we take the Brownian motion B”(¢) = B'(t + {1) —
B’(%1). Define {; =inf {t = 0; x"(¢) € U”]. If x”($) € (U’ U U”), stop x”(¢) and put ¢,
=0n=38,4,....Butif x”({) € (U")°, consider (3.3) based on the Brownian motion
B"”(t) = B”(t + {) — B”({2), etc. Thus we define

X3(t:x) = ¢ (8: %)) 0st=4
=" N x"(t:21)) GEt=h+ 6 2=y (Xhx))
V(%! (¢:22)) b+ bSt=h+b+ b=y + Lix),

etc., X3(t:x) is a diffusion on V3 N D associated with (3.3) (see [11]).
Step 2. We construct the diffusion X%(¢) = (&7, D(®?)) in a neighborhood V; of 8Dy,
which satisfies (3.5) below and stops at a4V, N D.

f

(i) DG)) Cc DAY = {fe Ci(V. N D); (Vp, %) =0 for x€ 8Dz}.

(3.5)
(i) fEDAY) =G f=Lf in VoND.

Let aD; be also covered by two local charts (’, U’) and (¢”, U”), which satisfy (3.1). The
local stochastic differential equations on aD,, for U’, are:

36) dxi(t) = Y57 alixi(t), . . ., Xn-1(t), 0) dBi(t)
+ bixA(E), . .., xhoi(t), 0) dt i=1,...,n—1

By the same procedure as in Step 1, we have the diffusion X? on 8D, associated with the
infinitesimal operator L , defined in D by

(3.7) L,=L—- (3L {b: — % Y1 Dja,;}D](x) ¥%-1 (Drp(x)) 5%-
Let Y (¢) be the solution of (1.5), and set 7, = inf{¢ = 0; Y (¢) € 8(V3 N D)}. We define X*(¢)
as follows:
X2%(t:x) = Y(t:x) 0st=rm
= X%t — 19: Y (12:%) m=t and Y(r:x)E€ aD,
= Y(ro:x) =t and Y(ro:x) € 9D:

By Theorem 1.1, it is clear that X?(¢) satisfies (3.5).
Step 3. By repeating the same procedure as in Step 1, we define the diffusion Z(¢) in R"
such that we connect Y (¢) of (1.5) with X3(¢) of Step 1.
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Step 4.
(3.8) X'(t:x) =Z(t:x) 0=t=m
=Xt — 3t Z(15:x)) 3=,

where we set 73 = inf{t = 0; Y (¢) € aD.}, and where X?(¢) is based on the suitable Brownian
motion. From Theorems 1.1, 1.4 and Step 2, it follows that X"(¢) defined by (3.8) satisfies
(3.2).

4. The degenerate Neumann problem. Let F be a Cy(D)-function and G be a
Ci(dD)-function. Denote by 8"(¢) the local time of X"(¢) at dDs, and set 74 = inf {t = 0; X"(¢)
€ aD,}.

DEFINITION 4.1. We say that a C(D — D,)-function u satisfies

Lu=FonDUaD, and <ai)u = G on dD;,
: v

if u(X"(t N\ 10)) — [§ F(X"(s)) ds — [§* G(X"(s)) df’(s) is a P,-martingale for any x €
D U 3Ds and any ¢ = 0. )

DEFINITION 4.2. We say that a C,(8D)-function u satisfies
L,u= G onaD,
if u(X2(¢)) — [5 G(X*(s)) ds is a P,-martingale for any x € D, and any ¢ = 0.

DEFINITION 4.3. We say that a C (D — aD,)-function « is a stochastic solution of (N),
if

_ a
Lu=F on DuadaD,;, and <a—v)u =G on aDs,
and l—; u=F-0b.G on aD,,

1
where b.(x) = [Z]-; (b; — 3 71 D,a,) Dip](x).

REMARK 4.1. If u is a stochastic solution of (N) and u € C*D — aD,), then u is a
classical solution of (N).

Proor. Applying the generalized It6 formula to u, we have

tATy tATy

F(X'(s)) ds —J G(X7(s)) dO" (s)

0

Martingale = u(X"(¢ A 14)) — J

0
= u(x) + f (Lu — F)(X"(s)) ds + J (%u - G)(X’(s)) db’(s)
) 0

+ martingales.

Thus Lu — F = 0 on D, and (du/8v) — -. = 0 on 8D;. Since (Lu — F) is continuous on D
— 3D,

4.1) Lu=F on D-—aD,.
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In 6D., we have

Martingale = u(X? (t)) — f (F — b+ G)(X%(s)) ds
0

t
= u(x) + J [L,u+ b.G — F1(X*(s)) ds + martingales.
0

Thus L, u = F — b,.G on dD;. By (4.1), we have on aD;
b 3—3 =b. Y1 DipDul=Lu—L,u=F+b.G—-F=0b,G
Since 8D, = X, it follows that b, < 0, and we conclude that (du/dv) = G on 3Ds.
We introduce the Doeblin condition (see [1]).

The Doeblin condition. A Markov chain x(%) in a space E is given. Let A be a Borel
set in E. There is a constant measure y(-) such that y(A) > 0 and P.[x(%k) € B] = y(B)
for any Borel set BC A, any x € E witha k=0and § > 0.

REMARK 4.2. If a diffusion x(¢) in M satisfies the Doeblin condition then there is an
invariant mesure p(-) on M such that for any bounded measurable function f, the inequality

| Buf(x(t) — f £0) w(d) | S c e | £]
M

holds with positive constants ¢ and ¢’ (see, for example, [1] and [3]).
THEOREM 4.1. Let (A.1), (C.1), and (C.2) hold, and F(x) € Cy(D), G(x) € C»(3Ds U
aD,). Assume that dD; # O, and that
(4.2) supxep Ex{14] < for each x € D — 3Dy,
(4.3) L , is nondegenerate on 8D., where L, is restricted on dD; .

Then (i) and (ii) are equivalent.

(i). There is a stochastic solution u of (N), and u differs from any other stochastic
solution by a constant.

(ii). fop,[ F — b+ G](x)p (dx) = O, where p(-) is any invariant measure of X(¢).

REMARK 4.3.  Since aD, is compact, it follows from (4.3) that X%(¢) satisfies the Déeblin
condition.

REMARK 4.4. It is not easy to verify (4.2) in general. The sufficient conditions for (4.2)
are given in the Appendix (Lemmas 6.1 and 6.2). The other sufficient conditions are
discussed in [3, 4, 5, 19, and etc.].

ProOF OF THEOREM 4.1. Step 1. We prove that (i) = (ii). By (4.3), Remarks 4.2 and

4.3, there is an invariant measure u(-) for X%(¢). Let u be a stochastic solution of (N), and
for any x € D,

u(X*(t:x)) — u(x) — J [F — b.G1(X?*(s)) ds = a P.-martingale.
0

Take the expectations of the terms above:

% EJu(X*®) —ux)] = % E[ j [F - b.Gl(X*(s)) ds] )
0
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By integration with respect to u(-), we obtain

0= %f w(dx) EJu(X%(t)) — u(x)]
aD.

2

=1J’ ,u(dx)J’ E.[F — b.G](X%(s)) ds=J w(dx)[F — b, G](x).
¢ aD, 0 D

2

Step 2. We prove that (ii) = “the existence of the stochastic solution”. Set uip, = E.
[% [b+G — F1(X%(s)) ds for x € aD,. From (ii), Remarks 4.2, and 4.3, it follows that the
right-hand side of the expression above is well defined and bounded. We show that u.p, is
continuous. Let T and ¢ be suitable constants.

| tap, (%) — ua,(y) | = IJ E[(b:+G — F)(X*(s:x)) — (b G — F)(X*(s:y))] ds]|
0

T
=2+ J’ |E[(b+G — F)(X%(s:x)) — (b+:G — F)(X*(s:y))]| ds
0

=2+ |x—y|ce”.

Thus uap, € Cp(3D;). It is easy to prove thatL_// usp, = F — b, G on aD;. We define u(x) on

D — 3D, as follows:

u(x) = —E; f F(X'(t) dt} - Ex[J G(X7(2)) dﬂ’(t)]
LJo 0

’- L]
—E, f (F = b:G)(X(8)) xap,(X(2)) dt}
LJo

T4

G(X'(t)) dﬂ’(t)]

(4.4) =—-FE, J’ F(X'(t)) dt — J’
L Jo

0

- E,[J (F — b.G)(X%(t)) dt]

= Ex[_f F(X'(¢)) dt — f G(X"(¢)) di"(¢) + Uauz(X’(n))] .
0 0

Because of (4.2), u(x) is well defined and bounded. Noting (4.2), we see that the first and
the second terms of the last equality are continuous in x. A slight modification of the
results of [4] shows that the third term of (4.4) is continuous with respect to x. Now, it is
clear that Lu = F on D U 8D, and @/dv)u = G on 4Ds.

Step 3. We prove the uniqueness of the stochastic solution. Let u and «’ be two stochastic
solutions of (N). Set v = u — u’; then v(X?%(¢)) is a P.-martingale for any x € 8D;. Since
(4.3) holds, X?(¢) is recurrent in aD,. Let U(x") be a e-neighborhood of x° € 8D,, and set
¢=inf{¢t = 0; (X*t) € U(x")}. Note that E,{ < o for any x € aD,, and that v(X?(¢)) is a
closed martingale. By the continuity of v and the optimal sampling theorem, it follows
that v(x) = E,v(X%({)) = v(x°) for any x € aD,. Thus v(x) = constant on 3D,. By the
hypothesis, v(X’(¢ A 74)) is a P,-martingale for any x € D U 4D, u dD3;. We conclude that

v(x) = E;uo(X"(t A 14)) = limy 0o Ex0(X"(¢ A 74)) = Ex0(X"(14))
= constant for any x € D U 9D, U dDs.

THEOREM 4.2. Set 75 = inf{¢t = 0; X"(t) € dD}. Let F(x) € Cs(D) and G(x) € Cy(dD3).
Let (A.1), (C.1), and (C.2) hold. Assume that 8D, = &, and that

(4.5) E.1s<x foreach x€ D — aD,
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4.6) L is nondegenerate in a neighborhood of dD;.

Then, (i) of Theorem 4.1 is equivalent to the following (ii’):
(ii’). fap, G (%).uap, (dx) = 0 and [pF(x) p(dx) = 0, where usp, and p. are any invariant
measures of X'(t).

ProoF. Note that Ds # &, because (4.5) holds and 8D, = &. Since (4.5) and (4.6) hold,
we can prove that X"(¢) satisfies the Doeblin condition on D U Ds in a way similar to that
in Freidlin [3] and Ikeda [6]. Set u(x) = —E. [% F(X'(¢)) dt — E. [5 G(X"(¢)) df’(¢), and
a slight modification of the proof of Theorem 4.1 completes the proof.

5. On the stochastic solution of (N). In this section, we discuss the analytic meaning
of the stochastic solution of (N). We follow step by step the approach of Stroock-Varadhan,
which is used in the Fichera problem [19]. We assume that

(A5). L is nondegenerate in a neighborhood of 4Ds, and a,;, b; € C3R") for i, j =1,

...

DEFINITION 5.1. Let the Banach space E be the pair (, f) such that u, f € Cs(D). H
is the subset of E such that u is smooth and Lu = f on D U 8Ds, ou/dv = g on dDs. The
closure of H in E is denoted by H.

THEOREM 5.1. Let the hypothesis and (ii) of Theorem 4.1 hold. Then uap, € C%(3D:).

Proor. By Theorem 4.1, usp, € Cy(4D;). Let U be an open domain in 8D, and consider
the following Dirichlet problem on dD,:

U= Usp, on dU.

Since L, restricted in 8D-, is nondegenerate and (F — b.G) € C,(3D:), there is unique
C?%(U)-solution v. The stochastic representation of v is as follows:

&
v(x) = E.uon, (X*(&)) — E. (F — b.G)(XX¢)) dt

0
= Ex[f (b+:G — F)(X*(t)) dS] = u(x),
0

where & = inf{¢t = 0; X*(t) € aU}. Thus u(x) € C%(3D>).

THEOREM 5.2. Let the hypothesis and (ii) of Theorem 4.1 hold. Assume that (A.5)
holds and G € C}(8D). Then

(5.2) Lu=F on DuéD, and <a%)u =G on 4Ds,
if and only if (u, F) € H.

REMARK 5.1. Theorem 5.2 means that there is a sequence {u,} on H, such that u, —
u, Lu, — F, and du/dv — G on aD.

In order to prove Theorem 5.2, we present several lemmas.

LEMMA 5.1. If (u, F) € H, then (5.2) holds.
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ProoF. By the hypothesis, there is a sequence (', F*) such that Lu' = F* on D u aD,
U 8D and du'/dv = G on dDs. By Remark 4.1, (5.2) holds for each i, and note that the limit
of martingales is also a martingale.

LEmMA 5.2.  If (5.2) holds, then for any A =0
tATy

e MY (XT(E A 14)) — J’ e (F — Au)(X"(s)) ds
0

(5.3)
EATY
- j e ™G (X"(s)) db"(s)
0
is a P,-martingale.
Proor.
dlu(X"(t A 74))] = Xep» F(X7(8)) dt + x,,>: G(X"(2))dO"(t) + dM(2),
where M(t) is a P,-martingale. Using the generalized It6 formula, we have
d[e—)\(lAubu(Xr(t A 7_4))] = [X-r4>te_M“n)(F — )\u)(Xr(t))] dt
+ Xo>e NOG(XT(2) AOT(E) + 7N dM(2).

Since the last term of the above is a P,-martingale, the lemma is proved.

DEeFINITION 5.2. If the form (5.3) of a C,(D)-function u is a P,-martingale for any x
€ D U 3D, U 3D3, then we say that

(L-—ANu=F—-Au onDUaédD, and <a%)u=G on dD;.

DEFINITION 5.3. H, is the subset of E with smooth u such that (L — A)u=fon D U
aD; and du/dv = G on dD;. H, is the closure of H,.

LEMMA 5.3. If (L — N)u=fon D v 3D, and (3/dv)u = g on dDs, then

T4

u(x) = —Ex[j e ™M f(X"(8)) dt +I e ™M g(X'(t) d0’(t)}
o 0

+ E.[e™u(X"(r4))] for x € DU 4Dy U dDs.
Proor. This follows directly from Definition 5.2 for ¢ — oo,

LEMMA 5.4. If u is given by

T4

u(x) = —E, [J’ 4 e MA(XT(t)) dt +f
0

0

eMg(X'(2) dﬂ’(t)]
+ E.[e™h(X"(r4))],
then (u, f) € Hy.
Proor. Without loss of generality, we can and do assume that f and g are smooth.
Step 1. Let U, be a neighborhood of 4D,, and I's = dU, N D° be smooth. Set D’ = U,

U D. Let L be nondegenerate on D’ — D. By a method similar to that in Section 3, we
construct the diffusion X*(¢) on D’ such that X°(¢) = X" (¢) for ¢ = 7, and X°(¢) is associated
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with L outside of D and stops at I'z. Set &, = inf{¢ = 0; X°(¢) € I';}. Define

& &2
v(x) = —E, |:J e MA(XP(t)) dt +J e Mg(XP(t) d0’(t):|.
0

0

Note that X*(¢) € D’ — D for t = 74 a.s. In a way similar to that in the proof of Theorem
4.1, we see that v(x) is a Cy(D’)-function.
Step 2. Let Us be an open neighborhood of 3Ds, and I's = dUs N D be smooth. Consider
the following problem:
(L-MNw=f onUsND
(5.4) 3

w
a—=g ondD;, and w=v onIj.
14

Since L is nondegenerate on Us N D, (5.4) has the unique C}(Us N D)-function w. Let
X2(#) be the diffusion constructed in Step 1 of the proof of Theorem 3.1, and £; = inf{¢ =
0; X3(t) € T's}. The stochastic representation of w is given by

£

&
w(x) = —E,[I:J' e M f(XP(8)) dt + j e M g(X3(¢)) dﬂr(t)]
0 0

&2
+ E Jeu(X3(&))] = —E,[J e Mf(XP(t)) dt

0
&
+ J e g(X°(1)) dﬁ’(t)] = v(x) forx€ UsN D.
()

Thus v(x) € C3(Us N D).
Step 3. Let Uj be an open neighborhood of dD; such that U3 C Usand I's = Uz N D

be smooth. Consider the Dirichlet problem:
(L-ANW=f on(U3)°ND’
(5.5)
W=v onI3 and W=0 onl%.

By a modification of the argument in Freidlin [4], it follows that there is the unique Ci-
solution W of (5.5). Let £ = inf{t = 0; X°(¢) € I'4}, and

§27 &4
Wix) = _Ex[f e Mf(X°(t)) dt] + EJe™0(X°(¢4)); &2 > &4]
0

=v(x) forxe (Us)°N D’

We conclude that v(x) € CE((U%)¢ N D’).
Step 4. By Steps 2 and 3, it is proved that (L — A)v = fon Us N D, and on (U3)° N D".
Since [Us N D] N [(U3)¢ N D'] # ¢, it follows that
(L=XNv=f onD’
v

—_= aDs.
v g onobs

Let V be a smooth function such that V=0onDand V>0on D’ — D. Set f=f"— Nuyp,V
with a positive integer N. By a slight modification of Steps 1 — 3, we can and do set A =
Ao+ NV.

(3 t
vN(x) = —E, J’ {[F — Nup,VI(X?(#) exp[—)\ot - NJ V(X®(s)) ds]} dt
0 )

2] ¢
+ E, J {G(X5(t)) exp[—)\ot - Nj V(X°(s)) dsj|} do’ (t).
[ 0
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For each N, it follows that
(L=Xo)v"=f —Nup,V=f onDUD,

a
— vV =G onaéD;.
av

It is not difficult to show that | v — u||— 0 on D U 8D, as N — .
LEMMA 55. (u, f) € H if and only if (u, f — Au) € H,.
Proor. Clear.
Now, Lemmas 5.1 — 5.5 complete the proof of Theorem 5.2.
6. Appendix. We present sufficient conditions for (4.2).

LEmmMma 6.1.  Let (A1), (C.1), and (C.2) hold. Assume that D, = ¢ and that
(A.6). L is nondegenerate inside D.
Then

(6.1) supxepE T4 < 00,
ProoF. Step 1. Let U, i = 1, 2, 3 be e-neighborhoods, which are mutually disjoint. Set

U.= U;N D and r(x) = distance [x, dD]. We define a C}(D)-function W:(x) with adjustable
constants K, %, q:

Wi(x) = K — kr(x) xe U,
(6.2) = kr(x) x€ U,
=K—Fkr'x) x€Us

=K — kri(x) x € D? = {x € D; r(x) = 2¢).

(To construct Wi(x), we set Wi(x) as (6.2), and W(x) is given by a mollifier of Wi(x).) We
have LW (x) = —1 for x € D and W;(x) Z 0, with suitable K, k, and q.
Step 2. Applying the Ité formula to W,(x), we obtain

E.Wi(X"(14 A N)) — Wi(x)
T4AN T4AN F
= E,J LWi(X"(s)) ds + E,f (5 Wi(X"(s)) d0’(s)> =—E.rs A N.
i [ )

Since Wi(x) is nonnegative and bounded in D, we find that

supzep Exts A N = suprep Wilx) < oo.

The proof is completed by letting N 1 oo.
Let Uj be a neighborhood of the boundary 4Dy, and set Uy = Uj N D.

DEFINITION 6.1. We say that the Yo-bondary aD, is reflective, if there is a C%(Ub)-
function V(x) such that
(A.3) LVix)=—-1 inU, and V(x)=0 in U,.

LEMMA 6.2. Let (A.1), (C.1), and (C.2) hold. Assume that (A.6) holds and that D, is
reflective. Then (4.2) holds.

Proor. Step 1. Let Uj be a neighborhood of Dy, which is disjoint to UL, U:. Set Up
= Up N D. By using the same procedure as in Lemma 6.1, we obtain the C%(D — aD,)-
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function Ws(x) such that
Wz(x) = V(x) in Uo

= Wi(x) otherwise.
By the hypothesis, we have

Wa(x) 20 in D —9U,, and LWy(x)=—1 in D — aD,.
Step 2. Applying the It6 formula to W, we have for x € D — 9D,

E.[14s A N] = Wi(x) — E;Wa(X"(14 A N)) = Wa(x).
As N 1 o, it follows that
E.7s = Wy(x) <o for each x € D — aD,.
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