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WEAK CONVERGENCE OF THE EMPIRICAL CHARACTERISTIC
FUNCTION

BY MicHAEL B. MARCUS

Northwestern University

Let X be a real valued random variable with probability distribution
function F(x) and characteristic function c(¢). Let F.(x) be the nth empirical
distribution function associated with X and c.(¢) the characteristic function of
F,(x). Necessary and sufficient conditions are obtained for the weak conver-
gence of Vn[ca(t) — ¢(t)] on the space of continuous complex valued functions
on [~ %, %].

Let X be a real valued random variable with probability distribution function F(x) and
characteristic function ¢(¢) = [%, e"* dF(x). Let F,(x) be the nth empirical distribution

function associated with F'(x), i.e., F,(x) =% ¥ %=1I(x, .« (x) where I 4) is the characteristic

function of the set A and X, X,, ... are independent identically distributed copies of X.
F,(x) is an increasing, right continuous stochastic process; similarly the empirical charac-
teristic function

e 1 WXt
enlt) = f e dF,() =~ Yha €™, te (%, %]

is a stochastic process. The proper normalization to use in considering weak limits involving
cn(?) is to consider

1) Co(t) = n'*(ca(t) — c(2)), t €[-%, %]
We can rewrite (1) as

Xt
@) Cult) = B 2, t €[, %]

to see that the question of the weak convergence of C,(¢) is that of the standard central
limit theorem for the random variable e** — c(¢) which satisfies E[e* — c(¢)] = 0 and
E[(e™ — c(t))(e™™* —c(s))] = ¢(t — s) — c(t)c(—s). To be more explicit, each process Cx(t)
induces a measure on the Banach space C([—, 4]) of continuous complex valued functions
on [—%, %] with the usual sup-norm (|| ||« = supeei-1/2,1/21 | |). We say that C.(¢), t € [-%,
16], converges weakly or equivalently that e’ — c(z), t € [—Y%, 1] satisfies the central limit
theorem on C([—%, %]) if the measures induced by C,(¢) on C([—%, }%2]) converge weakly.

A version of this problem was considered in [8] and also in [4]. We first read about it in
a paper by S. Csorgo, [2], in which he points out that there is a fundamental error in [4].
Our notation and introduction to the problem is taken from [2]. Our approach is based on
recent results in the central limit theorem for random trigonometric series [9], [10], [11],
[3].

By the finite dimensional central limit theorem we see that if C.(¢), ¢t €[-%, %],
converges weakly then the limiting process must be a Gaussian process with covariance c(¢
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— 5) — ¢(t)e(—s). Thus a necessary condition for the weak convergence of C,(t), t E[—,
1], is that the Gaussian process with covariance c(¢ — s) — ¢(¢)c(—s) has continuous sample
paths on [—%, 4]. This process can be represented by the stochastic integral

Y(t) = f e"* dB( F(x))

where B is a Brownian bridge. (i.e., let b be standard Brownian motion and define, for 0
<y=1, B(y) = b(y) — yb(1)). Note that Y (¢) = [* e"* db(F(x)) — b(1)c(t). Therefore
Y(t), t €[—%, %], has continuous sample paths if and only if the stationary Gaussian
process

®3) G(t) = f e db(F (x)), te [—%, %]

has continuous sample paths. Along with (3) consider the real valued stationary Gaussian
process

4) G(t) = j cos tx db(F(x)) + J’ sin tx db’( F(x)), tE [, %]

where b’ is an independent copy of . We have

0’|t —s|) = E|G(t) — G(s)|* = E(G(¢t) — G(s))

(5) @ _
=4 j sinzl—t-—zﬁ-l—x— dF (x).

Furthermore either both G and G have continuous sample paths a.s. or else neither does.
The domain of o defined in (5) is [—1, 1]. For this function we define

my(x) = A{u €[-1, 1]| o(u) < x}
where A is Lebesgue measure and
a(u) = sup{y|m.(y) <u}.

The function ¢ is called the nondecreasing rearrangement of o. It is & nondecreasing
function on [0, 2] and has the same distribution function with respect to Lebesgue measure
on [0, 2] that o(u) has with respect to Lebesgue measure on [—1, 1]. Let

2 6(s)
6) I(o(s)) = I(o) = J'

) 16\ @
S (log —S—)

By the Dudley-Fernique necessary and sufficient condition for the continuity of stationary
Gaussian processes (see [7] Chapter IV, Theorem 7.6 and Corollary 6.3) we have thatG (t)
and consequently G(t) has continuous sample paths if and only if I(o) < ». Therefore I(g)
< « is a necessary condition for the weak convergence of C,.(t). We will show that it is also
sufficient.

THEOREM 1. Let X be a real valued random variable with distribution function F(x)
and characteristic function c(t). Let

@ o(t) = 4 J sin’ %’ dF(x) = 2(1 — Re c(t))
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and consider I(o) as defined in (6). If I(c) < x the normalized empirical characteristic
function C,(t) given in (2) converges weakly on C([—%, %]) to a Gaussian process with
covariance c(t — s) — c(t)c(—s). If I(o6) = « the Gaussian process with covariance c(t —
s) — c(t)e(—s) does not have continuous sample paths and consequently C,.(t) does not
converge weakly on C([—%, %]).

The method of proof presents us with some interesting examples of stochastic integrals
of the type considered in [3]. These will be considered briefly following the proof of
Theorem 1. We will also apply our method to a problem considered by Kent [8].

We pause for some preliminaries. A Rademacher sequence {e.} is a sequence of
independent symmetric random variables each one taking on the values +1. The following
lemma is well known in certain circles and deserves wider exposure.

LEMMA 2. Let X be a random variable with values in a linear space L and let ||| be
a norm or seminorm on L. Assume that EX = 0. Let X’ be an independent copy of X.
Then

®) E|X|=E|X-X"|=2E|X]|.

Let {Xi, k=1,2, ---} be a sequence of independent random variables with values in L,
EX, =0, and let {€,} be a Rademacher sequence independent of {X,}. Then

© RE | Yir e Xk || = E|| Zier Xi|| < 2E|| Zher e Xe|.

Also,let (Y., k=1,2, ...} be a sequence of independent random variables with values
in L and let {€;} be a Rademacher sequence independent of { Y.}. Then

(10) E| Y31 (Yr — EY3)|| < 2E|| Yier & Ya .

ProoF. The right side of (8) is trivial. For the left side we have
E|X - X'|=ExEx|X—-X'| = Ex|S — EX’|

where we write E = ExEx to indicate integration with respect to the components of the
product space induced by X and X’. To obtain (9) we have

E| i1 Xe| S E|| $he1 (Xe — X3) || = E|| The1 (X — X3) ||
= 2E|| Yi-1 e X,

where for the first inequality we use (8) and the equality follows because {(X; — X%)} and
{€x(X:r — X})} are equal in distribution. The left side of (9) follows similarly:

2E || Y1 Xi|| = E || Ti=1 (Xi — X2)|| = EcExEx || k-1 €(Xe — X3) ||
= EEx|| Yk ex( Xy — EX})|| = E|| Y3-1 € X2 |-

Here we denote by E., Ex and Ex expectation with respect to the components of the
product space induced by {e:}, {X:} and {X}%}. Finally for (10) we have

E| Y31 (Y= EYR) || = E|| Xka1 (Y — Y2)|
=E|| i e(Yr — Yi) | < 2E| Yi1 € Y|
by arguments similar to those given above.
ProoF oF THEOREM 1. We will give two proofs of this theorem in order to explore
different ideas and techniques in the study of the central limit theorem on the Banach

space of continuous functions on a compact set with the sup-norm. Let I (o) < o; the case
I(6) = o was considered in the remarks preceeding the statement of the theorem. We first
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obtain the weak convergence of a symmetrized version of C,(t). Let

Sn(t) = \/i—' Zg=1 (eith - eiX},t)’ te [_%) 1/2]’
n

where {X%} is an independent copy of {X.}. We have ES,(t)S.(s) = 2(c(t — s) — c(t)
¢(— s)). Furthermore, the finite dimensional distributions of S, (¢) converge weakly to the
corresponding finite dimensional distributions of the Guassian process with this covariance.
For f € C([—%, %]) we define a seminorm on C([—%, %4]) by

||f||d = SUP|s—t|=d;s,te[-1/2,1/2] |f(t) - f(3)|-

In order to prove the weak convergence of S,(¢) it remains for us to show that given € > 0
there exists a d such that for all n

(11) P(|Sulla>€) <e.

Let (221, %, P1) be the probability space of {X,} and {X%} and (22, %, P,) the probability
space of {e.} and denote the corresponding expectation operators by E, E;. S.(¢) is
defined on (2; X Q3, A X %, P1 X P3). We shall denote this space by (2, % P) and the
corresponding expectation operator by E. Note that

Sa(t) = 72 Ti, ex(e™r! — eiXit), t e [—%, %],
is stochastically equivalent to S,(¢). Consider, for w; € Q,,
Sa(t, w1) = n72 Yioy ex(er@t — gixiwr), t€[~%, %],
as a stochastic process on (R2, %, P2). We have

(Ez| Sult + u, w1) — Sult, w1)|?)"?

1/2
(12) 52(2)1/2[@ - smz@) ( _— Xk<;ul>u) }

= 7,(u, wr) < 8.

Let Re S,.(¢, w:) denote the real part of S,(t, w;). We have that Re S, (¢, w) is a stochastic
process with subgaussian increments ([7] Chapter II, Definition 5.4) and of course (E;| Re
Sn(t + u, w1) — Re S,(t, w1)|%)*? = 1.(u, wy). The same holds for the imaginary part of S(z,
wy). Let 7,(8, w1) = supju|=s To(1, w1) and set y.(u, w1) = 7.(u, w1)/16 and ¥.(8, w1) = 7.(8,
wy)/16. We also observe that |u| < & implies y.(u, w1) < ¥.(8, w1) < %. Taking these
observations into consideration we apply Theorem 4.1 [9] to the real and imaginary parts
of S,(¢, w:)/16 and obtain

1 .
E E2[Supls—t|58;s,te[—l/2,l/2] |Sn(t, wi) — Sn(S, w) |]

=— Ez[Sllpy,,(u,w,)sf,,(s,w,);u=|s—tp,s,te[—1/2,1/2] |Sn(t, wy) — Sn(s, wy) |]
13) 16

¥n(8:101)
= K[J‘ [IOg Ny,,(«,w,)([_%, 1/2]) S)]1/2 ds
1]

+ g(YA n(8, wl)):|

where g(x) = x(log log 1/x)"/? K is a constant and N, . .,,([—%, %], u) is the minimum
number of open balls in the y.(-, w:) metric or pseudometric with centers in [—%, %] that
covers [—Y%, %].
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We need to compute E;(y.(8, w1)). To that end consider

1 X 1/2 1 1/2
Ey supu=s <; Y #e1 sin® -—k(—';-l)—u) El(; The1 (X E(w1)8 A 1))

IA

DOl D=

(14)
=-(E|X?%% A 1|)2
Furthermore
8 g2x?
16

E| X% A 1| = P[X?> 1/8%] + 16 f dF (x)

0
and since u < 2sin u for 0 = u < 1 we get

(15) E[X?8% A 1] = P[X? > 1/6%] + 46%(8) = h2(8)
and using (14) and (15) in (12) we get
(16) E1(3(8, w1) < 2v2 B2 (9)

By Lemma 6.1, Chapter IV [7] we have for all j = 1

1 11 R 8
17 —_—— =N w - =27 | S
) 2m, wp(27) ’([ 2 2] ) Moy (o(2770)

where m,, (.., is defined in the same way as m, after (5). It follows that

Yal(8,01) Yal(8,w1) /4 8 172
(18) f [log N, ..wpi([—%, %], ]2 ds < 4f [log(l +—_—>:l ds
0 0 my,,(~,w1)(s)

and from Proposition 1.4.2 [3] and (16) that

§n(8,101) 2v2h(8) 8 12
El[f [log N,.(..up([—%, %], $)]/2 ds =< 4[ [log(l +...___..__)] ds
(19) Y [ mEy,,(-,w,)(s)

2v2h,(8) 8 1/2
= 4J; [log(l + m):l ds = H.,(S)

where, at the last step, we use the facts that Evy,(u, wi) < o(u)/2 and m,2(u) = m,(2u). We
apply E; to each side of (13) and since g is concave we obtain

(20) E[Sup|s—t|ss;s,ze[—1/2,1/2] |'§n(t) wy) — gn(S, w1)|] =< K'[H,(6) + 8(2‘/5’10(3))]-

It follows from (17) and integration by parts that I(s) < o implies that the last integral
in (19) is finite (see also Lemma 6.2, Chapter IV [7]). Thus, whenever I(o) < o the last
term in (19) goes to zero as 8§ goes to zero. Because of Lemma 2 this enables us to conclude
that (11) holds and thus that X,(¢) converges weakly on C([—%, %2]). It follows from
Lemma 2 [6] that C,(¢) converges weakly on C([—%, %]) since (E | Ca(t) — Cu(s)|)"% ¢, s
€ [—¥%, %], is uniformly continuous.

The second proof depends even more heavily on Fernique’s work. We use Lemma 2 to
convert our problem into one of considering the stochastic integrals studied in [3]. We
begin by quoting Theorem 1.3 [3]: “Let E be a Banach space and let Z be a random
variable with values in E. In order for Z to satisfy the (standard) central limit theorem in
E it is sufficient that for all € > 0 there exists a random variable Y with values in E that
satisfies the central limit theorem in E and such that for all n > 0
<e€

(21) E Yha1 (Zy — Y)

{ 1
vn
where Z;, Y,; k=1, . - . are independent copies of Z and Y respectively.” This theorem is
a minor variant of a result of Pisier [12] (see also [5]).
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Consider
N
Ya(t) = f e d[I([X,oo))(x) - F(x)], t €[4, 2]
-N
Following Theorem 3.1 [4] (which is correct for E | X |'*® < )
N
E|Yn(t) — Ya(s)|®= 2f (1 — cos x(t — s)) dF (x)

-N

N
= 2f | x(t — 8)|**® dF (x)

-N
< 8| t— s|1+6N1+6

for 0 < § < 1. Therefore by Theorem 12.3 [1] Yn(t) satisfies the central limit theorem. Our
object is to show that

Z(t) = J ™ d[ I xx)(x) — F(x)], t €%, %]
satisfies thie central limit theorem (see (2)). Let
N 0
Wn(t) = (f + f ) e™ d[Ixm) (x)— F(2)], tE [, %]
—o0 N
By the theorem quoted above we must show that
(22) E|n7"? Yk Wre(t) |l < en
where ey | 0 as N — . Here Wa; k=1, - - - are independent copies of Wy. By (10) the
left side of (22)
1 -N 0
(23) =2E| — 22=1 €r (j + j )e"“ dI([xk,oo)) (%) [
‘/'_l —o0 N

where {¢:.} is a Rademacher sequence independent of { Wy, ,.}. Let us write

_N 00
Un(t) =%ZZ=1 <f + f ) ™ dIx,, (%)
n — N

= J e dmn(w, x)

where my(w, x) is a random measure given by
mn(w, x) = n72 Vi el ((x;,0) (%)

for {X%} a sequence of independent identically distributed real valued random variables
defined by

Xi=0 |X|<N
X=X |X|=N.
(To avoid problems we choose those N for which —N and N are not atoms of X.) Clearly
mn(x) = E|mny(w, x)|*> = F(x) x=-N
=F(-N) |x| <N
= F(-N) + (F(x) — F(N)) x=N.
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Also my(x) is a measure on R and my(R) = 1 — F(N) + F(—N). By Proposition 2.3 [3]
E| Un|«=4[1 - F(N) + F(- N)]'

(24)
2[1-F(N)—F (-N)]"/? 1 1/2
+ \/EKJ; [log(l + m)i] du

where we use the fact that
oo xu
E|Un(t+ u) — Un(t)|* = 4(f + f ) sin2—2— dF (x)
—00 N

< 40%(u).

From (23), (24) and the argument following (20), we obtain (22). This completes the second
proof of the theorem.

The second proof of Theorem 1 calls our attention to a class of stochastic processes
which generalize the random trigonometric series considered in [10], [11] and give examples
of the stochastic integrals considered in [3]. For complex {a.} € I* we consider

(25) X(t) = o1 arerfre™, CtE[-%, %]

where {e.}, {&} and {X,} are independent of each other, {€.} is a Rademacher sequence
and {£.} and {X,} are complex and real valued random variables respectively. Note that
the {£} and {X:} are not necessarily independent. Along with (2, 4, P,) and (Q;, %,
P,) defined above we define (23, %, P3;) to be the probability space of {£} with
corresponding expectation operator E; and set (2, & P) = (1 X Q2 X Q3, A4 X % X S,
P, X Py X P;). For fixed w;, € @, ws € Q3

X (t; wi, ws) = Y1 arerds(ws)e™ t €[—%, %].
is a random Fourier series of the type considered in [10], [11] and converges uniformly a.s.
if and only if
L, Xuwy)u)”
I((Eill | @ |?| & (ws)|* sin® —k—(—2——1)——> <o
as. P 1 X P 3.

Let sup: E3|$:|®> = M? and {X,} be independent and identically distributed with
distribution function F and characteristic function c(¢) and let o%(z) = 2(1 — Re c(u)) as
above. Then following [10]

s 1/2
(26) E:«Ed((z:;l|ak|2|gk<w3>|2sm2@) )scM<2|ak|2>‘”+MI<o<u».

Thus the series (25) converges uniformly a.s. if I(c) < . Now let X} have distribution
function F}, and characteristic function c,(¢) and let 0% (z) = 2(1 — Re c(u)). Then, as in
(26),

(27) I((T5-1 [ ar| %0k (@)?) <

implies the uniformly convergence a.s. of the series (25). The integral (27) depends on
o (u). For example, if P(X, = A\x) = 1 where {\,} is a sequence of real numbers then (25)
is a random Fourier series and, under the additional hypothesis lim inf . E | & | > 0, (27)
is also a necessary condition for the uniform convergence a.s. of (25). But (27) is not a
necessary condition for the uniform convergence of (25) in general. The counterexample is
very simple. Let a; =1, a, =0, k1 and & = 1 in (25) so that (25) is simply

(28) e e™, o tE[-%, %]
Let F be the distribution function of X; and let c(¢) be the corresponding characteristic
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function with o(z) = 2(1 — Re c(u)). The stochastic process in (28) always has continuous
sample paths, even for I(o) = oo,
Now let {a:} and {} be real in (25). We write

(29) X(t) = J ei"’ d{z;;l akékgkl([xk’w)) (x) te [—1/2, 1/é]

—oo

This is a stochastic integral of the kind considered in [3]. The main theorem in [3] also
shows that (27) is a sufficient condition for the uniform convergence of (25) (see Corollary
6.3, Chapter IV, [7]). Note that the example in (28) shows that Fernique’s condition is not
a necessary condition. Perhaps it is necessary if the random measures have independent
and not just sign-invariant increments.

Kent [8] considers the weak convergence of

n(t) = n72 Y5, eXuTutt) te[—%, %]

for some sequence of real numbers T, where { X, } is as in Theorem 1. As in the proof of
Theorem 1 consider

Fult, w1) = 72 VI, €, (eiXsw)(Tutt) — eiXiw)(Twtt)), te[—%, %]
where { X;} is an independent copy of { X.}. We have )
(Ez2| @nlt + u, w1) — @ult, w1) |2 < oy, w)

as in (12). Therefore, following the proof of Theorem 1 we see that the measures induced
by

(30) nTV2 SR (XK T — o( T, + t)), t € [~%, %]

are relatively compact as long as I(6) < . Thus the only conditions needed in [8], besides
I(06) < « which is necessary, are those that insure the weak convergence of the finite
dimensional distributions of (30).
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