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ORDERING OF DISTRIBUTIONS AND REARRANGEMENT
OF FUNCTIONS

BY LuDGER RUSCHENDORF

Aachen Technical University

Some characterizations of semiorders defined on the set of all probability
measures on R”" by the set of Schur-convex functions and by some subsets of
all convex functions are proved. A connection of these results to the theorem
of Hardy, Littlewood and Polya on the rearrangement of functions is discussed.
Furthermore, by means of the results on the ordering of probability measures
a generalization of a theorem on doubly stochastic linear operators due to
Ryff is proved.

1. Ordering by Schur convex functions. The Schur-ordering in R" is defined for
a=(ai,...,an), b= (b,..., b, by
(1) a<b ifandonlyif Ytiapw=Ytiby,1=k=n-1, and Yria=3%1b
where aq) = ... = am and by = ... = by are the components of a, b i‘earranged in

decreasing order. Hardy, Littlewood, Polya [5], [6], Rado [11] and Mirsky [9] proved the
following equivalences

i) a<b.

(ii) There exists a doubly stochastic matrix @ with @b = a;

(iii) a lies in the convex hull of { b,; 7 € v,} (where b, = (b,q), . . . , buny) and where
(2) ¥» is the symmetric group of order n);

(iv) @(a) < ¢(b) for all symmetric, convex functions g on R" (p symmetric means
o(b,) = @(d) for all 7 € v,);
(v)  Ykie(a) = Yki (b)) for all convex functions ¢ on R,

< is a semiorder on R" (it is not antisymmetric). The monotonically nondecreasing
functions on R" w.r.t. < are called Schur-convex the monotonically nonincreasing functions
are called Schur-concave.

Nevius, Proschan, Sethuraman [10] introduced the notion of stochastic majorization
and discussed some applications. They defined for P, P, € .#(R")—the set of all
probability measures on (R", B8")—(cf. [10], Theorem 2.2)

P151P2 ifandonlyif J’fdPISJ'fsz

3)
for all f€ M; = {f:R"— RY; f bounded, measurable, Schur-convex}.

=, is a semiorder on .#(R"). Some equivalent conditions for =<, are given in Theorem 2.2.
of Nevius, Proschan, Sethuraman [10].

An element A € B" is called Schur-convex if 14 € M;. Denote by d(x, y) the Euclidean
distance on R"™ and define

d(x, A) = inf{d(x, y),y € A} for ACR".

LemMmA 1. If A C R" is a Schur-convex set then d(., A) is Schur-concave.
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Proor. For x, y € R" with x < y and for z € A we have to show that there exists a 2’
€ A such that

d(y, 2') = d(x, 2).

Since d(x, 2) = d(x,, 2,) for all 7 € y, and 2, € A for all 7 € y, d(-, A) is symmetric.
Furthermore, x < y is equivalent to x, <y, for all 7, » € vy, so that we can assume that x;
=...=zx,andy; =... = yn.

Defining z() = (zq), . . ., 2m) We obtain d(x, z) = d(x, z()) since Y. 1 x:2; < ¥ 21 X:2() and,
therefore, we can assume that 2; = ... = z,.

Defining 2’ = z + d, where d = y — x we obtain

Stidi=0,1=sk=n—-1 and Y% d;=0.

This implies

Shizi=Yh (2 +d) =Yk 2, l<sk=n-1
and

Yhizi=Yhi(z+d) =Yk 2
and, therefore,

Skizip=Ykt12z, 1=k=n-1 sothat z2<z2"

Since A is Schur-convex 2’ € A and d(x, 2) = d(y, 2’). O

We now obtain

THEOREM 2. Let P,, P, € #(R"). Then
P,=P; if and only if f fdP, = f fdP;

(4)
forall fe Mi= {f€ M;f continuous and bounded, f= 0}.

PROOF. As in the proof of the equivalence of (1) and (6) of Theorem 1 of Kamae,
Krengel and O’Brien [7], P, <, P; is equivalent to Pi(A) =< P,(A) for all closed Schur-
convex sets (cf. also Theorem 2.2 of [8]).

Assume the right-hand condition of (4), let A be closed and Schur-convex and define

0 i d(t, A) = %
fr(t) = , kEEN.
1—kd(t, 4) i d(t, A) s%

Then f; is continuous, f; = 0 and by Lemma 1 f; is Schur-convex. Furthermore,
Limp e fr(t) = 1a(t)
since A = A. Therefore, by the monotone convergence theorem
Pi(A) = limg . f fr(t) dPy1(t) < limp,e J fx(t) dPs(t) = P2(A)
which implies P; <; P.. O

Theorem 2 implies that =; is a closed semiorder on #(R") when we consider the
topology of weak convergence. This remark strengthens Theorem 3.6 of Nevius, Proschan,
Sethuraman [10]. '
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The following theorem gives a pointwise characterization of <;. For a Markov kernel T'
on (R", B") and P € #(R") define TP € #(R") by TP(A) = [ T(x, A) dP(x) and define
€, to be the one point measure in x.

THEOREM 3. Let Py, P, € .#(R"). Then the following conditions (a), (b), (c) are
equivalent:

(a) Py =, Py;

(b) there exists a Markov kernel T on (R", B") with P, = TP, and e; <, T'(x, )[P1];

(c) there exists a probability space (R, <, P) and random vectors X, Y on (R, &) with
PX=pP, PY=P,and X< Y[P].

ProOF. Define w = {(x,y) ER" X R"™; x <y} and define 71, m:R" X R" — R" by m (x,
y) = x and m(x, y) =y. If UC R" is open then 71(w N (R™ X U)) = U, where U, = {y €
R™; 3 x € U with x < y}. This implies assuming (a) that

Py(U) = Pi(Uy) = Py(Us) = Po(m(w n (R" X U))).

By Theorem 11 of Strassen [15] there exists a probability measure P on (R*", 8**) with
P"=P;,i=1,2and

Pw)=P(m<m)=1.

So (a) implies (c). (c) implies (b) defining T to be the regular conditional distribution of Y
given X. If (b) holds true, then for each Schur-convex bounded function ¢ we obtain

f¢dP2=j¢dTP1=f<f e(NT(x, dy)) dP, (x)zjtp(x) dP; (x).

So (b) implies (a). O

REMARK 1.

(a) Theorem 3 implies Theorem 2.4 of Nevius, Proschan and Sethuraman [10].

(b) The results proved by Kamae, Krengel and O’Brien [7] for partial ordered polish
spaces hold also true in the case of the Schur-order (which is only a semiorder). This
allows us to order some types of stochastic processes w.r.t. =;.

The following corollary answers a question put by Nevius, Proschan and Sethuraman
[10] in connection with their Theorem 2.9.

COROLLARY 4. Let X, Y be two random vectors with values in R™ and define
S= 2?—1 Xi, S = 2?=1 Yi.

Then P* <, PY if and only if
(a) PS=P%

and
(b) PXS <, PYIS[PS].

2. Some subsets of convex functions. Define the following sets of functions
M, = {f:R" — R"; f convex};
(5) M; = {f € M5; fis monotonically nondecreasing w.r.t.
the componentwise partial order on R"};
M,=({fE€ M,; f(x,) =f(x), V7" Ey,, VxE R"}.
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Furthermore, define for P;, P, € #(R") and i = 2, 3, 4
6) PP, if f fdP, = f fdP; forall fEM; such that the integrals exist.

A main difference to the ordering by means of Schur-convex functions is that <; for ; = 2,
3, 4, is not induced by a closed semiorder as =, is and, therefore, Theorem 11 of Strassen
[15] does not apply to these cases.

A Markov kernel T on (R", %8") is called a M;-diffusion i = 2, 3, 4 if

(7 &= T(x, ), Vx € R™.
For P € .#(R") with existing first moments we define EP to be the vector of the first
moments of P. In the following lemma we determine the set of all M;-diffusions.

LEmMMA 5. Let T be a Markov kernel on (R, 8") and assume that ET (x, -) exists for
all x € R” (and that [ y(,T(x, dy) exists if i = 4). Then T is a M;-diffusion if and only if
x=ET(x, ) forall x€R" if i=2
(8) x=<ET(x, ) forall x€ R" if i=3

x<[y)T(x,dy) forall x€ER" if i=4.

Proor. We consider at first the case i = 2. If x = ET'(x, -) for all x € R" and if f is
convex and such that [ f(y) T'(x, dy) exists then by Jensen’s inequality

fx) =f<f yT(x, dy)) SJf(y) T(x, dy)
which implies
€x =2 T(x, .).

The other direction follows from the fact that the linear functions are convex and also
concave.

The case i = 3 is analogous to the case i = 2. For the case i = 4 assume that x <
J 0T (x, dy) and that fis convex and symmetric and that [ f(y) T(x, dy) exists. Then fis
also Schur-convex and by Jensen’s inequality we obtain that

f(x)Sf(fy<>T(x, dy)) SJf(yu)T(x, dy) =ff(y)T(x, dy)

by the symmetry of f. This implies that €, <, T'(x, -).
For the other direction define

fre(x) = Tk x), l=sk=n
Ifx,y€R",a €(0,1) thenforall 7 € vy,
Tt (@i + (1 — @)ye) = T (axe + (1 — @)yn) = afe(x) + (1 — &) fi()
which implies
frlax + (1 — a)y) < aful(x) + (1 — @) fi(y)

so that f, are convex and symmetric. Therefore, assuming €, <4 T'(x, -) we obtain

felx) =Ty x < f YhiyoT(x, dy)

=Zf=1jymT(x, dy) =fk<jy<)T(x, dy)), l=k=n-1
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and

falx) = J’fn(y( N T (x, dy) = ﬁ»(J’ yo T(x, dy))

since f;, is also Schur-concave. This implies that
x< f}'( ) T'(x, dy). O

Lemma 5 shows that <, is different from =; in the general case. This is somewhat
surprising since by (2) =, and =; are identical for one-point measures. The following
theorem gives the pointwise characterization of <;, i = 2, 3, 4.

THEOREM 6. Let P,, P, € #(R") have first moments. Then the following conditions
are equivalent for i = 2, 3, 4.

(a) P, =; Py;

(b) there exists a M;-diffusion T on (R", B") with TP, = Ps;

(c) there exists a probability space (R, o/, P) and random vectors X, Y on (R, ) with
PX = P, PY = P, and such that

E(Y|X)=X [P] if i=2
E(Y|X)=X [P] if i=3

Proor. We at first consider the case i = 2. For x € R" define K. to be the set of all P
€ M (R") such that e, <; P. Then K, is convex and closed w.r.t. the topology of weak
convergence. For f € C,(R")—the set of all bounded continuous functions on R"—define

he(x) = sup{f fdP; P € Kx}.

Since €. € K. we have
f(x) = hy(x) =< supyer~ | f(y)| = oo
For x,y, € R" and a € (0, 1) we have
€axt(1-a)y =2 A€ + (1 — a)€,.

Therefore, P, P’ € # (R") and €, <; P, €, <; P’ implies €yx+(1-a)y <2 P + (1 — a) P’. This
implies that

hi(ax + (1 = a)y) = ahs(x) + (1 — a)hs(y)

and, therefore, A¢is a concave, bounded function on R”".
IfP] =<2 Pz we obtain

J’fszthfdpzﬁfh/dpl

But this implies by Theorem 3 of Strassen [15] the existence of a Markov kernel T on (R",
£") with P, = TP, and T(x, -) € K.[P:]. We modify T'(x, -) on the exceptional nullset by
T(x, -) = €. From our assumption on P;, P; it follows that T has a.s. (w.r.t. P;) existing
first moments and so T is an M,-diffusion which yields (b). The equivalence of (b) and (c)
follows from the characterization of the M,-diffusions given in Lemma 5 similarly to the
proof of Theorem 2. (a) is immediate from (c) by Jensen’s inequality.

The proof for <3, =, is analogous to observing that A, (in the obvious modified form) is
monotonically nonincreasing if i.= 3 and symmetric if i = 4. O



ORDERING OF DISTRIBUTIONS 281

REMARK 2.

(a) In the case i = 2, 3 Theorem 6 has already been proved (in a different way) by
Strassen [15], Theorems 2, 8, 9. The result for i = 2 is a generalization of a famous theorem
due to Hardy, Littlewood, Polya, Blackwell, Stein, Sherman, Cartier, Fell and Meyer (cf.
Strassen [15], Theorem 2). Our proof is on the lines of the theory of balayage cf., fi.
Theorem 53 of Meyer [8]. The function A defined in the proof of Theorem 6 is the least
concave majorant of f. In the compact case consider Proposition 26.13 of Choquet [2].

(b) The method of proving Theorem 6 can be applied in many further cases. Let, for
example, M; be the set of all f: R” — R’ increasing in absolute value that means if | x| <
| y| then f(x) = f(y) where | |is any norm on R". Then a Markov kernel 7'is a M;-diffusion
if and only if for all x € R" T'(x, {y; |x| =|y|}) = L. Therefore, for P;, P, € .#(R") P;
=; P; is equivalent to the existence of random vectors X, Y on (2, &, P) with PX = P,, PY
=Pyand | X|=<|Y|[P].

3. Connections to the rearrangement of functions. Let L' = L!([0, 1], A') be the
space of all integrable functions on ([0, 1], #'[0, 1], A"). Hardy, Littlewood and Polya [6]
and Chong [1] generalized the Schur-order to elements of L' defining for f, g € L*

f<<g |if ff*(u)dusfg*(u)du,se(o,l) and
9) 0 0

1 1
f<g if f<<g and jf*(u)du=f g*(u) du
0 0

where f*, g* are the monotonically nonincreasing (equimeasurable) rearrangements of f,
&. Similarly to the finite-dimensional case

(10) f<<g isequivalent to j¢°fdklsf<pogdxl
for all convex, monotonically nondecreasing functions ¢ such that the integrals exist and

(11) f<g isequivalent to jq)ofd)\lsjqaogd)\‘

for all convex functions such that the integrals exist. (cf., Theorems 2.3, 2.5 of Chong [1]).
If P, P, € #(R") have distribution functions Fy, F, (10) leads to the equivalence
P, =; P, if and only if
(12)
f (t—x) dP,(t)sf (t — x) dP,(t), V x € R?
[x,00)

[x,)

and (11) leads to the equivalence
(13) P=<,P if and only if P, <3 P, and j t dP.(t) = f t dP,(t).
This follows from the observation that for f € L(P;)

J'fdpi= foF dA, i=1,2
[0,1]

and Theorem 1.6 of Chong [1]. (12), (13) are identical to criterions given by Stoyan [14] for
the order relations <;, <; in the case n = 1. So ordering distributions w.r.t. <;, < is
equivalent (for n = 1) to the rearrangement of the pseudoinverses of their distribution
functions. (For n = 1 sufficient conditions for <3 have been given by Franken and Stoyan
[4], Satz 5, and Franken and Kirstein [3], Satz 4.3).
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Now assume that a, b € R". Then by (2) a < b is equivalent to (1/n) Y i-1 €(o) <2 (1/n)
Y1 €y . By Theorem 6 there exists a Markov kernel T with

1 n 1 n 1 n
(14) T(; 21 €(a,>) =5 Yi-1€p)  and fyT(x, dy) = x[; i €(a.)] .

Defining @ = (T(a:, {b;}))1=i<n;1=j=n (14) implies that @ is doubly stochastic and that @b
= a. So Theorem 6 implies the first equivalence in (2) which is due to Hardy, Littlewood
and Polya [6], Theorem 46.

Ryff [12], [13] generalized the notion of doubly stochastic matrices. A linear operator
T:L'— L' is called doubly stochastic if Tf < f for all f € L. Ryff [12] also gave some
equivalent definitions of doubly stochastic operators and proved the following generaliza-
tion of the theorem of Hardy, Littlewood and Polya [6] (cf., [13], Theorem 3).

Iff, g € L' then

f < g if and only if there exists a doubly stochastic operator T such that
Tg=F.

We want to prove a generalization of (15) by means of Theorem 6. Let (&, </, P) be a
probability space and define

LL(P) = {f:Q— R™ fis integrable w.r.t. P}.
For f, g € L.(P) we define

(15)

f<g if JtpofdPsJ'tpogdP

for all convex functions ¢ such that the integrals exist. A linear operator T:L,(P) —
L1(P) is called doubly stochastic if Tf < f for all f € Li(P).

THEOREM 7. Letf,g € L1(P). Then f< g if and only if there exists a doubly stochastic
operator T: L(P) — L}(P) with Tg = f[P].

PROOF. f< g is by definition equivalent to P/ <, P#; so by Theorem 6 there exists a

Markov kernel K on (R", &™) such that KP' = P¢ and [ yK(x, dy) = x[ P’]. Define a linear
operator

T :Ly(s2(8), P) > Li( (f), P)
by

T'(hog)(y) = j K(f(y), dx)h(x).

Ifhog € L1(4(g), P) then
J’”g dP = f (J’ K(f(y), dx)h(x)> dP
which implies that [ K(f(y), dx)h(x) exists P a.s. If, furthermore, h:°g = hz°g[P] then
0= f |hiog — heog| dP = J (J K(f(y), dx)| ha(x) — hz(x)l) dpP
which implies 77(hi°g) = T'(hz°g) and so T is well defined.

T'g(y) = f K(f(y), dz)x = f(5)[P].
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For each convex function ¢: R” — R’ such that the following integrals exist we obtain

J'lp(T’(hf’g)) dP=J¢<J T(x, dy)h(y)> deSJ’ (J’tpf’h(y)T(x, dy)) dpf

=f(p°h(y) dTP’=J'(p°h(y) dPg=J'<p(h°g) dP

and, therefore, T"(hog) < hog for all heg € Li(s/(g), P). We now extend T’ from
L}(s4(g), P) to L}(P). Define

T”:LY(P)— L(#(g), P)
to be the projection
T"(h) = E(h|g).

Then T”(h) < h by Jensen’s inequality and T”(hog) = hog for all heg € L1(4 (g), P).
Now defining

T:LL(P) — LL(P)
by
T(h) = T(T"(h))

we obtain the conclusion of Theorem 7. 0
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