CONSTRUCTION OF A MARTINGALE WITH GIVEN ABSOLUTE VALUE

By M. T. BARLOW

Trinity College, University of Cambridge

Let Y be a nonnegative submartingale. A martingale M is constructed on an enlarged space, with the property that Y = |M|.

1. A well-known consequence of Jensen's inequality is that the absolute value of a martingale is a submartingale. Gilat, in [4], has proved the converse result that every nonnegative submartingale is equal in law to the absolute value of a martingale. More precisely, given a nonnegative submartingale $Y = (Y_t, t \ge 0)$ defined on a probability space (Ω, \mathcal{F}, P) , there exists a martingale $M = (M_t, t \ge 0)$ on another space $(\Omega', \mathcal{F}', P')$ such that |M| and Y have the same law.

This leaves open the question of whether we can construct a martingale M on (Ω, \mathscr{F}, P) such that |Y| = M. Indeed, this may not be possible if (Ω, \mathscr{F}, P) does not contain sources of randomisation additional to Y. In such a case it is necessary to enlarge (Ω, \mathscr{F}, P) , by taking its product with another probability triple. Protter and Sharpe [8], and Maisonneuve [5], have shown how M may then be constructed in the case where Y and Y_- are strictly positive, and Barlow and Yor [1] have given a construction of M in the case where the unique increasing previsible process B such that Y - B is a martingale satisfies $\int_0^t I(Y_{s-} > 0) \ dB_s = 0$.

In this paper we give a construction of M for a general nonnegative Y. The basic idea of the construction when Y_- is not zero is to define a set of points Γ at which M changes sign, and to do this in such a way that M is a martingale. A simple calculation suggests that the probability of a jump in the interval dt should be $(1/2Y_{t-})$ dB_t if $\Delta B_t = 0$, and $\frac{1}{2}\Delta B_t/(Y_{t-}+\Delta B_t)$ if $\Delta B_t \neq 0$. Thus if Y and Y_- are strictly positive then the points of Γ form a discrete set, and the sign change presents no problem. For a general Y, however, Γ may have accumulation points. The problem of defining M after a right accumulation point of Γ is solved by providing the points of Γ with a random sign, and defining the sign of M_t to be the sign of the last point in Γ before t. The left accumulation points of Γ do not present such a difficulty. A different approach must be adopted on the set $\{Y_- = 0\}$, and, as in [1], a random sign is assigned to each excursion of Y_- from 0.

We may summarise the results of this paper in the following theorem.

THEOREM 2. Let $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ be a complete filtered probability space satisfying the usual conditions, and Y be a nonnegative submartingale/ (\mathcal{F}_t) . Suppose there exists a random variable ϕ on (Ω, \mathcal{F}, P) independent of \mathcal{F}_{∞} and with continuous distribution function. Then we may construct a filtration (\mathcal{M}_t) and a process M_t such that

- (i) $\mathcal{F}_t \subset \mathcal{M}_t$ for $t \geq 0$;
- (ii) every martingale/ (\mathcal{F}_t) is a martingale/ (\mathcal{M}_t) ;
- (iii) M is a martingale/ (\mathcal{M}_t) ;
- (iv) |M| = Y.
- 2. Let $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ be a filtered probability space satisfying the usual conditions. If

Received July 17, 1979.

AMS 1970 subject classification. 60G45.

Key words and phrases. Martingale, submartingale.

 Γ is a subset of $\Omega \times [0, \infty)$ we set $\Gamma(\omega) = \{t \geq 0 : (\omega, t) \in \Gamma\}$, the cut of Γ at ω . Let $\#(\Gamma)(\omega)$ be the number of points in $\Gamma(\omega)$. Given nonnegative random variables S, T with S < T we denote the stochastic interval $\{(\omega, t) : S(\omega) < t < T(\omega)\}$ by (S, T), and the graph of S, that is $\{(\omega, t) : S(\omega) = t\}$ by [S]. Let $X = (X_t, t \geq 0)$ by any process with left limits: we define the processes X^T and X^{T^-} by $X_t^T = X_{t \wedge T}, X_t^{T^-} = X_t I(t < T) + X_{T^-} I(t \geq T)$. Throughout this paper by martingale (resp submartingale) we mean martingale (resp submartingale) with paths which are right-continuous and with left limits. If X is a martingale and T is a stopping time then X^T is a martingale, and if T is previsible X^{T^-} is also a martingale.

If (\mathscr{G}_t) is any filtration, and R is a nonnegative random variable, we define the σ -field \mathscr{G}_R by

$$\mathscr{G}_R = \sigma(X_R, X \text{ a process optional}/(\mathscr{G}_t)).$$

3. Now let Y be a nonnegative submartingale/ (\mathcal{F}_t) . Let B be the increasing previsible process such that Y - B is a martingale, let $A_t = \int_0^t I(Y_{s-} > 0) \ dB_{s}$, and let $A = A^c + A^d$ be the decomposition of A into continuous and pure jump parts, as in [3], IV. T37.

We shall assume there exists a σ -field $\mathcal{H} \subset \mathcal{F}$ independent of \mathcal{F}_{∞} and carrying a random variable with a continuous distribution function; if no such σ -field exists then we may construct one by taking a suitable product enlargement of (Ω, \mathcal{F}, P) . The space (Ω, \mathcal{H}, P) is then sufficiently rich to support any sequence of independent random variables.

Let us define on ${\mathscr H}$ the following independent sequences of random variables:

- (i) sequences ϕ_n , η_n , ψ_{nm} , $n \ge 1$, $m \ge 1$ of independent rv's taking values in $\{-1, 1\}$ and with $E\phi_n = E\eta_n = E\psi_{nm} = 0$;
 - (ii) a sequence ρ_n , $n \ge 1$ of independent rv's distributed uniformly on [0, 1];
- (iii) sequences λ_{nm} , $n \geq 1$, $m \geq 1$ of independent rv's with negative exponential distribution with mean 1.

Set, for $n \ge 1$,

$$J_t^n = \int_0^t (1/Y_{s-}) I_{[1/n,1/(n-1))}(Y_{s-}) dA_s^c \qquad (I_{[1,\infty)} \quad \text{if} \quad n=1).$$

Thus J^n is continuous and $J_t^n \leq nA_t^c$. Now for $n \geq 1$ and $j \geq 1$ let

$$T^{nj} = \inf\{t \ge 0: J_t^n = \sum_{k=1}^j \lambda_{nk}\}.$$

Let (S_j) be a sequence of disjoint previsible times exhausting the jumps of A^d , and set

$$R^{j} = \begin{cases} S_{j} & \text{if } \rho_{j} \leq \Delta A_{S_{j}}/(Y_{S_{j^{-}}} + \Delta A_{S_{j}}) \\ +\infty & \text{otherwise.} \end{cases}$$

Note that $Y_{R_j^-} > 0$, as A increases only on $\{Y_- > 0\}$. We associate with T^{nj} the sign ψ_{nj} , and with R^j the sign η_j . Let $T^{0j} = R^j$, $\psi_{0j} = \eta_j$, $\Gamma^n = \bigcup_{j=1}^{\infty} [T^{nj}]$, and $\Gamma = \bigcup_{n=0}^{\infty} \Gamma^n$.

LEMMA 1.

- (i) $[T^{nj}] \subset \{1/n \leq Y_{t-} \leq 1/n 1\}$ for $n \geq 1$;
- (ii) for each $t \ge 0$, $n \ge 1$, $\#(\Gamma^n \cap [0, t])$ is finite a.s.;
- (iii) a.s. for all t, $\#(\Gamma^0 \cap [0, t] \cap \{Y_- \ge 1/n\})$ is finite;
- (iv) a set Ω_0 exists with $P(\Omega_0) = 1$, and with the property that if [U, V] is any stochastic interval such that $V < \infty$ and $[U, V] \subset \{Y \ge 1/n\}$, then $\#(\Gamma \cap [U, V])$ is finite on Ω_0 ;
- (v) let U be a right (resp left) accumulation point of Γ . Then $Y_U = 0$ (resp $Y_{U^-} = 0$) on Ω_0
- (vi) Let $n \ge 1$, $j \ge 1$, and let U be any nonnegative rv measurable with respect to $\sigma(\mathscr{F}_{\infty}, T^{mk}, m \ne n, k \ge 1)$. Then $P(T^{nj} = U) = 0$;
 - (vii) Γ has no double point a.s.

PROOF. (i) is immediate from the definition of T^{nj} . We have $\#(\Gamma^n \cap [0, t]) = \sup\{r: \sum_{k=1}^r \lambda_{nk} \leq J_t^n\}$, from which (ii) follows. For each j

$$P(\{R_j = S_j\} \cap \{S_j \le t\} \cap \{Y_{S_{j-1}} \ge 1/n\} | \mathscr{F}_{\infty}) \le n\Delta A_{S_j} I(Y_{S_{j-1}} \ge 1/n) I(S_j \le t),$$

as ρ_i is independent of \mathscr{F}_{∞} . Thus by Borel-Cantelli, as $EA_t < \infty$, we have

$$P(R_j = S_j, S_j \ge t, Y_{S,-} \ge 1/n \text{ for infinitely many } j) = 0,$$

proving (iii).

- (iv) For each t and n let F_{nt} (resp G_{nt}) be the set on which (ii) (resp (iii)) fails. Set $\Omega_0^c = \bigcup_{n \ge 1} \bigcup_{m \ge 1} (F_{nm} \bigcup G_{nm})$, and note that (ii) and (iii) hold identically on Ω_0 : the result is now immediate.
- (v) Let $\omega \in \Omega_0$, and suppose that $Y_U(\omega) > 0$. Then $Y_U(\omega) > 1/n$ for some n, and by the right-continuity of Y there exists $V(\omega)$ with $V(\omega) > U(\omega)$ such that $Y_s(\omega) > 1/n$ for $U(\omega) \le s \le V(\omega)$. By (iv) there are only finitely many points of $\Gamma(\omega)$ in $[U(\omega), V(\omega)]$, so that $U(\omega)$ is not a right accumulation point of $\Gamma(\omega)$. Similarly, if $Y_{U^-} > 0$, U cannot be a left accumulation point of $\Gamma(\omega)$.
- (vi) $P(T^{nj} = S) = P(\sum_{k=1}^{j} \lambda_{nj} = Z_{S}^{n})$, and the last term is 0 as $\sum_{k=1}^{j} \lambda_{nk}$ has a continuous distribution and is independent of Z_{S}^{n} .
- (vii) It is sufficient to show that $P(T^{mk} = T^{nj}) = 0$ when $(m, k) \neq (n, j)$. This is immediate if n = m, and follows from (vi) if $n \neq m$.

Let ϵ_{nm} denote the *m*th excursion of Y_{-} from 0 the duration of which lies in the interval [1/n, 1/n - 1), for $n \ge 1$, $m \ge 1$. To avoid too many subscripts we shall renumber the ϵ_{nm} so that they are indexed by a single integer n. Let α_n , β_n denote the left and right endpoints of ϵ_n : note that β_n is a stopping time, which might not be the case had we chosen another way of numbering these excursions. We associate with the excursion ϵ_n the sign ϕ_n .

Let

$$C_t = \sum_n I_{[\alpha_n,\beta_n]}(t).$$

For $n \ge 0, j \ge 1$, let

$$S^{nj} = \inf\{t > T^{nj} : (\omega, t) \in \Gamma \cap \{Y_- = 0\}\}.$$

By Lemma 1(v), $S^{nj} > T^{nj}$ a.s. on $\{Y_{T^{nj}} > 0\}$. Set $\Lambda = \bigcup_{n \ge 0} \bigcup_{j \ge 1} [T^{nj}, S^{nj})$, and define a second sign-change process as follows:

$$G_t = \sum_{n \ge 0; j \ge 1} I_{[T^{n_j}, S^{n_j})}(t) \ \psi_{nj} + I_{\Lambda^c}(t).$$

By the definition of S^{nj} the intervals $\{T^{nj}, S^{nj}\}$ are disjoint, and therefore $|G_t| = 1$.

Let $M_t = C_t G_t Y_t$. We have $|M_t| = Y_t$, and will prove that M is a martingale. We may note that if $Y_- > 0$ then C is constant, and that if A is 0 then G = 1. Thus the role of C is to make M a martingale on $\{Y_- = 0\}$, and that of G is to make M a martingale on $\{Y_- > 0\}$.

LEMMA 2. M is right-continuous a.s.

PROOF. On $\{Y_t = 0\}$ we have $|\limsup_{s \downarrow t} M_s| \leq \limsup_{s \downarrow t} Y_s = 0$ so that M_{t+} exists and equals M_t . Let $\omega \in \Omega_0$, and suppose that $Y_t(\omega) > 0$. By right-continuity $Y_{s-}(\omega) > 0$ for $s \in (t, t + \epsilon(\omega))$ for some $\epsilon(\omega) > 0$, and hence $t \in [\alpha_n, \beta_n)$ for some n. Thus $C_t(\omega) = C_{t+}(\omega)$. As for G, if $(\omega, t) \in \Lambda$ then $(\omega, t) \in [T^{nj}, S^{nj})$ for some n, j, and consequently $G_{t+}(\omega) = G_t(\omega)$. If $(\omega, t) \notin \Lambda$ then as, by Lemma 1(v), t is not a right accumulation point of $\Gamma(\omega)$, $[t, t + \delta(\omega)] \cap \Gamma(\omega) = \emptyset$ for sufficiently small $\delta(\omega) > 0$, and thus $G_{t+}(\omega) = G_t(\omega)$. Hence M is right-continuous on Ω_0 .

Since M is right-continuous, once we show that M is a martingale it will follow that M has left limits.

Now let \mathscr{C}_t and \mathscr{G}_t be the natural (right-continuous) filtrations of the processes C and G. Set $\mathscr{M}_t^0 = \mathscr{C}_t \vee \mathscr{G}_t \vee \mathscr{F}_t$, and $\mathscr{M}_t = \bigcap_{r>t} \mathscr{M}_r^0$: thus M is (\mathscr{M}_t) -adapted. It follows from the definition of \mathscr{M}_{t-} (see [3], III, D27]), that $\mathscr{M}_{t-} = \mathscr{C}_{t-} \vee \mathscr{G}_{t-} \vee \mathscr{F}_{t-}$.

Let $\mathcal{H}_1 = \sigma(\lambda_{nm}, \rho_n, n \ge 1, m \ge 1)$, $\mathcal{H}_2 = \sigma(\phi_n, n \ge 1)$, and $\mathcal{H}_3 = \sigma(\eta_n, \psi_{nm}, n \ge 1, m \ge 1)$. Then $\mathcal{C}_t \subset \mathcal{F}_{\infty} \vee \mathcal{H}_2$, and $\mathcal{G}_t \subset \mathcal{F}_t \vee \mathcal{H}_1 \vee \mathcal{H}_3$. Note also that $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$, and \mathcal{F}_{∞} are independent.

We shall make use of some elementary results on conditional independence. Let \mathscr{E}_1 , \mathscr{E}_2 and \mathscr{E}_3 be sub- σ -fields of \mathscr{F} , with $\mathscr{E}_2 \subset \mathscr{E}_1$.

- (i) \mathscr{E}_1 and \mathscr{E}_3 are conditionally independent of given \mathscr{E}_2 (we abbreviate this to \mathscr{E}_1 and \mathscr{E}_3 are c.i./ \mathscr{E}_2) if and only if $E(e_3 | \mathscr{E}_1) = E(e_3 | \mathscr{E}_2)$ for all $e_3 \in b\mathscr{E}_3$.
- (ii) If \mathscr{E}_1 and \mathscr{E}_3 are c.i./ \mathscr{E}_2 , and \mathscr{E}_4 is independent of $\mathscr{E}_1 \vee \mathscr{E}_3$ then $\mathscr{E}_1 \vee \mathscr{E}_4$ and \mathscr{E}_3 are c.i./ \mathscr{E}_2 .
- (iii) Let \mathscr{E}_{2}^{n} be a sequence of σ -fields, with $\mathscr{E}_{2}^{n} \subset \mathscr{E}_{1}$ and such that \mathscr{E}_{1} and \mathscr{E}_{3} are c.i./ \mathscr{E}_{2}^{n} for each n. Then \mathscr{E}_{1} and \mathscr{E}_{3} are c.i./ $\cap_{n=1}^{\infty} \mathscr{E}_{2}^{n}$.
 - ((i) is a corollary of [6], II, T51, and (ii) and (iii) follow easily from (i).)

LEMMA 3. \mathcal{M}_t and \mathcal{F}_{∞} are c.i./ \mathcal{F}_t .

REMARK. This implies that every martingale/ (\mathcal{F}_t) is a martingale/ (\mathcal{M}_t) -see [2]. In particular Y is a submartingale/ (\mathcal{M}_t) .

PROOF. Suppose we have that \mathscr{F}_{∞} and \mathscr{C}_t are c.i./ \mathscr{F}_t . An application of the monotone class lemma now shows that \mathscr{F}_{∞} and $\mathscr{C}_t \vee \mathscr{F}_t$ are c.i./ \mathscr{F}_t ; hence, by (ii) above, \mathscr{F}_{∞} and $\mathscr{C}_t \vee \mathscr{F}_t \vee \mathscr{H}_1 \vee \mathscr{H}_3$ are c.i./ \mathscr{F}_t . But $\mathscr{M}_t^0 \subset \mathscr{C}_t \vee \mathscr{F}_t \vee \mathscr{H}_1 \vee \mathscr{H}_3$, so that \mathscr{M}_t^0 and \mathscr{F}_{∞} are c.i./ \mathscr{F}_t . Now $\mathscr{M}_t \subset \mathscr{M}_r^0$ for r > t, and therefore \mathscr{M}_t and \mathscr{F}_{∞} are c.i./ \mathscr{F}_r for any r > t; the result follows by (iii).

A monotone class argument now shows that it is sufficient to check that for $f \in b \mathcal{C}_t$ of the form $f = \prod_{i=1}^n I(C_{t_i} = a_i)$, where $0 \le t_1 \le \cdots \le t_n \le t$ and $a_i = -1$, 0 or 1, we have $E(f \mid \mathscr{F}_{\infty}) \in \mathscr{F}_t$. We will treat only the case n = 1, as the proof given below may easily be extended to general n.

Now $\{|C_t|=1\}=\bigcap_{m\geqslant 1}\bigcup_{n\geqslant m}\{Y_{s-}>0, \text{ for }s\in(t,\,t+1/n)\}$, which is $\mathscr{F}_{t+}=\mathscr{F}_t$ measurable. Thus $|C_t|$ is (\mathscr{F}_t) -adapted, so that if $a_1=0$ then $f\in\mathscr{F}_{t_1}$. Suppose that $|a_1|=1$. Then

$$\begin{split} E(f|\mathscr{F}_{\infty}) &= E\left(\sum_{n} I_{[\alpha_{n},\beta_{n})}(t_{1})I(\phi_{n} = a_{1}) \,|\, \mathscr{F}_{\infty}\right) \\ &= \sum_{n} I_{[\alpha_{n},\beta_{n})}(t_{1}) \cdot (1/2) \\ &= \frac{1}{2}I(|\, C_{t_{1}}| = 1) \in \mathscr{F}_{t}. \end{split}$$

LEMMA 4.

- (i) $E(\phi_n I(\alpha_n \geq t) | \mathcal{M}_{t-} \vee \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{H}_3) = 0;$
- (ii) $E(\psi_{nj}I(T^{nj} \geq t) | \mathcal{M}_{t-} \vee \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{H}_2) = 0.$

$$Efg\phi_n I(\alpha_n \ge t) = \sum_r E(\phi_n \phi_r g I(\alpha_n \ge t) I(\alpha_r \le t < \beta_r)).$$

The term in the sum with r = n is zero, since $t_1 < t$, and as $E(\phi_n \phi_r | \mathscr{F}_{\infty}) = 0$ for $r \neq n$ the remaining terms are also zero. The proof for m > 1 is essentially the same.

(ii) Since $\mathcal{M}_{t-} \vee \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{H}_2 \subset \mathcal{G}_{t-} \vee \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{H}_2$, $\psi_{nj}I(T^{nj} \geq t) \in \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{H}_3$, and $\mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{H}_3$ and \mathcal{H}_2 are independent, it is sufficient to prove that $E(\psi_{nj}I(T^{nj} \geq t) | \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{G}_{t-}) = 0$. Thus by the monotone class lemma it is enough that $Efg\psi_{nj}I(T^{nj} \otimes t) | \mathcal{F}_{\infty} \vee \mathcal{H}_1 \vee \mathcal{G}_{t-}) = 0$.

 $\geq t$) = 0 for $f \in b(\mathscr{F}_{\infty} \vee \mathscr{H}_1)$, and g of the form $g = \prod_{i=1}^m I(G_{t_i} = a_i)$, where $0 \leq t_1 \leq \cdots \leq t_m < t$, and $a_i = \pm 1$. As before we shall verify this only for m = 1: the proof for m > 1 is very similar. We have

$$Efg\psi_{ni}I(T^{nj} \geq t) = Ef\psi_{ni}I(T^{nj} \geq t)(I_{\Lambda^c}(t_1)I(a_1 = 1) + \sum_{r \geq 0; k \geq 1}I_{[T^{rk},S^{rk})}(t_1)I(\psi_{rk} = a_1)).$$

All the terms in this last expression except those containing ψ 's are $\mathscr{F}_{\infty} \vee \mathscr{H}_1$ measurable. The result therefore follows, since $E(\psi_{nj} | \mathscr{F}_{\infty} \vee \mathscr{H}_1 \vee \sigma(\psi_{rk})) = 0$ for $(r, k) \neq (n, j)$, and $I(T^{nj} \geq t)I(T^{nj} \leq t_1 < S^{nj}) = 0$.

The following time-substitution result will be required later.

LEMMA 5. Let (\mathscr{E}_t) and (\mathscr{F}_t) be two filtrations, such that \mathscr{E}_{∞} and \mathscr{F}_{∞} are independent. Let Z be a martingale/ (\mathscr{E}_t) , and K be a continuous, nondecreasing (\mathscr{F}_t) -adapted process, satisfying $0 \le K_t \le \lambda t$ for some $\lambda > 0$. Then $(\mathscr{F}_t \vee \mathscr{E}_{K_t}, t \ge 0)$ is a nondecreasing family of σ -fields, and $(Z_K, t \ge 0)$ is a martingale/ $(\mathscr{F}_t \vee \mathscr{E}_{K_t})$.

PROOF. Z_{K_i} is right-continuous, as Z and K are.

The definition of \mathscr{E}_{K_t} is given in Section 2: note that $(\mathscr{E}_{K_t}, t \geq 0)$ is not necessarily nondecreasing. Let X be any (\mathscr{E}_t) -optional process: then since X^s is also (\mathscr{E}_t) -optional, $X_{s \wedge K_t} \in \mathscr{E}_{K_t}$, and thus $X_{s \wedge K_t} \in \mathscr{F}_t \vee \mathscr{E}_{K_t}$ for any $s \geq 0$. Consequently, as $K_s \in \mathscr{F}_t$ when $s \leq t$, which proves that $(\mathscr{F}_t \vee \mathscr{E}_{K_t}, t \geq 0)$ is nondecreasing.

Now let $\mathscr{E}_t' = \mathscr{E}_t \vee \mathscr{F}_{\infty}$: then \mathscr{E}_{∞} and \mathscr{E}_t' are c.i./ \mathscr{E}_t , and thus Z is a martingale/(\mathscr{E}_t')—see [2]. K_t is a bounded stopping time/(\mathscr{E}_t'), so that $E(Z_{K_t} | \mathscr{E}_{K_s}') = Z_{K_s}$. Therefore, as $Z_{K_s} \in \mathscr{F}_s \vee \mathscr{E}_{K_s} \subset \mathscr{E}_{K_s}', Z_{K_s}$ is a martingale/($\mathscr{F}_t \vee \mathscr{E}_{K_s}$).

THEOREM 1. M is a martingale/ (\mathcal{M}_t) .

PROOF. It is sufficient to prove that for s < r

$$(1) E(M_r|\mathcal{M}_{s-}) = E(M_s|\mathcal{M}_{s-}).$$

For suppose that (1) is true, if (s_n) decreases to s with $s_1 < r$ then, since $\mathcal{M}_s = \cap_n \mathcal{M}_{s_n}$, $E(M_r | \mathcal{M}_{s_n})$ converges a.s. and in L^1 to $E(M_r | \mathcal{M}_s)$. On the other hand

$$E | E(M_{s_n} | \mathcal{M}_{s_n}) - M_s | \le E | M_{s_n} - M_s |.$$

This last expression tends to 0 as $n \to \infty$, as M is right-continuous, $|M_{s_n} - M_s| \le E(Y_r | \mathscr{F}_{s_n}) + Y_s$, and $(E(Y_r | \mathscr{F}_{s_n}), n \ge 1)$ is uniformly integrable. Thus $E(M_r | \mathscr{M}_s) = M_s$, and M is a martingale.

So let s, r be fixed with s < r. Let T_1 be the debut of $\{Y_- = 0\} \cap (s, \infty)$, and T_2 be the debut of $(\{Y_- = 0\} \cap (s, \infty)) \setminus (T_1, \infty)$. This set is previsible, and is also the graph of T_2 : thus T_2 is previsible, and $T_2 > s$. Let T_3 be the debut of $\Gamma \cap (s, \infty)$, and $T = T_1 \wedge T_3$.

We have $M_r = M_r I(r \ge T) + M_r I(r < T)$. First let us verify that $E(M_r I(r \ge T) | \mathcal{M}_{s-}) = 0$. For this it is enough that

(2)
$$E(C_r G_r I(Y_r \neq 0) I(r \geq T) | \mathcal{M}_{s-} \vee \mathcal{F}_{\infty}) = 0.$$

Substituting for C_r and G_r , and rearranging the terms, we have

(3)
$$C_r G_r I(Y_r \neq 0) I(r \geq T) = \sum_m \phi_m f_m + \sum_{m,n,j} \phi_m \psi_{nj} g_{mnj},$$

where $f_m = I(Y_r \neq 0)I(r \geq T)I_{[\alpha_m,\beta_m)}(r)(I_{\Lambda^c}(r) + I(T = T_1)\sum_{n,j}\psi_{nj}I_{[T^{nj},S^{nj})}(r))$, and

$$g_{mnj} = I(Y_r \neq 0)I(r \geq T)I(T < T_1)I_{[\alpha_m,\beta_m)}(r)I_{[T^{n_j},S^{n_j})}(r).$$

LEMMA 6.

- (i) $g_{mnj}I(T^{nj} < s) = 0$ a.s.;
- (ii) $f_m I(\alpha_m < s) = 0$ a.s.

PROOF. (i) If $T < T_1$ and $r \ge T$ then $T_3 \le r$, and if $T^{nj} < s$ then $S_{nj} \le T_3$. Consequently $I(r \ge T)I(T < T_1)I(T^{nj} < s < r < S^{nj}) = 0$, from which it is immediate that $g_{mnj}I(T_{nj} < s) = 0$.

(ii) On $\{\alpha_m < s < \beta_m\}$ we have $T_1 = \beta_m$; thus $\{T_1 \le r\} \cap \{\alpha_m < s < r < \beta_m\} = \emptyset$. Therefore $I(T = T_1)I(T \le r)I_{[\alpha_m,\beta_m)}(r)I(\alpha_m < s) = 0$, and it remains to show that P(F) = 0, where $F = \{Y_r \ne 0\} \cap \{r \ge T\} \cap \{\alpha_m < s < r < \beta_m\} \cap \{r \in \Lambda^c\}$.

Suppose $\omega \in F \cap \Omega_0$, where Ω_0 is the set of probability one introduced in Lemma 1. Now $r \notin \Gamma(\omega)$, and $Y_r(\omega) \neq 0$; therefore, by Lemma 1(v), r is not a right accumulation point of $\Gamma(\omega)$, and so there exists $\epsilon(\omega) > 0$ such that $[r, r + \epsilon(\omega)) \cap \Gamma(\omega) = \emptyset$. Let $\tau(\omega) = \sup\{u < r : u \in \Gamma(\omega)\}$. As $T_1(\omega) = \beta_m(\omega)$, and $T(\omega) \leq r$, it follows that $T_3(\omega) \leq r$, and hence that $(s, r + \epsilon(\omega)) \cap \Gamma(\omega) \neq \emptyset$. Thus $\tau(\omega) \geq s$. However, $Y_-(\omega)$ is never 0 on $(\alpha_m(\omega), \beta_m(\omega))$, which implies firstly that $\tau(\omega) < r$, and secondly that $\tau(\omega)$ is not a left accumulation point of $\Gamma(\omega)$. Since $\tau(\omega)$ cannot be a right accumulation point of $\Gamma(\omega)$ either, $\tau(\omega) = T^{nj}(\omega)$ for some n, j.

By the definition of τ , $(\tau(\omega), r + \epsilon(\omega)) \cap \Gamma(\omega) = \emptyset$, and thus $S^{nj}(\omega) \ge r + \epsilon(\omega)$. But then $r \in [T_{nj}(\omega), S^{nj}(\omega)) \subset \Gamma(\omega)$, which is a contradiction. Therefore $F \cap \Omega_0 = \emptyset$, and so P(F) = 0, completing the proof of the lemma.

Resuming the proof of Theorem 2, by Lemma 6 we may rewrite (3) in the form

(4)
$$C_r G_r I(Y_r \neq 0) I(r \geq T) = \sum_m \phi_m f_m I(\alpha_m \geq s) + \sum_{m,n,j} \phi_m \psi_{nj} g_{mnj} I(T^{nj} \geq s).$$

We have $f_m \in \mathscr{F}_{\infty} \vee \mathscr{H}_1 \vee \mathscr{H}_3$, and $g_{nmj} \in \mathscr{F}_{\infty} \vee \mathscr{H}_1$. By Lemma 4, $E(\phi_m f_m I(\alpha_m \geq s) | \mathscr{M}_{s-} \vee \mathscr{F}_{\infty} \vee \mathscr{H}_1 \vee \mathscr{H}_3) = 0$, and $E(\phi_m g_{mnj} \psi_{nj} I(T^{nj} \geq s) | \mathscr{M}_{s-} \vee \mathscr{F}_{\infty} \vee \mathscr{H}_1 \vee \mathscr{H}_2) = 0$, which establishes (2).

To complete the proof of the theorem we must show that $E(M_rI(r < T) | \mathcal{M}_s) = M_s$. Let $U = Y^{T_1 \wedge (T_2 -)}$: thus, $U_t = \int_0^t I_{[0,T_1]}(u) I_{[0,T_2]}(u) \ dY_u$, U is a submartingale/ (\mathcal{M}_t) , and $U - B^{T_1 \wedge (T_2 -)}$ is a martingale/ (\mathcal{M}_t) . Now $Y_{T_1}I(T_1 < T_2) = Y_{T_2 -}I(T_1 = T_2) = 0$, and hence $U_t = Y_tI(t < T_1)$ and thus $Y_tI(t < T) = U_tI(t < T_3)$ for $s \le t$. By the definition of T we have $C_rG_rI(r < T) = C_sG_sI(r < T)$, so that $E(M_rI(r < T) | \mathcal{M}_s) = C_sG_sE(U_rI(r < T_3) | \mathcal{M}_s)$. We have that $U_sI(s = T_3) = 0$ by Lemma 1(v), since $T_3 = s$ only if s is a right accumulation point of Γ , and therefore that $U_sI(s < T_3) = Y_s$.

It is therefore sufficient to prove that $U_tI(t < T_3)$ is a martingale/ (\mathcal{M}_t) for $t \ge s$, or, equivalently, that $V_t = I(t \ge s)(U_tI(t < T_3) - U_s)$ is a martingale/ (\mathcal{M}_t) for $t \ge 0$.

A simple application of Itô's formula for semimartingales ([7], IV, 21, 23) shows that if Z is a nonnegative submartingale with decomposition $Z = Z_0 + K + N$ ($K_0 = N_0 = 0$, K previsible increasing, N a martingale), and D is a nonnegative, decreasing optional process with $D_s = 1$ then $I_{[s,\infty)}(Z_tD_t - Z_s)$ is a martingale if and only if

(5)
$$\int_{s}^{t} Z_{u} dD_{u} + \int_{s}^{t} D_{u-} dK_{u} \text{ is a martingale.}$$

So set $D_t = I(t < T_3)$, and Z = U. Evaluating (5) and using the fact that $B_t^{T_1 \wedge (T_2 -)} - B_s = A_t^{T_1} - A_s$, we see that V is a martingale $/(\mathcal{M}_t)$ if and only if

(6)
$$-I_{[T_3,\infty)}(t)U_{T_3}+I_{[s,\infty)}(t)(A_t^{T_1\wedge T_3}-A_s) \quad \text{is a martingale}/(\mathcal{M}_t).$$

Let T_4' be the debut of $\bigcup_{n=1}^{\infty} \Gamma^n \cap (s, \infty)$, and T_5' be the debut of $\Gamma^0 \cap (s, \infty)$. Let T_4 and T_5 be the restrictions of T_4' , T_5' to $\{Y_{T_4'} > 0\}$, $\{Y_{T_5'} > 0\}$ respectively. Then, since by Lemma 1(v) T_4 and T_5 cannot be right accumulation points of Γ , $[T_4] \subset \bigcup_{n=1}^{\infty} \Gamma^n$ and $[T_5] \subset \bigcup_{j=1}^{\infty} [S^j]$. Thus T_5 is accessible, and $P(T_4 = T_5) = 0$. Therefore $U_{T_3} = U_{T_4}I(T_3 = T_4) + U_{T_5}I(T_3 = T_5)$. Further, by Lemma 1(vi) $\Delta Y_{T^{n_j}} = 0$ a.s. for $n \ge 1$, $j \ge 1$, so that $\Delta U_{T_4} = 0$ a.s. Hence

$$U_{T_2}I_{[T_2,\infty)}(t) = U_{T_4}-I_{[T_4,\infty)}(t \wedge T_3) + U_{T_5}I_{[T_5,\infty)}(t \wedge T_3),$$

and (6) is immediate from Lemma 7 and Proposition 8.

LEMMA 7.
$$W_t = U_{T_5} I_{[T_5,\infty)}(t \wedge T_3) - \int_s^{t \wedge T_3} I_{(s,T_1]}(u) dA_u^d$$
 is a martingale/ (\mathcal{M}_t) .

PROOF. As W jumps only on $\bigcup_{j=1}^{\infty} [S_j]$ it is sufficient to verify that $E(\Delta W_{S_j} | \mathcal{M}_{S_{j^-}}) = 0$ for each j. Now $\Delta W_{S_j} = I(s < S_j)I(S_j \ge T)[Y_{S_j}I(S_j = R^j) - \Delta A_{S_j}]$. As ρ_j is independent of $\mathcal{M}_{S_{j^-}} \vee \mathscr{F}_{\infty}$ we have $E(I(S_j = R^j) | \mathcal{M}_{S_{j^-}} \vee \mathscr{F}_{\infty}) = \Delta A_{S_j}/(\Delta A_{S_j} + Y_{S_{j^-}})$. Finally, $E(Y_{S_j} | \mathcal{M}_{S_{j^-}}) = Y_{S_{j^-}} + \Delta A_{S_j}$, and so as $I(s < S_j)I(S_j \ge T) \in \mathcal{M}_{S_{j^-}}$ a simple computation completes the proof.

Proposition 8. $X_t = U_{T_t} - I_{[T_t,\infty)}(t \wedge T_3) - \int_s^{t \wedge T_3} I_{(s,T_t]}(u) dA_u^c$ is a martingale/ (\mathcal{M}_t) .

PROOF. Let $V_t^n = \sum_{j=1}^{\infty} I_{[T^{n_j},\infty)}(t)$ for $n \geq 1$. We shall show first that $V^n - J^n$ is a martingale $/(\mathcal{M}_t)$. Let n be fixed, and let $\tilde{\mathcal{F}}_t = \mathcal{F}_t \vee \sigma(V_s^n, s \leq t)$. Now certainly $\tilde{\mathcal{F}}_t$ and $\tilde{\mathcal{F}}_{\infty}$ are c.i. $/\tilde{\mathcal{F}}_t$; therefore by property (ii) of conditional independence given above, $\tilde{\mathcal{F}}_t \vee \mathcal{H}_2 \vee \mathcal{H}_3 \vee \sigma(\lambda_{rj}, r \neq n, j \geq 1)$ and $\tilde{\mathcal{F}}_{\infty}$ are c.i. $/\tilde{\mathcal{F}}_t$. Thus, as $\mathcal{M}_t^0 \subset \tilde{\mathcal{F}}_t \vee \mathcal{H}_1 \vee \mathcal{H}_3 \vee \sigma(\lambda_{rj}, r \neq n, j \geq 1)$, \mathcal{M}_t^0 and $\tilde{\mathcal{F}}_{\infty}$ are c.i. $/\tilde{\mathcal{F}}_t$, and so, by property (iii), \mathcal{M}_t and $\tilde{\mathcal{F}}_{\infty}$ are c.i. $/\tilde{\mathcal{F}}_{t+}$. It is therefore sufficient to show that $V^n - J^n$ is a martingale $/(\tilde{\mathcal{F}}_{t+})$.

Let $N_t = \max\{j: \sum_{i=1}^{j} \lambda_{ni} \leq t\}$. By the definition of the λ_{ni} , N_t is a Poisson process, and so $N_t - t$ is a martingale relative to its natural filtration. Applying Lemma 5, with $Z_t = N_t - t$, $\mathscr{E}_t = \sigma(Z_s, s \leq t)$, $\mathscr{F}_t = \mathscr{F}_t$, and $K = J^n$, we deduce that $N_{J_t^n} - J_t^n$ is a martingale/ $(\mathscr{F}_t \vee \mathscr{E}_{J_t^n})$. However $N_{J_t^n} = V_t^n$, and thus as $(\mathscr{F}_t \vee \mathscr{E}_{J_t^n}, t \geq 0)$ is a nondecreasing family of σ -fields, $\sigma(V_s^n, s \leq t) \subset \mathscr{F}_t \vee \mathscr{E}_{J_t^n}$. Therefore $\widetilde{\mathscr{F}}_t \subset \mathscr{F}_t \vee \mathscr{E}_{J_t^n}$, which implies that $V^n - J^n$ is a martingale/ $(\widetilde{\mathscr{F}}_t)$. Since $V^n - J^n$ is right-continuous, $V^n - J^n$ is also a martingale/ $(\widetilde{\mathscr{F}}_{t+})$.

Let $X_t^n = \int_s^t I_{(s,T_3]}(u) U_{u-} d(V^n - J^n)_u$ for each $n \ge 1$. X^n is a local martingale/ (\mathcal{M}_t) , and as $E(\int_0^t (U_u - I_{(s,T_3]}(u))^2 d[V^n - J^n, V^n - J^n]_u)^{1/2} \le E(U_{T_4} - I(t \ge T_4)) \le EY_t < \infty, X^n$ is a martingale/ (\mathcal{M}_t) . Let $H_t^n = \int_s^t I_{(s,T_3]}(u) U_{u-} dV_u^n$: evaluating this integral we have that $H_t^n = I_{[T_4,\infty)}(t \land T_3)I(T_4 \in \Gamma^n)U_{T_4}$. Set $\tilde{H}_t^n = \int_s^t I_{(s,T_3]}(u) U_{u-} dJ_u^n$. Then, as $U_{u-} = I(u \le T_1)Y_{u-}$, $\tilde{H}_t^n = \int_s^{t \land T_3} I_{(s,T_1]}(u)I(1/n \le Y_{u-} < 1/(n-1)) dA_u^n$. The martingale $V^n - J^n$ is of finite variation, and $I_{(s,T_3)}U_-$ is previsible, so that $X^n = H^n - \tilde{H}^n$.

Now $\sum_{n=1}^{\infty} I(T_4 \in \Gamma^n) = I(T_4 < \infty)$ a.s., and therefore $\sum_1^{\infty} H_t^n = U_{T_4-I_{T_t,\infty}}(t \wedge T_3)$ a.s. Also, $\{Y_- > 0\} \cap (s, T_1) = (s, T_1)$, and as A^c is continuous, $\sum_1^{\infty} \tilde{H}_t^n = \int_s^{t \wedge T_3} I_{(s,T_1](u)} dA_u^c$, and consequently $X_t = \sum_1^{\infty} H_t^n - \sum_1^{\infty} \tilde{H}_t^n$. For each $n, |X_t - \sum_1^n (H_t^n - \tilde{H}_t^n)|$ is dominated by $X_t + Y_t + A_t^c$, which is integrable. Therefore $\sum_1^n (H_t^n - \tilde{H}_t^n) \to X_t$ in L^1 as well as a.s., and X is a martingale $I(M_t)$.

Acknowledgments. I am very grateful to M. Yor, for introducing me to this problem, and for providing the proof that (1) holds only if M is a martingale. I also wish to thank the referee for discovering a number of errors in an earlier version, and for several helpful suggestions.

REFERENCES

- [1] BARLOW, M. T. and YOR, M. (1980). Sur la construction d'une martingale continue, de valeur absolue donnée. Séminaire de Probabilités XIV. Lecture Notes in Math. 784. Springer, Berlin. To appear.
- [2] BREMAUD, P. and Yor, M. (1978). Changes of filtration and of probability measures. Z. Wahrscheinlichkeitstheorie und verw. Gebeite 45 269-295.
- [3] Dellacherie, C. (1972). Capacités et Processus Stochastiques. Springer, Berlin.
- [4] GILAT, D. (1977). Every nonnegative submartingale is the absolute value of a martingale. Ann. Probability 5 475-481.
- [5] MAISONNEUVE, B. (1979). Martingales de value absolue donnée, d'après Protter et Sharpe. Séminaire de Probabilités XIII. Lecture Notes in Math. 721. Springer, Berlin.
- [6] MEYER, P. A. (1965). Probability and Potentials. Blaisdell, Waltham.
- [7] MEYER, P. A. (1976). Un cours sur les intégrales stochastiques. Seminaire de Probabilités X. Lecture Notes in Math. 511. Springer, Berlin.
- [8] PROTTER, P. and SHARPE, M. J. Martingales with given absolute value. Ann. Probability 7 1056– 1058.