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We obtain a nonuniform estimate of the rate of convergence in the
martingale central limit theorem for convergence to mixtures of normal
distributions. The uniform rates of convergence obtained by several other
authors are special cases of our nonuniform estimate. We also obtain a rate of
convergence in B. M. Brown’s central limit theorem, assuming only Brown’s
elementary conditions. This result is a martingale analogue of Feller’s gener-
alization of the Berry-Esseen theorem.

1. Introduction and summary. Martingale limit theory has grown steadily in
importance since it was first brought to prominence by the work of Doob. It has merit in
its own right as an abstract mathematical theory, but its principal relevance to probability
and statistics is its ease of application to a diverse range of problems. From the point of
view of applications a martingale limit theorem is of little use without some knowledge of
the rate of convergence. In this paper we obtain improved rates of convergence in the
martingale central limit theorem.

Heyde and Brown (1970) provided a uniform bound on the rate of convergence in the
martingale central limit theorem. They used a martingale version of the Skorokhod
representation (see, for example, Strassen (1967, Theorem 4.3) and Dubins (1968)). More
recently Erickson, Quine and Weber (1978) obtained bounds of the same order of magnitude
using charcteristic function techniques. The virtue of results of this type is that they
provide rates of convergence under basic conditions of the martingale central limit theorem,
asking only that these conditions hold in an L” space for some p > 2. Faster rates of
convergence may be obtained under more stringent conditions; see the work of Ibragimov
(1963), Grams (1972), Nakata (1976) and Kato (1979). However, in the field of applications
it is often difficult to check even the basic sufficient conditions of the central limit theorem.
For this reason we shall confine ourselves to rates under these conditions alone; faster
rates under less general conditions are presented in Hall and Heyde (1980, Section 3.6).

In Section 2 we present nonuniform rates of convergence in the central limit theorem
for convergence to mixtures of normal laws. (Sufficient conditions for the limit theorem
were obtained by Chatterji (1974), Eagleson (1975), Hall (1977, 1979), Rootzén (1977) and
Aldous and Eagleson (1978).) We believe that ours are the only nonuniform rates available
for the martingale central limit theorem, and they contain the uniform rates established
by Heyde and Brown (1970) and Erickson, Quine and Weber (1978).

Feller (1968) generalized the Berry-Esseen theorem by obtaining a uniform rate of
convergence in the central limit theorem for sums of independent variables with only
second moments assumed finite. His result contains the principal rates of convergence in
the central limit theorem for sums of independent variables, and in Section 2 we present
an analogue of it for martingales which contains the principal rates in the martingale
central limit theorem. Our result provides rates under the very basic conditions assumed
by Brown (1971).
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A version of Theorem 1, with 5 = 1 and m = 0, is given in Hall and Heyde (1980,
Theorem 3.9). Rates of convergence in the martingale invariance principle are presented
in Section 4.3 of the same monograph, and it should be noted that these can be generalized
using the techniques of proof of Theorem 1 in this paper.

2. The results. Let {S. = Y1 X.j, %, 1 =i =<k,} be a zero mean martingale for
each n = 1. Suppose that the martingale differences satisfy the conditions
forall >0, b E[X21(| Xni| > €)1 > 0
and
Ui =3k X —p 1
where the random variable n > 0 a.s. If the o-fields are nested—that is, if
(1) %0 C Ty forall i<k,

then P(S,., = x) » E[®(n 'x)] for all real x, where ® is the standard normal distribution
function (Hall (1977), Rootzén (1977)). The result is also true if instead of (1), 7° is
measurable in M7 %, (Eagleson (1975)). Our first result provides a rate of convergence in
this type of limit theorem. (In this and some later work we suppress the dependence of the
martingale on n.)

THEOREM 1. Let {S; = Yo, Xj, %, 1 < i < n} be a zero mean, square integrable
martingale. Set
U,2=§:;_1Xf and Vf=z;=1 E(‘X,2 | 9’7_1), ISiSn;Uo=0;
and suppose that 0 < 8 = 1. For 0 < m < n define
Lun=EUY?) + Y E | Xi|*? + E| Ui —0*|" + E | ' = E®* | %) |,

where 1 is a random variable and % is taken to be the trivial o-field. Assume that for
positive constants ¢ and ¢, 1 = a.s. and E(****) < ¢. There exists a constant A depending
only on ¢, ¢’ and 8 such that for all x and m, and whenever Lu, < 1,

) | P(S, < x) — E[®(n)] | < ALYS@[1 + | x|*0+d" @271

The result is also true if the term E | U — #*|'*® in the definition of L. is replaced by
E | V?; - 1’2 | 1+5.

The next result is immediate.

COROLLARY. In the notation of Theorem 1, assume 1= c a.s., E**®) < ¢’ and 0 <
8 < 1. There exists a constant A depending only on c, ¢’ and 8 such that for all0 = m <
n’

sup: | P(S, = x) — E[®(n'x)] | = ALY,
The result continues to hold if E | U% — 0% |'*® is replaced by E | VZ— 1|,
If we set m = 0 and n = 1, we obtain the theorem of Heyde and Brown (1970). In the
case of a general triangluar array with
Y E | Xu|*®—>0 and E|U.-7'|""—>0,
and for which condition (1) holds, a judicious choice of m = m(n) — o permits both

E|YrX%|'"—>0 andE |7 —E®*| %) | -0,
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and then (2) provides a proper rate of convergence.

The corollary may also be deduced from a rate of convergence in the central limit
theorem with only second order moments assumed finite. The form of the error bound for
this result is quite complicated in the general setting of Theorem 1, and so we shall assume
that = 1 and obtain only a uniform rate of convergence.

THEOREM 2. In the notation of Theorem 1, there exists an absolute constant A > 0
such that whenever 0 <8 =<1ande> 0,
sup. | P(S, = x) — ®(x) | = A{[3F EXH(X;| >1)]"°

+ 8 WDUTE B(| |2 B[(| X, | = 1)/
+ e+ P(|UE-1]| >¢).

The result is also true if P(|U% — 1 | > ¢) is replaced by P(|VE—1]| >e).

To obtain the corollary from Theorem 2 in the case n = 1 and m = 0, note that

[BEX(|X:|>1)]"" = (CHE | Xi|*)° < (TTE | X))
ifYTE | X;|*® =<1, and
e+ P(|Ui—1|>e) e+ ek | UL - 1|" =2(E | Ui — 1|V

ife= (E I U?, -1 |)2/(3+26)).
Let {S. = Y% X;, %, n = 1} be a zero mean, square integrable martingale and set s3 =
E(S?) and V%= Y7 E(X? | %-1). The conditions

3) forall ¢>0, s:2Y7 E[XM(|X;| > es) | Fii] =0
and
(4) 22 Vil

are sufficient to imply the asymptotic normality of s,'S, (Brown (1971)), and they are
necessary if the differences X;, X;, --- are independent and asymptotically negligible
(Feller (1971), page 520). Theorem 2 provides a rate of convergence under only these basic
conditions. To see this, let § = 1 and note that under (3) and (4),

sEFE[XM()X:| >1)] -0, si* Y E[X(|Xi|<s)]—>0 and E|s;2V2—1|—-0
(see Brown (1971) and Scott (1973)). Set § = 1 and ¢ = (E | s,V2 — 1[)**, and observe
that
2+ P(|s.°VE—1|>¢) = 2(E | s,2VE = 1|)'~2
From Theorem 2 we obtain the bound
supx | P(s:'S. < x) — ®(x) |
s A{[s:* ST EXI(|X:| > sn)) + E | 8.V — 1|1V% + [s2* T EX(| X.| < 5.))]V°),

where A is an absolute constant.

The above results have application far beyond the context of the martingale central
limit theorem. They are potentially useful in most contexts of sums of weakly dependent
random variables, for most such processes have naturally approximating martingales. A
wide variety of such examples are given in Philipp and Stout (1975) and Hall and Heyde
(1980, Chapter 5). The errors of approximation can be straightforwardly bounded using
the inequality

(5) |PX<x)—P(Y=x)|<=P(|X—-x|<8) +P(|X-Y|>0),

which holds for arbitrary random variables X, Y and & > 0.
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To illustrate we shall consider the stationary linear process

X, =Y B(e(n—j),  Xi-oB()) < oo,

where the {e(n), %, —© < n < o} are stationary and ergodic martingale differences, %,
being the o-field generated by e(m), m < n, and E(e*(n) | #-1) = o* < = for each n. This
model is important in time series analysis, the martingale condition corresponding to the
condition that the best linear predictor is the best predictor (both in the least squares
sense; see Hannan and Heyde (1972)).

Suppose that the spectral density

fA) = o’2m)~" | T B(N)e™ |
is uniformly bounded and continuous at A = 0 with f(0) > 0. Then
n% 351 X; —a N(O, 27£(0))
(Heyde (1974)). If we suppose in addition that
Tr=1 (Bn B())? < o0

and E¢*(n) < « for each n, we can apply the corollary of the present paper.
Put C=Y50B()), Y, =Ce(j),0=j< o, S,=Y1 X;and T, = Y}-1Y,. The martingale
{T,, n = 1} closely approximates the process {S,, n = 1}. Indeed, we may write

Xe=Yr+ Zp — Zi1, —0 < k<o,
where {Z;, —0 < k < »} is a stationary sequence with
EZ§ = Yie1 (Bien B())* < o0
(Hall and Heyde (1980), Chapter 5, Section 5.4). Specifically,
Zy= Y7 eln +j) N5y BR).

Then, using (5),

| P((2nf (0)n)~Y2S, < x) — P((2nf (0)n) " *T,, < x) |
(6) < P(| @af(O)n)"'2T, — x| = 8) + P(2nf(On) " ?|Z1 — Zns1| > 8)

< P(x— 8= 2af(0)n)" T, < x + 8) + O(n"'6?)

since EZ% < o. Furthermore, the corollary gives (setting m = 0, § = 1, and noting that
n=1),

(7 sup; | P((27f 0)n) "*T, = x) — ®(x) | = O(n™ ).
Taking 8 = 8, = n~/* in (6) and using (7) we finally obtain
sup; | P((27f (0)n) /%S, < x) — ®@(x) | = O(n™"?).

3. The proofs. We first prove the following lemma.

LEMMA. Let W(?), t =0, be standardized Brownian motion and let T be a nonegative
random variable. Then for all real x and all 0 < e < ',

|P(W(T) < x) — ®(x)| < (2.65)¢"* exp(—x?/4) + P(| T — 1| >¢).

Proor. Using the techniques of Heyde and Brown (1970) we obtain the bound

8) |[P(W(T) < x) —®(x)| < 72 f Y(x, y)e? " dy + P(|T — 1| >e¢)
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where Y(x, y) = ®((1 — &) *(x + /%)) — ®((1 — &) *(x — ¢/%y)). For x = 0 and 0
< ¢ = Y% we have the bounds

1
) f Y (x, ¥)e™* dy < suposy=1 ¥ (%, ¥) < [2¢/7(1 — &) ]2 exp(—u?/2(1 —¢)),
1]

where
W =infl< |x + /%2> %1 — e)x* — (1 —¢),

and

f \P(x,y)e‘yz/"dySJ' Y (x, y) ye@’* dy
1 0

(1—e)~V/2x ©
= f (2m) V2702 dtj ye /4 dy

—e1/2[ (1) V2¢—x]

+ j (2m) V2% C7 dt f ye /% dy.
(1—e)~V/2x €

~1/2 (1—¢) V/2¢—x]

The first term on the right-hand side equals

(1—e)"V2x
(2/m*? J’ exp{—%t® — [(1 — &)’ — x]*/4¢} dt
=[2/7(1 - s)]l/zf exp{—%u® — (u — x)%/4 ¢} du

=[2/7(1 — s)]l/zj exp{—(1 + 2¢)[u — x/(1 + 2¢)]%/4e — x2/2(1 + 2¢)} du.

A similar bound applies to the second term and so

f Y(x, y)e/* dy
1

=[2/=(1 - e)]l/zj exp{—(1 + 2e)[u — x/(1 + 2¢)]*/4e — x*/2(1 + 2¢)} du

= 2"[e/(1 + 2¢)(1 — €)1/ exp[—2%/2(1 + 2¢)].

Combining this estimate with (8) and (9) we see that, for 0 < e < 1,
[P(W(T) < x) — ®(x)| < 277 '€"2 exp(—x/4 + %) + 2% %% ™/* 1 P(|T — 1| >¢),
and a simple computation completes the proof of the lemma.
PROOF OF THEOREM 1. (The symbol C denotes a generic positive constant, depending

only on ¢, ¢’ and 8.) We observe that

P(S,=x) —E[®(m 'x)] < P(S. — Sn<x +¢) — E[O(n ' (x + ¢))]

+P(|Sn|>e) + E|®(m'x) — @ (x +¢))|.
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From this and a similar inequality we see that
| P(S, < x) — E[® (0 '%)]| < maXp-x1 { | P(Sr — Sn < x + Be)
(10) — E[®(n7"(x + Be))] |}
+ P(|Sn| > €) + maxg-s1 {| E[®(n~'x)] — E[®(n 7 (x + Be))]]|}.
Let
(11) e=¢e(n, m, x) = L3 (1 + | x| %)/20+9,
where « is any fixed number subject to the constraint
(12) 0<a<2(1+9).
Using Markov’s inequality followed by Burkholder’s inequality (see Burkholder (1973)),

P(|Sn| > ¢) < e ¥ ®E|S,|** =< Ce 2 BE(ULY)
(13)
< Ce¥?L,, = CLY®™ (1+ |x|%)™.

With m(e, x) = min{|z|:x — ¢ < z < x + ¢} we have
[ @ %) — @ H(x 2 e) | = (27) V2 "e exp[—% 772 (e, x)].

From (12) we see that there exist constants C; and C; such that whenever L, <1 and | x|
> C), m(g, x) > C:| x| . Therefore

(14) E|®(n7'x) —®(n '(x £ )| = CL3™ (1 + | x|
In view of the formula
SUPsso 26 P = [(a + 1)/28] 12—+ 1)/2
and condition (12) we may write
(1+|x|% |x%e| exp(=% n*(x £ )% = Cp**.
The same inequality holds if 7 is replaced by 1, = [E(#*| %,.)]"%, and so
@ (x £ &) = Pnn' (x £e))|
=[x+ e)( " — 12" | [exp(—% 17%(x % €)®) + exp(—% 1.7 (x + €)%)]
= CA+ x| 1 = 1 | ()~ (0™ + 05T
=Cc 'L+ x| =& | ' + %),
Therefore by Holder’s and Jensen’s inequalities
A(x) = 1+ |x|VE[|®n ' (x £ &) — Pn'(x &) | I(|9* —nm|=1)]
< CE[|7* = 1| 0" + 05 HI(|n* = 4| < D]
= G{EL |7 — 0% |**®1(| 0 = n| = DRV B(E@Pe)} 7

where p™ =1 —1/(3 + 28) = 2(1 + 8)/(3 + 26). Let us choose
a=4(1+8)%/(3 + 20);
then p(a — 1) = 2(1 + 8) — (3 + 2 8)/2(1 + 8) < 2(1 + §), and so
A@) < C(E|n? — k| *) VO < CLYE™.

From a similar argument we deduce the inequalities
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QT+ ]x|91 -2 |xxe])]=Cnf,
@ (x £ &) — D' (x +e))|
=S -0@q ' xxeN]+[1—-PMmx |xxe])]=CA+ x| +1%)
and
1+ |x|)E[|®n " (x &) — Pa'(x £ &) [I(|n° —n2| > 1]
< CE[(n" + na) (|7 — nm| > 1)]
= Co{P([ 7 — | > 1)/ (B )) /D)
< CS(E|7* — n3| 1*0) /)
= CE |7 = m] *4) VO ) < GLYO™.
Combining the estimates above we obtain the bound
(15) E|®(n ' (xte) —O(ml(x £e)| = CA + |x|*) 'Ly,
and from (10) and (13)-(15) we deduce that

| P(S, < x) — E[®(n""x)]| < maxpess {| P(Sn — Sw = x + &)

(16)
= E[®(a' (x + BeD]|} + CLA (1 + | x|9)7L

Let Y41, - -+, Y, have the distribution of X1, - - - , X,, conditional on %,, and let ¥,
be the o-field generated by Y1, -+-, Y,. Then {R, = Y1 Y, %, m<i<n}isa
martingale, and the Skorokhod embedding theorem (Strassen (1967, Theorem 4.3)) permits
us to assume without loss of generality that R; = W(T}) a.s., m < i < n, where conditional
on %, W is standardized Brownian motion and {7}} is a nondecreasing sequence of
nonnegative variables. Let P,, and E,, denote operators conditional on %,, and define

Anm(x) = IPm(Sn - Sm = x) - q)(n;tlx) I
= | Pu(W(T) < x) — P(nn'x) |
= | Pu(V(Tu/n%) < nm'x) — P(nn'x) |,

where conditional on %,, V(t) = W(52t)/qm is standardized Brownian motion. From the
lemma we see that for any %,-measurable variable Z satisfying 0 < Z < %,

Drm(x) < 3Z"2 exp(—=x%/4 1) + Pu(| Tu/ni — 1| > 2).

Let Z = €%/9% where ¢ is defined by (11). Assume for the time being that &2 < %c?, so
that Z < %. Then
Aum(x) = CLYE™ (1 + | x| + € 2 2En | Tu — | ™

and so
(17) | P(Sn=Sn=1) = E[®(n7' 0)]| < E[Aun(x)]
= CLA™™ (L+|2|7) 7 + " E| T = ni | ™.

Let A2 =Y7,  E(Y?| %_,) and B% = Y%, Y?. As on page 2164 of Heyde and Brown
(1970) we obtain the estimates

(18) En|To— A2|"™ + E,,|A2 — B2| "™ < C Y01 En| Yi| %
and
(19) E|U2 - Vi < CY E|X:|*2.
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From (18) we see that E | T,, — 07, | "** < CLym, and in view of (11) and (12) we deduce from
(16) and (17) that (for £ < %¢?)

| P(Sn = x) — E[®(n~'%)]| = CL>™ (1 + | x|
Next consider the case e > %c® and | x| > 1. Then
[] 27 < [YA(1 + ] x| )]0+,
1< 2V2cTIL Y (1 + | x| )97,
|P(Sp — Sm =< x) — E[P(n' x)]| = P(| S, — Sw| > |x|) + E[1 — ® (' | x])]
= |x| 7(E|Sy = Sn | + Equ ™) E|N| "]
where N is a standard normal variable, and by Burkholder’s inequality,

E|S, = Su|*™ = Cy(Sin1 XD = CE| UL — U2 |™
=< Co(Lum + E@Z™)).

Therefore if L,, <1,
(20) | P(Sp — S < x) — E[® (7' x)]| = CL;3+ (1 + | x| *)+¥/2-20+80)/a

Comparing this with (17) we see that the best overall rate of convergence is obtained when
(1+ 8)/2 — 2(1 + 8)/a = —1; that is, @ = 4(1 + 8)*/(3 + 28).
Finally, suppose that ¢ > %c® and | x| < 1. Then

4c7'L (1 + | x| > 1> | P(S, — Sw < x) — E[®(n'%)]],
and from this, (16) and (20) we deduce that (2) holds for ¢ > %c? and all x. This completes
the proof of (2). The result when U?2 is replaced by V2 follows from (19).

Proor oF THEOREM 2. (The symbol C denotes a generic absolute positive constant.)
Set Z; = XiI(|X:| = 1), Yi = Z; — E(Z;| %-1), R; = ¥5-1 Y; and let % be the o-field
generated by Yy, ..., Y, 1 =i=<n. Then {R;, 4,1 =<1i=<n} is a martingale. Instead of
(10) we use the bound

supx| P(S, < x) — ®(x) | < sups| P(R, < x) — ®(x) | + P(|S. — R.| > A) + (2m)"/A
where A > 0 (replace S,, by S, — R, in (10)). Since
E(S,—R.)*=Y'EX, - Y,)! =Y E[X} (| Xi| > 1)]

then
sup«| P(S, = x) — O(x) |

< sup.| P(R, < x) — ®(x) | + A2 37 E[XA(| X:| > 1)] + (2m)~ /A,

Embed the martingale {R;, %, 1 < i < n} in Brownian motion as in the proof of
Theorem 1, so that R; = W(T;) as.,1<i=<n.Sett;=T:— Ti—1 (To =0) and let % be the
o-field generated by Y1, ..., Y;and W(t) for ¢t = T;. The sequence

(Yilr— E(rj| 9%-1)], 9, 1=i=<n)}
is a martingale, E(Y?| %) = E(r;| %)) ass., and
E(Ti*| 951) = GE(| Y:|***| %-1) as,,

(21)

where supo<s<i Cs < . (See Strassen (1967), Theorem 4.3. An explicit form for the
constants C; is given in Theorem A.1, Appendix I of Hall and Heyde (1980).) Letting Ci,
C; ... denote absolute constants and using an explicit form for the constants in Burk-
holder’s inequality (see Burkholder ((1973), pages 22-23) we deduce that
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E|¥%[n— E(ri| $20]|'° = O " 2E(RT [1 — E(n| 950730
(22) < C IR E N |1 — E(ri| 91 | = G2 ERE 1)

< G2 YR E| Y| 2P < C8 2 Y B[ X 2P| X = 1))
(Note that 0 < § < 1.) Similarly

(23) E|YI[Y:— E(Y?| 9] = C& "2 31 E[| X *™I(| Xi| = 1)),
E|St (Y2 - 2} + (E@| F)]) |
(24) =2 E|Y! [Z — E(Z:| #1))E(Z| Fi) |

= G862 E|Y [Z: — E(Zi| i) PIE(Z:| Fo) P 072
< G862 Y B[ X221 X = V)]
and
(25) E|Y: (X2 - Z2+ [E(Z:| Z-)T} | =2 X E[X: I(| X:| > 1)].
From Lemma 1 we see that for any A > 0,
sups | P(W(T,) =x) —®(x)| < CA+ P(| T, — 1| > 5 A%,
and so
sups | P(R, < x) — ®(x)| =< C[A + P(| T — 3% E(r:| 9£1) | > A?)
+ P(|37 [E(Y?] Giy) — YH]| > A% + P(| 37 (Y? = Z2 + [E(Z| F) )} | > AY
+ P(|Y2 (X? - Z} + [E(Z:| #i01} | > A% + P(| UL —1] > A%)].
Combining this with (21)-(25) we find that for any A > 0,
Sup; | P(Sn < x) — ®(x) | < C{A + A2 25002 90 B | X, | *2I(| X;| = 1)]
(26) + A E[X?I(X.| > D]+ P(|UZ — 1] > A},
Given € > 0, let
A = max{[37 EX? I(|X:| > D), 81 E(| X 21 X:| < )]V, £,

to prove the first part of Theorem 2.
To see that U2 may be replaced by V2, note that

P(|U2—1|>4A) = PQI X7 I(|X:| > 1) > A%
+P(|X XL X:|<1) - EX?I(| X:) = 1) | Fn)]| > AP)
+ PSP EXZI(|X:| > 1) | Fi] > AY) + P(| Vi — 1] > AY).

The first and third terms on the right-hand side are dominated by A ¥ E[X? I(] X;| >
1)], and using the argument leading to (22) we see that the second is dominated by

C 502 A7 yn B | X,| 2P| Xi| < 1)].

From these estimates and (26) we deduce the desired result,
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