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ASYMPTOTIC PROPERTIES OF SEMIGROUPS OF MEASURES ON
VECTOR SPACES

By T. ByczkowskI AND T. ZAK

Wroclaw Technical University

Let (E, B) be a measurable vector space and g be a measurable seminorm
on E. Suppose that (u,):>0 is a g-continuous convolution semigroup of proba-
bility measures on (E, B). It is proved that there exists a right-continuous
nonincreasing function 6 such that

limesos (1/2)-pe{x: g(x) > s} = 8(s)

for every s > 0 at which @ is continuous. If p., ¢ > 0, are Gaussian, then 6 = 0;.
if there exists a measurable linear functional f such that f(-) is not Gaussian
(with respect to p;) and g = | f| then 6 # 0.

1. Introduction. The main result of this paper is contained in Section 4. We prove
there that if ¢ is a measurable seminorm on a measurable vector space (E, B).and ()0
is a g-continuous convolution semigroup (for definitions see Section 2) of probability
measures on (E, B) then there exists a right-continuous nonincreasing function # defined
on (0, ) such that

limg o+ (1/8)pe{x: @(x) > s} = 6(s)

whenever s > 0 is a continuity point of 6. Moreover, if the y, are Gaussian then 8 = 0; if q
= | f| for a measurable linear functional f such that f(-) is not Gaussian (with respect to
1) then 6 # 0. From this result we obtain the following theorem for continuous semigroups
of probability measures on separable normed spaces: if (i):o is such a semigroup then

limg o+ (1/8)pe{x: || || > s} = 0(s)

for every s at which 6 is continuous; y, is Gaussian if and only if § = 0. Even if E is finite-
dimensional the existence of this limit seems to have been unknown for non-Euclidean
norms.

Results of this type were established in de Acosta [1] for stable measures and homo-
geneous seminorms. Howgver, his methods are based on rather elementary inequalities
(stated in our paper as Lemma 2.3) and cannot be adapted to more general situations.

Our approach, although in the spirit of de Acosta, is different and is based on two
powerful tools: Lévy’s and Hoffmann-Jgrgensen’s inequalities. It is also applicable to
situations when ¢ is not homogeneous as well as to more general semigroups of probability
measures. Thus, results of this type can also be applied to more general vector spaces, e.g.,
to the space Lo of all measurable functions on [0, 1], with convergence in measure. This
aspect also seems to be of interest because L, is a natural space of sample paths for
measurable stochastic processes.

2. Preliminaries. In this section we introduce some terminology and notations and
state some inequalities which are basic for the rest of the paper.
Throughout the paper, unless stated otherwise, we will deal with a measurable vector
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space (E, B); that is, E a real vector space and B a o-field of subsets of E such that:

(i) The mapping (x, y) = x + y from (E X E, B ® B) into (E, B) is measurable.

(ii) The mapping (A, x) = Ax from (R X E, # ® B) into (E, B) is measurable, where (R,
) is the real line with the Borel o-field.

A function ¢: E — R*, q(0) = 0, will be called a seminorm if it is subadditive, that is g(x
+ y) < q(x) + q(y) for every x, y € E, and nondecreasing, that is g(ax) < ¢(Bx) if |a| <
| B, for every o, B € R and every x € E.

The following lemma is a version of the classical Lévy’s inequality; it can be proved by
a slight modification of the proof given in [9], Chapter 2.

LEmMMA 2.1. LetX,...,X, be E-valued symmetric and independent random variables
and let q¢ be a measurable seminorm. Then for every € > 0 we have

P{maxi<j<. q(zif=1 X)) > €} = 2P{q((1/2) Y1 Xi) > €/2}.
The next lemma is a version of Hoffmann-Jgrgensen’s inequality [8].
LEMMA 2.2. Let X, ..., X, and q be as in Lemma 2.1. Then for every s, t > 0 the
following holds:
P{q(Y%1 X) > 2t + s} < P{maxic<n ¢(X) > s} + (2P{q((1/2) Y11 X)) > t/2})°.

We will also use the following inequalities exploited by de Acosta in [1], [2].

LEMMA 23. Let X, Y be independent E-valued random variables and q be a
measurable seminorm. Then for every s > 0 and every 0 < € < 1 we have:

(@) P{g(X + Y) >s) = P{q(X) > (1 + €)s}-P{q(Y) < €-5)
+ P{q(Y) > (1 + ¢)s}-P{q(X) <e€-s};

(b) P{g(X + Y) >s} < P{q(X) > (1 —€)s} + P{q(Y) > (1 —¢)s}
+ P{q(X) >€-s5}-P{q(Y) >€-s}.

Now, let (u:)e0 be a family of probability measures on (E, B)- ()0 will be called a
(convolution) semigroup if

Petlhs = Pevs

for every £, s > 0. Let ¢ be a measurable seminorm on (E, B). A semigroup (u:)so will be
called g-continuous if for every s > 0

lim, 0+ pe{x: @(x) > s} = 0.
The next lemma is an immediate consequence of Lemma 2.3.
LEMMA 2.4. Let q be a measurable seminorm and (i) o be a q-continuous semigroup
of probability measures. Then for every p > 0
lim, o+ peru {2 @(x) > s} = pu {x: q(x) > 5}
for every s at which p,{x: q(x) > s} is continuous. In other words p+.oq~" converges

weakly to p,oq”Y, ast — 0 +.

Next, let us recall that a probability measure is said to be stable of index p, 0 <p < 2,
if for every independent E-valued random variables X, Y with distributions yu and every
a, 8> 0, a X + B Y has the same distribution as y X + z, where y(a, 8) = (a” + 8°)"/? and
z is an element of E. p is called strictly stable if z can be taken O for every a, 8 > 0. It is
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obvious that if u is stable of index p then the symmetrization of u(= u*fi) is strictly stable
(and symmetric) of the same index. It is also evident that if y is strictly stable of index p
and g, is the distribution of ¢'?X (u = distribution of X) then (u;)0 is a semigroup of
probability measures such that y; = . Moreover, it can be easily seen that this semigroup
is g-continuous if and only if the mapping a — g(ax) is continuous at 0 for y;-almost all x
€ E. On the other hand, if (E, B) is a topological vector space with Borel o-field B and q
is continuous then every continuous semigroup (i)so (i.e., such that u, = 8, as t — 0+) is
g-continuous. For general information about stable measures we refer to the paper of
Dudley and Kanter [5].

3. The upper bound. In this section we establish that

lim sup;.o+ (1/8)pe{x: q(x) > s} < o,

for every g-continuous semigroup (u):>o.

LeEmMMA 3.1. Let q be a measurable seminorm and let (u)o0 be a q-continuous
semigroup of probability measures. For every s > 0 we have

lim supeo+ (1/8)pe{x: g(x) > s} < o0,

PrOOF. Assume that ., £ > 0 are symmetric. Let s be a fixed positive number. Suppose
additionally that u;:{x: g(x) > s/4} < 1/2. Without loss of generality we can assume that
s/4 is a continuity point of Fi(-) = w{x: ¢(x) > -}. Let ¢, — 0+. Put k, = [1/£,] + 1 and
let X{, ..., X{” be symmetric, independent and identically distributed random variables
such that ¥}z X{ has the distribution ,,,. Using the standard inequality

maXi<i<n ¢(X ) < 2 maXicicn ¢(Xi=1 X)
and Lemma 2.1 we obtain
P{maxicict, (X ) > s} < 2P{q((1/2) Ttz X ) > s/4} < 2P{q(T k1 X)) > s/4).
We have thus obtained
(e, {x: q(x) = s})*n = 1 — 2., {x: q(x) > 5/4).
The above inequality can be rewritten in the form
1— alt
1k

where a, = 1 — 2, {x: g(x) > s/4}. Since k.t, — 1+ the application of Lemma 2.4 yields
the desired conclusion.

Next, observe that for every positive s there exists & > 0 such thatu, {x: ¢(x) > s/4}
< 1/2 (by the g-continuity of (u)wo). Write »; = ps. Then (v)i0 is a symmetric g-
continuous semigroup such that

knepe {x: q(x) > s} <

n{x: q(x) > s/4} = p,{x: g(x) > s/4} < 1/2.

Applying to the semigroup (v,):0 the result just obtained, we get the desired conclusion.
The rest of the proof follows from the standard method of symmetrization and is left to
the reader.

Now we will show a strengthened form of the above result for Gaussian measures. Let
us recall that p is said to be Gaussian (in the sense of Fernique [7]) if it is stable of index
2 and if for any independent random variables X;, X, with the distribution p,

Xl + X2 and X1 - X2
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are independent. If (E, B) is a vector space such that B is generated by a vector space &
of linear forms on E then this definition is equivalent to the classical one: p is Gaussian if
and only if f(-) is a (real) Gaussian random variable, for every f € &

THEOREM 3.1. Let u be a Gaussian measure. Assume that q is a measurable seminorm
such that a — q(ax) is continuous at 0 p-a.e. Then for every s > 0 and every positive
integer k the following holds:

lim, o+ (1/t%)u{x: q(t%x) > s} = 0.
ProorF. We use Fernique’s method [7]. It suffices to prove our theorem only for p
symmetric and strictly stable; the general case then follows easily from symmetrization.

Denote R,(t) = p{x: g(t'*x) > s}. Let X, Y be independent random variables with
distribution u. Then we have

Ry(t)- (1 — Ry/2(t))
= P{q(t'*X) > s} .P{q(¢t'*Y) < 5/2}
= P{q(t'?X) > s, q(t'?Y) < 5/2}
= P{q((¢/2)"*(X + Y)) > s, q((t/2)'*(X — Y)) < 5/2)
< P{|q((t/2"*(X + Y)) — q((¢/2;"*(X - Y))| > 5/2}
< P{q((2t)'*X) > /2, q((20)"*Y) > 5/2}
= (P{q((2t)°X) > 5/2})* = (R:2(2t))".
Hence,
Ry(#)(1 — Ry2(t)) < (Ryp2(20))*
which is equivalent to
R(t) < (Ry2(2t))* + Ry() - Ropa(2).
In view of the remark given in the final part of Section 2 we obtain
lim sup,_o+ (1/8%)pu{x: g(t*%x) > s} <
as an application of Lemma 3.1. Consequently, by induction
lim, 0+ (1/t")u‘{x: q(t**x) > s} <
for every positive integer k. The proof is complete.

Let p be a Gaussian measure on a separable metric vector space. From Theorem 3.1 it
follows that for every open neighborhood U of 0 we have

1j1rlt—>0+ (l/t)#(t—1/2UC) = (.

This can be applied (via the invariance principle [3]) in proofs of various functional limit
theorems (see [4]).

4. The existence of limits. In this section we state and prove the main result of our
paper.

THEOREM 4.1. Let q be a measurable seminorm and ()0 @ g-continuous semigroup
of probability measures. Then there exists a nonincreasing function 6(s) defined on (0,
o) such that for every continuity point of § we have

lims o+ (1/8)pe {x: g(x) > s} = 6(s).

If u; are Gaussian then 0 = 0; if there exists a measurable linear functional f such that
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f(+) is not Gaussian (with respect to y) and that for some a € (0, 1]
q=|f|"
then 6 # 0.

Proor. The proof consists of several steps.
Step 1. Let s be a fixed positive number. We prove that either for every positive integer
k

lim, o+ (1/8%)p{x: q(x) > u} =0, s<u,
or
lim inf, Lo+ (1/8)p{x: g(x) > s} > 0.

As usual we prove this fact only for (u)so0 symmetric.
(a) Suppose that there exists ¢ > 0 and r > 0 such that

w{x: qx) > 2t + 8} — 4uZ{x: q(x/2) > t/2} = ¢ > 0.

LetX{™,...,X® beindependent, symmetric and identically distributed E-valued random
variables such that ¥%; X has the distribution ;. Using Lemma 2.2 we obtain as in the
proof of Lemma 3.1

1 = (prn{x: q(x) > 5})" = P{maxic j<n ¢(X”) > s}
= P{q(X1 X)) > 2t + s}
— 4P*{q((1/2)Y3-1 X)) > ¢/2)
= p-{x: q(x) > 2t + s}
— 4p2{x: q(x/2) > t/2).
We thus have

1-Q1-¢'"

1
n/Ppryn{x: q(x) > s} = = T

for every n. This inequality gives
1 1
lim infy, (/r)prm{%: q(x) > 8} = — - InT—>0.

(b) If (a) does not hold then for every ¢ > 0 and every r > 0 we have

w{x: glx) > 2¢ + s} < 4u?{x: q(x/2) > t/2} < 4uZ{x: q(x) > t/2).
Since lim sup,—o+ (1/r)u-{x: ¢(x) > u} < o for every u > 0 by Lemma 3.1, we obtain
lim sup,o+ (1/7r%)p-{x: q(x) > u} <

for every u > s. The result now follow by induction.
Step 2. Now, we use the idea of de Acosta [2]. Consider the following family of measures
defined on (0, )

Au(B) = (1/t)p{x: q(x) € B}, te (0,1].

Observe that for fixed a > 0 the family (A;)w.c(,1) restricted to I, = (a, ) is weakly
conditionally compact. For, by Lemma 3.1 A,(a, ©) = (1/8)u:{x: ¢(x) > a} < ¢, < o whence
{A¢| L} te 011 is bounded in norm. Moreover, if s, is sufficiently large then u;{x: q(x) > s0/4}
< 1/2. Hence, for s > s, we have

lim supeo+ (1/8)pe{x: g(x) > s} < —In (1 — 2u:{x: q(x) > s/4}).
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Therefore for every € > 0 the right-hand side of the above inequality is less than e for
sufficiently large s, so that {A;| I}, is uniformly tight.

By Prohorov’s theorem {A:| I}, is weakly conditionally compact. Hence, for every
sequence ¢, — 0+ we can choose a subsequence ¢,, such that A, |I, converges weakly, for
every a > 0. *

Step 3. Let s, — 0+. Put k., = [1/s,]. Fix ¢ > 0. We prove that if A, | I. converges
weakly as n — oo, for every a > 0, then for every s > 0, a continuity point of the limit
distribution, we have

Lim, |Aye, (s, ®) — Aws, (s, )| = 0.
Indeed, by virtue of part (a) of Lemma 2.3 we have
Ak, (8, ©) = (kn/t)esr, {x: q(x) > s}
= (Rn/t) s, *e1/n,—s,) (X2 q(x) > 5}
= RnSuls, (1 + €)8, ) tr1/p,—s,) {X: g(x) < €5}
+ kn(1/kn — 8n) - Aea/p,—s ((1 + €)8, ) - g, {x: g(x) < €5}
= RnSn+Ass, ((1 + €)s, ) « 1 /a5, {x: @) < €s}
and the last term of this inequality converges to
0((1 + €)s) = lim,, Ay, ((1 + €)s, ®),
whenever (1 + €)s is a continuity point of . So, we have
lim inf,, Ay, (s, ®©) = 6(s).
Analogously, using part (b) of Lemma 2.3 we obtain
Aisr, (S, ©) < knSn+Ass, ((1 — €)s, )
+ kn(1/kn — $0)As1/k,—s,) (1 — €)s, ©)
+ EnSnlss, (€5, )« pe1/n,—s,) {X: q(x) > €-5}.
By similar arguments we infer from this inequality that
lim supr Ay/z, (s, ®) < 6(s),

which, together with the previous inequality completes the proof of this step.
Step 4. Assume that p., ¢ > 0, are symmetric. We show that there exists a right-
continuous, nonincreasing function é defined on (0, ) such that

limg o+ (1/8)pe{x: g(x) > s} = 0(s)

whenever § is continuous at s (s > 0). Let £, — 0+ be such that A, | I, converges weakly for
every a > 0. Let @ be the right-continuous function defined by

0(s) = limg A, (s, ),

where s is a continuity point of the limit distribution. Now, by virtue of Step 1, it is obvious
that without loss of generality we can assume 6(s) > 0.

Assume, further, that s is a continuity point of 6. If ¢ > 0 is sufficiently small then 6(2¢
+ s) > 0. Therefore for sufficiently large 2 we have

p, {x:q(x) > 2t + s} — 4uf {x:q(x) > t/2} = c(k)

by virtue of Step 1 and Lemma 3.1. Fix such a #.. Let s, be another sequence, s, — 0+.
Write k, = [1/s,]. Let X{, ..., X{? be, as before, independent, symmetric and identically
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distributed E-valued random variables such that ¥ ' X {* has the distribution g,
Next, analogously as in Step 1 we obtain that
1= (1 = poym, {x:q(x) > 8})* = c(k).

Assume that A, | I converges weakly as n — oo, for every a > 0, and that s is a continuity
point of the limit distribution. Define

B(n) = pus {x:q(x) < s}, ¢ =lim sup, B(n)*.
Observe that
¢ = lim sup, (1 — py,s, {x:q(x) > 5})* >0

since lim inf; o+ (1/¢)u:{x:q(x) > s} > 0, by assumption. Furthermore, using Step 3 with
t = t;, we obtain

¢ = lim sup, (1 — suls Ay, (8, )" = ™%

ky

where 67(s) is determined by the limit distribution of A, . Hence, we have

= lim, (1

lim inf,, knpre,s, {x:q(x) > s} = lim inf, k(1 — B(n))
= lim inf, 2,(1 — B(n)*)¥*

1
= ln(l/c) = lnl——c(k)'

We have thus obtained

. . M 1
lim infy, (1/sn)its, (x:q(x) > 8} = In s

From this inequality it follows that for every s, a point of continuity of 6,
lim, o+ A(s, ) = 8(s).

For, if t; and 6’ are such that 6’ is determined by the limit distribution of A¢, then taking
s® = t,/t, we obtain

(1/858 g = (1/58 ey, = ta(1/t0) e, = tahs,.
Hence, if s is a continuity point of 8’ and @ then the previous inequality implies
0'(s) = In(1 — c(k)) ™V,
Since
(1/te)c(R) = A, (2t + 5, 0) — 4tx-AZ (¢/2, ) — 0(2t + 5)
as k — o (for 2t + s being a continuity point of §) we obtain

_ l/tkc(k)

—1/t,
— =1/t
In(1 — c(k)) ln(l 1t ) — (2t + s)

as k — . So, we have finally obtained
0'(s) = 6(s),

which, by virtue of the same properties of § and 6’, completes the proof of this step.
Step 5. The rest of the proof is standard and follows from symmetrization. It will be
sketched only for the sake of completeness.
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Observe that from part (a) of Lemma 2.3 we have

1/ e {x:q(x) > (1 + €)'s} = (2/H)p {x:q(x) > s}ut{x:q(x) < 1 ie s},

which implies that if § is determined by the limit distribution of (1/¢)u.*ji; then
lim supso+ (1/8)pe{x:q(x) > s} < (1/2)6(s),

whenever 6 is continuous at s. On the other hand, by part (b) of Lemma 2.3 we obtain

A/O)pexfir{x:q(x) > (1 — &) + 8} < 2/ {x:q(x) > s} + (l/t)uf{x:q(x) > i i p s}

and, analogously,
lim inf, o+ (1/8)u:{x:q(x) > s} = (1/2)0(s),

if 4 is continuous at s. This ends the proof of this step.
Step 6. By virtue of Step 1, we have two possibilities: either for every 2 = 1 and every
s>0

limy o+ (1/t*)pe{x:q(x) > s} =0
or there exists an s > 0 such that
0 < lim inf, o+ (1/8)pe{x:q(x) > s} < lim supe.o+ (1/t)ue{x:q(x) > s} < oo,
If there exists a measurable linear functional f such that f(-) is not Gaussian and
q-) =) "

for some a € (0, 1], then », = y,- f ' is a continuous semigroup of probability measures on
the real line and »; is not Gaussian. By [6], Problem 17, page 597, we infer that there exists
a positive number s such that

lim inf. o+ (1/)2:{y:|y| > s} > 0.
Thus, in this case

lim inf, o+ (1/8)p:{x:q(x) > s} > 0.

If i, t > 0 are Gaussian then their symmetrizations, u, * ji; are also Gaussian. Since y; * ji;
is symmetric and Gaussian, there exists the unique symmetric Gaussian root of y; *fi, of
order 2". Since y1/2:(A) = pi*p1 {x:(1/2")x € A} is such a 2"th root, we infer that y/o» =
W1/2n* 12 From Theorem 3.1 it follows that

2"y jon* finyon {x:q(x) > s} — 0.
Hence, by Step 1 we obtain that
lim, o+ (1/8)pe*jie{x:q(x) > s} = 0.
By symmetrization we obtain
limy o+ (1/tF)p{x:q(x) > s} = 0.
The proof of the theorem is complete.

We derive the following corollaries.

COROLLARY 4.1. Let (E, B) be a separable normed vector space with the Borel o-field
B. Then, given a continuous semigroup ()0 of probability measures there is a nonin-
creasing right-continuous function 8 defined on (0, ©) such that

1/ pe{x:|| x || > s} — 6(s)
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for every s > 0 at which 0 is continuous. p, is Gaussian if and only if § = 0.

COROLLARY 4.2. Let (E, B) be a measurable vector space and q be a measurable
seminorm. Let p. be a stable measure of index p. Assume that a — q(ax) is continuous at
0. Then

lim o4 (1/27)p{x:q(x/t) > s} = 8(s)

for every s > 0 at which 8 is continuous, where 8 is as in the previous corollary.

If there exists a measurable linear functional f such that q = |f| and pof™' is
nondegenerate then 6 # 0 whenever p < 2. If q is r-homogeneous (i.e., g(ax) = | a|" g(x))
then @ is continuous.

Proor. This is an immediate consequence of the application of our theorem to u+*pu
and the same arguments as in the Step 5 of the proof of our theorem.

Now, we pay our attention to some nonhomogeneous seminorms.

Let ® be a continuous nondecreasing function defined for u = 0 and such that ®(u) =
0 if and only if u = 0. Assume additionally that ® is subadditive. Let R* be the space of all
sequences of reals. Let m be a nonnegative measure on integers. Put

xlle = X1 (| x() |)m().

Let lp be the set of all x € R~ such that || x||lo < «. lp is a linear space under usual addition
and scalar multiplication, and || - ||¢ is (in general nonhomogeneous) a seminorm on ly. (lo,
|l - Jlo) is called Orlicz space (see [10]).

COROLLARY 4.3. Let ()0 be a continuous semigroup of Borel probability measures
on (lo, | -+ ||lo). Then there exists a nondecreasing right-continuous function defined on (0,
) such that

limg o+ (1/8)pe{x:]| x||0 > s} = 6(s)

for every s at which 0 is continuous. § = 0 if and only if u; is Gaussian.

Proor. Recall that ()0 is said to be continuous if and only if g, converges weakly to
0, as t — 0+. Now, it remains to prove that if § = 0 then y; is Gaussian. Let x = (x;) € lo.
Then ®(| x;|) > s/a; implies || x ||lo > s, where a, = m(i). Hence, if we denote f;(x) = x; then
there is an u = u(s) such that

{x:||x]le > s} D {x:®(] fi(x) |) > 8/a.} = {x:]| filx) | > u(s)}

Moreover, u(s) — 0 as s — 0. Thus, § = 0 implies that u; ° ;! is Gaussian, for every i. Since-
f!s generate the Borel o-field in Iy, p: is Gaussian.
Finally, we state one more application of our theorem.

ExaMPLE. Let (p,)n-1 be a sequence of real numbers, 0 < p, < 1. Given (x,) = x € R
put
x|l op = Tr=t | %a|?

Define /), = {x € R”:| x||(5, < ®}. Then [, with the seminorm | - ||(,, is a complete
metric linear space. Since

2w = Eam1 | %a |7 = | xn |7

we obtain that if (y):-0 is a continuous semigroup of measures, then § = 0 if and only if u;
is Gaussian.
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