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CONSTRUCTION OF A MARTINGALE WITH
GIVEN ABSOLUTE VALUE

By M. T. BARLOW
Trinity College, University of Cambridge

Let Y be a nonnegative submartingale. A martingale M is constructed on
an enlarged space, with the property that Y = | M|.

1. A well-known consequence of Jensen’s inequality is that the absolute value of a
martingale is a submartingale. Gilat, in [4], has proved the converse result that every
nonnegative submartingale is equal in law to the absolute value of a martingale. More
precisely, given a nonnegative submartingale Y = (Y;, ¢ = 0) defined on a probability space
(Q, &, P), there exists a martingale M = (M,, ¢t = 0) on another space (?’, #’, P’) such
that | M| and Y have the same law.

This leaves open the question of whether we can construct a martingale M on (R, %, P)
such that | Y| = M. Indeed, this may not be possible if (2, %, P) does not contain sources
of randomisation additional to Y. In such a case it is necessary to enlarge (22, #, P), by
taking its product with another probability triple. Protter and Sharpe [8], and Maisonneuve
[5], have shown how M may then be constructed in the case where Y and Y_ are strictly
positive, and Barlow and Yor [1] have given a construction of M in the case where the
unique increasing previsible process B such that Y — B is a martingale satisfies [§ I(Y,—
>0) dB, = 0.

In this paper we give a construction of M for a general nonnegative Y. The basic idea
of the construction when Y_ is not zero is to define a set of points I" at which M changes
sign, and to do this in such a way that M is a martingale. A simple calculation suggests
that the probability of a jump in the interval dt should be (1/2Y,-) dB; if AB; = 0, and
%AB, /(Y. + AB,) if AB, # 0. Thus if Y and Y_ are strictly positive then the points of '
form a discrete set, and the sign change presents no problem. For a general Y, however,
T’ may have accumulation points. The problem of defining M after a right accumulation
point of I' is solved by providing the points of I" with a random sign, and defining the sign
of M, to be the sign of the last point in I" before ¢. The left accumulation points of I" do not
present such a difficulty. A different approach must be adopted on the set { Y_ = 0}, and,
as in [1], a random sign is assigned to each excursion of Y_ from 0.

We may summarise the results of this paper in the following theorem.

THEOREM 2. Let (R, #, #., P) be a complete filtered probability space satisfying the
usual conditions, and Y be a nonnegative submartingale/(#.). Suppose there exists a
random variable ¢ on (R, #, P) independent of #. and with continuous distribution
function. Then we may construct a filtration (#.) and a process M, such that

(i) #.C M, fort=0;

(ii) every martingale/(#:) is a martingale/(M,);

(iii) M is a martingale/(M#.);

(iv) |[M|=Y.

2. Let (Q, #, #., P) be a filtered probability space satisfying the usual conditions. If
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T is a subset of @ X [0, ) we set I'(w) = {¢ = 0:(w, ) € T'}, the cut of I" at w. Let
#(T") (w) be the number of points in I'(w). Given nonnegative random variables S, T with
S < T we denote the stochastic interval {(w, t):S(w) <t < T'(w)} by (S, T), and the graph
of S, that is {(w, £):S(w) =t} by [S]. Let X = (X;, t = 0) by any process with left limits: we
define the processes XT and X7~ by XT = Xiar, X7™ = X I(t < T) + Xr_I(t = T).
Throughout this paper by martingale (resp submartingale) we mean martingale (resp
submartingale) with paths which are right-continuous and with left limits. If X is a
martingale and 7 is a stopping time then X7 is a martingale, and if T is previsible X7~ is
also a martingale.

If ( %,) is any filtration, and R is a nonnegative random variable, we define the o-field
gﬂ by

%g = 6(Xg, X a process optional/( %;)).

3. Now let Y be a nonnegative submartingale/(.#;). Let B be the increasing previsible
process such that Y — B is a martingale, let A, = [§ I(Y,- > 0) dB,, andlet A = A°+ A“
be the decomposition of A into continuous and pure jump parts, as in [3], IV. T37.

We shall assume there exists a o-field # C & independent of %, and carrying a random
variable with a continuous distribution function; if no such o-field exists then we may
construct one by taking a suitable product enlargement of (2, #, P). The space (2, 5, P)
is then sufficiently rich to support any sequence of independent random variables.

Let us define on # the following independent sequences of random variables:

(i) sequences ¢n, N, Yum, 1 = 1, m = 1 of independent rv’s taking values in {—1, 1} and
with E¢, = Eny = Efnm = 0;

(ii) a sequence p,, n = 1 of independent rv’s distributed uniformly on [0, 1];

(iii) sequences A.n, n = 1, m = 1 of independent rv’s with negative exponential
distribution with mean 1.

Set, forn =1,

¢
Jr = j (/Yo ) y1jn,1/n-10 (Ys—) dAS (In,= if n=1).
o

Thus J" is continuous and /7 = nA{. Nowforn=1andj=1let
T =inf{t = 0:J7? = Yh=1 Auz}.
Let (S;) be a sequence of disjoint previsible times exhausting the jumps of A%, and set

R = N pi= AAs/(Ys- + AAs)
+o otherwise.

Note that Yz >0,as A increases only on { Y- > 0}. We associate with T™ the sign ¥»;,
and with R’ the sign 1. Let T = R/, Yo; =1, "= U5, [T%],and T = us_, T'".

LEMMA 1.

W[TY]c{l/n=sY._=<1/n—-1)}forn=1;

(ii) for each t = 0, n = 1, #(I'" n [0, t]) is finite a.s.;

(ili) a.s. for all t, #(T° n [0, t] n {Y- = 1/n}) is finite;

(iv) a set o exists with P () = 1, and with the property that if [ U, V] is any stochastic
interval such that V< o and [U, V] C {Y = 1/n}, then # (I’ n [U, V]) is finite on S;

(v) let U be a right (resp left) accumulation point of I'. Then Yy = 0 (resp Yy- = 0) on
Q.
(vi) Let n = 1, j = 1, and let U be any nonnegative rv measurable with respect to
0(Fuw, T™, m # n, k= 1). Then P(T" = U) = 0;

(vii) T has no double point a.s.
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ProOF. (i) is immediate from the definition of 77/. We have #(I'" n [0, ¢]) = sup {r:
Y%=1 Ane =< J¢}, from which (ii) follows. For each j

P({Rj=8} n{S;=t} n {Ys-=1/n}| %) =nAAsl(Ys-=1/n)I(S;= 1),
as p; is independent of #... Thus by Borel-Cantelli, as EA, < o, we have
P(R;=S;, Sj=t, Ys- = 1/n for infinitely many j) =0,

proving (iii).

(iv) For each ¢ and n let F,, (resp G:) be the set on which (ii) (resp (iii)) fails. Set Q§
= Upa1 Un=1 (Fum U Gam), and note that (ii) and (iii) hold identically on £: the result is
now immediate.

(v) Let w € Q, and suppose that Yy (w) > 0. Then Yy (w) > 1/n for some n, and by the
right-continuity of Y there exists V(w) with V(w) > U(w) such that Y,(w) > 1/n for U(w)
=< s < V(w). By (iv) there are only finitely many points of I'(w) in [U(w), V(w)], so that
U (w) is not a right accumulation point of I'(w). Similarly, if Yy— > 0, U cannot be a left
accumulation point of T'.

(vi) P(T™ = S) = P($%=1An; = Z%), and the last term is 0 as Y%-1 Ant has a continuous
distribution and is independent of Z%.

(vil) It is sufficient to show that P(T™ = T™/) = 0 when (m, k) # (n,j). This is
immediate if n = m, and follows from (vi) if n % m.

Let €, denote the mth excursion of Y_ from 0 the duration of which lies in the interval
[1/n,1/n — 1), for n =1, m = 1. To avoid too many subscripts we shall renumber the €,
so that they are indexed by a single integer n. Let a., 8. denote the left and right endpoints
of €,: note that 8, is a stopping time, which might not be the case had we chosen another
way of numbering these excursions. We associate with the excursion e, the sign ¢,.

Let

Ci=Yn I, 5.(t).
Forn=0,j=1,let
S™ =inf{t>T":(w, t) ET n {Y_=0}}.

By Lemma 1(v), S > T a.s. on { Yzn > 0}. Set A = Unzo Ujz1 [T/, §™), and define a
second sign-change process as follows:

G: = Y n=0,j>1 Iy sm) (8) Ynj + Iac(t).

By the definition of S the intervals { 7™, S™/) are disjoint, and therefore | G;| = 1.

Let M, = C,G,Y,. We have | M,| = Y,, and will prove that M is a martingale. We may
note that if Y_ > 0 then C is constant, and that if A is 0 then G = 1. Thus the role of C is
to make M a martingale on {Y_ = 0}, and that of G is to make M a martingale on {Y_ >
0}.

LEMMA 2. M is right-continuous a.s.

ProoF. On {Y;= 0} we have |lim sup;,. M, | =< lim sups,. Y, = 0 so that M, exists and
equals M,. Let w € Q, and suppose that Y,(w) > 0. By right-continuity Y- (w) > 0 for s
€ (¢, t + €(w)) for some €(w) > 0, and hence ¢ € [ay,, B.) for some n. Thus C;(w) = Cet (w).
As for G, if (w, t) € A then (w, t) € [T, S™) for some n, j, and consequently G:+(w) =
G:(w). If (w, t) & A then as, by Lemma 1(v), ¢ is not a right accumulation point of I'(w),
[, t + 8(w)] N T'(w) = D for sufficiently small §(w) > 0, and thus G;+(w) = G:(w). Hence M
is right-continuous on £,.

Since M is right-continuous, once we show that M is a martingale it will follow that M
has left limits.

Now let %, and % be the natural (right-continuous) filtrations of the processes C and
G.Set M= €,V 4V F,, and M, = N, M°: thus M is (.#,)-adapted. It follows from the
definition of .#,- (see [3], III, D27]), that #,_ = .- V %, V F,-.
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Let 54 = 6(Aum, pn,n =1, m= 1), #, = o(pp, n = 1), and H#5 = 6(Ns, Yum, n =1, m =
1). Then 4. C #. vV H#2,and 4, C F, vV #, vV #5. Note also that #, #%, #%, and F,, are
independent.

We shall make use of some elementary results on conditional independence. Let &,
&2 and &; be sub-o-fields of #, with &, C &;.

(i) &, and &; are conditionally independent of given & (we abbreviate this to &; and
&3 are c.i./ &) if and only if E(es| 1) = E (e3| 82) for all e; € b&s.

(ii) If &, and &5 are c.i./ &2, and &, is independent of & v &; then & v &4 and &; are
Cl/ &2.

(iii) Let &% be a sequence of o-fields, with &% C &; and such that &; and &; are c.i./ &%
for each n. Then &; and &5 are ci./N5-; &%.

((i) is a corollary of [6], II, T51, and (ii) and (iii) follow easily from (i).)

LEMMA 3. A, and F. are ci./F,.

REMARK. This implies that every martingale/(#,) is a martingale/(.#,)-see [2]. In
particular Y is a submartingale/(.#,).

PRrOOF. Suppose we have that #. and ¥, are c.i./#,. An application of the monotone
class lemma now shows that #, and 4, v &, are c.i./%,; hence, by (ii) above, %, and
GV F vV HY Hareci/F,. But M) C €,V F, vV HLV Hs, so that #? and F., are c.i./
F.. Now M, C M} for r > t, and therefore .#; and F., are c.i./ F, for any r > ¢; the result
follows by (iii).

A monotone class argument now shows that it is sufficient to check that for f € %, of
the form f = []%-: I(C; = a;), where 0 < t; < ... < t, < tand a; = —1, 0 or 1, we have
E(f| #.) € #,. We will treat only the case n = 1, as the proof given below may easily be
extended to general n.

Now {|C:| = 1} = Npai Unan{Y,- > 0, for s € (¢, t + 1/n)}, which is F,, = &,
measurable. Thus | C;| is (#:)-adapted, so that if a; = 0 then f € &#, . Suppose that | a; |
= 1. Then

E(f| %) = E(Zn Tiap, (01) (¢ = 1) | Fo)

=% Ita,, 5, (81) - (1/2)

LEMMA 4.
(1) E(pnl(an=0)| M-V Fu vV KLV H3) =0
(i) E(Yn;J(TY = t)| M- VFu ¥V H#1V H,) = 0.

Proor. (i) We have that #,_ vV . C 1 V 3 V G- V Foy; since ¢pol(a, = t) € o
vV Z, and #) vV #; is independent of €. vV % it is sufficient to verify that E(¢,I(a, =
t)| €~ v F.) = 0. As in the previous lemma it is enough that E¢,I(a, = t)-fg = 0, where
f=II'I(C,=a;),0=ti<...<t, <t a=-1,0,+1, and g € bF... Suppose m = 1. Then
since E(¢n | =) = 0, by the independence of #; and ., the result is immediate if a; = 0.
So let | a;| = 1: then

Efgonl(an = t) = ¥, E(¢pndrgl(an = t)I(ar < t < f8,)).

The term in the sum with r = n is zero, since ¢; < ¢, and as E(¢n¢,| Fw) = O for r # n the
remaining terms are also zero. The proof for m > 1 is essentially the same.

(ii) Since M, V Fu V NV HC G-V Fu V KLY Koy Y (T = 1) E Foa V H1 V
Hs, and Fo, V H1 V H; and # are independent, it is sufficient to prove that E (Y, I(T™
=t)| . v #1V %) =0.Thus by the monotone class lemma it is enough that Efgy,,I(T"



318 M. T. BARLOW

=t) =0 for f € b(F. Vv #1), and g of the form g = [[/~: I(G;, = a;), where 0 < t; < ...
<t <t and a, = £1. As before we shall verify this only for m = 1: the proof for m > 1is
very similar. We have

Efgyn,(TV = t) = Efy; (T = t)(Inc(t) (a1 = 1) + Y r=oik=1 e 570 (8) I (e = @1)).

All the terms in this last expression except those containing y’s are % vV #) measurable.
The result therefore follows, since E (Yn;j| Fo V H#1 V 0(¥r2)) = O for (r, k) # (n, j), and
KTV =) (TY < t, <8S") = 0.

The following time-substitution result will be required later.

LEMMA 5. Let (&,) and (%) be two filtrations, such that 8., and %. are independent.
Let Z be a martingale/(&£:), and K be a continuous, nondecreasing (#:)-adapted process,
satisfying 0 < K, < At for some A > 0. Then (%, V 8k, t = 0) is a nondecreasing family of
o-fields, and (Zk,, t = 0) is a martingale/(#. V &k,).

PROOF. Zk, is right-continuous, as Z and K are.

The definition of &k, is given in Section 2: note that (£x,, ¢ = 0) is not necessarily
nondecreasing. Let X be any (&,)-optional process: then since X * is also (&£)-optional, X; .k,
€ &k, and thus X,.x, € #, V &k, for any s = 0. Consequently, as K, € & when s < ¢, Xk,
=Xx .k, € F V 6k, and therefore & C #; v &k, when s < ¢, which proves that (#, v &k,
t = 0) is nondecreasing.

Now let &, = & vV %, then & and &/ are c.i./ &, and thus Z is a martingale/(&;)—see
[2]. K; is a bounded stopping time/ (&), so that E(Zx,| £k,) = Zk,. Therefore, as Zx, € F,
v &k, C €k, Zk, is a martingale/(#; v &k,).

THEOREM 1. M is a martingale/(.#;).

ProoF. It is sufficient to prove that for s < r
(1) EM,| M;-) = E(M,| M;-).

For suppose that (1) is true, if (s.) decreases to s with s; < r then, since 4, = n, 4, _,
E(M,| #_) converges a.s. and in L' to E(M,|#,). On the other hand

E|EM, | #,_ ) — M,| < E|M, — M,|.

This last expression tends to 0 as n — o, as M is right-continuous, | M, — M, | < E(Y,| %)
+ Y,, and (E(Y,| %, ), n = 1) is uniformly integrable. Thus E (M, | .#;) = M,, and M is a
martingale.

So let s, r be fixed with s < r. Let T; be the debut of {Y_ = 0} n (s, »), and T be the
debut of ({Y- = 0} n (s, ©))\(T1, «). This set is previsible, and is also the graph of T::
thus T is previsible, and T, > s. Let T be the debut of I" n (s, ©), and T'= T A T;.

We have M, = M, I(r = T) + M, I(r < T). First let us verify that E(M,I(r = T)| #,-)
= 0. For this it is enough that

2) EC.G LY, #0)(r=T)| M- vV F.) =0.
Substituting for C, and G,, and rearranging the terms, we have
®3) C:GI(Y, # 0 I(r=T) = T dmfrm + Lmnj Or¥ni@mnss
where f,, = I(Y, % 0)I(r = T) I 1, p,)(r) Iac(r) + I(T = T1) Y n,j ¥njlirni,sniy(r)), and
8mnj =I1(Y,# 0)I(r = T)I(T < T1)11a,,8,)(r) Iprn sm)(T).
LEMMA 6.

() gmn I(TY <s)=0as,;
(ii) fnl(am <s) =0as.



CONSTRUCTION OF A MARTINGALE 319

Proor. (i) If T< T, and r= T then T; <r, and if T™ < s then S,.; < T3. Consequently
I(r=T)(T < T)I(TY < s <r<8") =0, from which it is immediate that gmn;I(T»; <
s)=0.

(i) On {am < s < Bn} we have T1 = Bn; thus (Ti =71} n {an <s<r<Bn} =9.
Therefore I(T = T1) (T < r)I o 5,)(r)I(am < s) = 0, and it remains to show that P(F') =
O,where F={Y,#0}n {r=T} n {an<s<r<pBn} n {r€A}.

Suppose w € F n o, where £ is the set of probability one introduced in Lemma 1.
Now r € I'(w), and Y,(w) # 0; therefore, by Lemma 1(v), r is not a right accumulation
point of I'(w), and so there exists e(w) > 0 such that [r, r + €(w)) N I'(w) = &. Let 7(w)
=sup{u <r:u € I'(w)}. As T1(w) = Bn(w), and T(w) =< r, it follows that T3(w) < r, and
hence that (s, r + e€(w)) N I'(w) # &. Thus 7(w) = s. However, Y_(w) is never 0 on
(am(w), Bm(w)), which implies firstly that 7(w) < r, and secondly that 7(w) is not a left
accumulation point of I'(w). Since 7(w) cannot be a right accumulation point of I'(w)
either, 7(w) = T™(w) for some n, j.

By the definition of 7, (1(w), r + €(w)) N I'(w) = &, and thus S¥(w) = r + e(w). But
then r € [Thj(w), S™¥(w)) C I'(w), which is a contradiction. Therefore F n Q, = &, and so
P(F) = 0, completing the proof of the lemma.

Resuming the proof of Theorem 2, by Lemma 6 we may rewrite (3) in the form

(4) CrGrI( Yr # O)I(r = T) = Zm ¢mfm1(am = S) + Zm,n,j (t'm‘l/njgmnjl( T"j = S).

We have f, € % V #1 V H3, and gumj € Fo vV H#,. By Lemma 4, E(dmfml(am = s)| M-
V Fu vV HLY H) =0, and E(dn8mnjbn; [(T™ = 8)| Ms— V Foo vV #, V H#>2) = 0, which
establishes (2).

To complete the proof of the theorem we must show that E(M,I(r < T)| #) = M. Let
U = Y™ thus, U, = 6 Ito,r3(w) I10,1,) (1) dYu, U is a submartingale/(.#.), and U —
BTi*T:7) s a martingale/(#,). Now Yr,I(T1 < T:) = Yr,_I(T; = T:) = 0, and hence U,
=Y. I(t < T,) and thus Y, I(t < T) = U, I(t < T;) for s < t. By the definition of 7' we have
C.G I(r<T)=C,GI(r<T),sothat E(M, I(r<T)| M) = CsG:E(U,I(r <Ts)| ;). We
have that U;I(s = T3) = 0 by Lemma 1(v), since T5 = s only if s is a right accumulation
point of I, and therefore that U;I(s < T3) = Y.

It is therefore sufficient to prove that U.I(t < Ts) is a martingale/(#,) for t = s, or,
equivalently, that V, = I(t = s)(U.I(t < Ts) — U;) is a martingale/(.#,) for t = 0.

A simple application of It6’s formula for semimartingales ([7], IV, 21, 23) shows that if
Z is a nonnegative submartingale with decomposition Z = Z, + K+ N (Ko = Ny =0, K
previsible increasing, N a martingale), and D is a nonnegative, decreasing optional process
with D, = 1 then Ij;,«)(Z.D; — Z;) is a martingale if and only if

t t
(5) J’ Z,dD, + f D,_ dK, is a martingale.

So set D, = I(t < Ts), and Z = U. Evaluating (5) and using the fact that B7**">>) — B,
= A" — A,, we see that V is a martingale/(.#,) if and only if

(6) —Ii7, ) (8) Uz, + Ijs) (8) (AT — A,)  is a martingale/(4,).

Let T be the debut of Uz-; '™ n (s, ®), and T’ be the debut of I'° n (s, ). Let T, and T
be the restrictions of T4, T's to { Y1, > 0}, { Y7, > 0} respectively. Then, since by Lemma
1(v) T, and T cannot be right accumulation points of ', [T4] C U;-; I’ and [T5] C U2,
[S’]. Thus T is accessible, and P(Ts = T's) = 0. Therefore Ur,=UrI(Ts=T4) + Ur I(T3
= T5). Further, by Lemma 1(vi) AY7~ = 0 a.s. for n = 1, j = 1, so that AUr, = 0 a.s. Hence

Ur i1, (t) = Ur,_Ii1,w)(t A Ts) + Ur,Ii1,,«)(t A T3),

and (6) is immediate from Lemma 7 and Proposition 8.

LEMMA 7. W, = Urlir,«(t A Ts) — [¢"T I, 1,1(u) dAZ is a martingale/(A,).
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ProorF. As W jumps only on U; [S;] it is sufficient to venfy that E(AWs | #s-) =
0 for each j. Now AWs, = I(s < §))I(S; = T)[Ys I(S; = R) — AAs]. As p;is mdependent
of Ms- vV Fo we have EI(S = R’)|Jls vV %) = AAS/(AAS + Ys-). Finally,
E(Ys, |J{s )=Ys- + AAs, and so as I(s < S)IS;=T) e /l{s a snnple computatlon
completes ‘the proof

PROPOSITION 8. X, = Ur_Ii1,=)(t A T3) — [T I r,)(u) dAS is a martingale/(H,).

ProOF. Let Vi = Y72 Iirv.«)(t) for n = 1. We shall show first that V" — J" is a
martingale/(.#,). Let n be fixed, and let % = % v o(V3, s < t). Now certainly %, and
%, are c.i./%:; therefore by property (i1) of conditional mdependence given above, % v
Hy VvV Hs v o(/\r,,r#n j=1) and &, are ci./%. Thus,as 4 C F VvV H vV Hs ¥V oA,
r#n,j=1), #?and %, are c.i./ %, and so, by property (iii), .#, and % are c.i./ %.. It is
therefore sufficient to show that V" — J" is a martingale/ (Fr).

Let N: = max{j: Y1 An; < t}. By the definition of the A,;, N, is a Poisson process, and
so N, — t is a martingale relative to its natural filtration. Applying Lemma 5, with Z, = N,
-t & =0(Zs,s<t), = %, and K = J", we deduce that N, — J{ is a martingale/ (%,
v &;:). However Ny = V7, and thus as (% vV &, t=0) is a nondecreasmg family of o-
fields, o(V?, s <t) C % v &s:. Therefore % C %, v &,:, which implies that V" — J"is a
martingale/(%). Since V" — J" is right-continuous, V" — J" is also a martingale/(%..).

Let X7 = [ Iis,1,3(w) Uu— d(V"™ — J "), for each n = 1. X" is a local martingale/(.#.), and
as E(f§ (Uu-Iisry(w))? d[V" —J", V" = J" L) < E(UrI(t=Ts)) <EY,<»,X"isa
martingale/(.#.). Let H? = [ I;s,r,3(v) Us— dV j: evaluating this integral we have that H?
= Iz, (t A T5)I(Ty € T")Ur,-. Set H} = [% I(s,1,)(u) Us— deJi;. Then, as U,_ = I(u <
T)Yuo, H = [T [ 73(w)(1/n < Y,— < 1/(n — 1)) dA§. The martingale V" — J" is of
finite variation, and I, r,)U- is previsible, so that X" = H" — H"

Now ¥ 7-1 I(Ty €I'") = I(T4 < ) ass., and therefore 3T H? = Ur,_Ii1,»(t A T3) as.
Also, {Y_>0} n (s, T1) = (s, T1), and as A° is continuous, Y7 H? = [t T I\, 1,1 dA§, and
consequently X; = ¢ H? — ¥'¥ H?. For each n, | X, — Y7 (H} — H?)| is dominated by X,
+ Y, + A{, which is integrable. Therefore 7 (H? — H?) - X,in L! as well as a.s., and X
is a martingale/(.#,).
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