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A REMAINDER TERM ESTIMATE FOR THE NORMAL
APPROXIMATION IN CLASSICAL OCCUPANCY

BY GUNNAR ENGLUND

Royal Institute of Technology

Let balls be thrown successively at random into NN boxes, such that each
ball falls into any box with the same probability 1/N. Let Z, be the number of
occupied boxes (i.e., boxes containing at least one ball) after n throws. It is
well known that Z, is approximately normally distributed under general
conditions. We give a remainder term estimate, which is of the correct order
of magnitude. In fact we prove that

0.087/max(3, DZ,) = sup: | P(Z, < x) — ®((x — EZ,)/DZ,)| = 10.4/DZ,.

1. Introduction and formulation of main results. Balls are thrown successively
at random into N boxes, such that each ball falls into any box with the same probability
1/N, independently of what happens to the other balls. Set

Z, = the number of occupied boxes (i.e., boxes
(1.1) containing at least one ball) after n throws.

The problem of finding the distribution of Z,, called the (classical) occupancy problem,
has been treated extensively in the literature, and we refer to Johnson and Kotz (1977) for
an account. In particular we have the following formulas (D? denoting variance)

1z EZ,=N{1-(1-1/N)"},
(1.3) D?Z,=N(Q1-1/N)"-N(-2/N)" - N*(1-1/N)*+ N*(1 —2/N)".

It is well known that Z, is approximately normally distributed under general conditions,
see Weiss (1958), Rényi (1962) or Johnson and Kotz (1977) Chapter 6. Our main aim in
this paper is to derive the following estimates for the accuracy of the normal distribution
approximation. ® denotes as customary the normal distribution function.

THEOREM 1. Fork=1,2,3,.---,N, n=1,2, ... we have

(1.4) (a) supy | P(Z, < k) — ®((k — EZ,)/DZ,)| = 10/DZ,
(1.5) (b) SUP—w<i<w | P(Z, < x) — ®((x — EZ,)/DZ,)| = 104/DZ,
(1.6) (c) sup: | P(Z, < x) — ®((x — EZ,)/DZ,)| = 0.087/max(3, DZ,)

Note that (1.6) shows that the bounds in (1.4) and (1.5) are of the correct order of
magnitude in DZ,. Next we comment on the “strength” of the inequalities (1.5) and (1.6)
as a tool for establishing asymptotic normality of Z,: Consider a sequence of ball throwing
situations indexed by i, i =1, 2, - - .. We use the convention that an index i attached to a
quantity means that it relates to situation i. In particular N; denotes the number of boxes
in situtation i.

COROLLARY TO THEOREM 1. We have, where & denotes distribution and — » denotes
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convergence in distribution

%) L(Zn, — EZ1)/DZs) =3 N(0, 1)
if and only if
(1.8) DZ,,— as i— o,

The result in the corollary was proved by Rényi (1962). We would also like to point to
the remainder term estimates presented in Kolchin (1966). Throughout this paper we will
use the notation

(1.9 p=

2l

2. Basic ideas in the proof of Theorem 1. First note that (1.5) follows from (1.4)
and the simple inequality

(2.1) SUP|x—yis1 | ®(x/DZ,) — ®(y/DZ,)| = (27) "?/DZ,.
We therefore concentrate on (1.4). When £ is sufficiently far away from EZ, the inequality
(1.4) is almost trivial. Assume that

1
(2.2) k=EZ, — — (DZ,)**~
V10

Then Chebyshev’s inequality easily yields that P(Z, < k) = 10/DZ,. Furthermore the
inequality ®(—a) = a™?, a > 0, yields that ®((¢ — EZ,)/DZ,) = 10/DZ,. By combining
these estimates we see that (1.4) is true if (2.2) holds. The case

1
(2.3) k= EZ, + — (DZ,)*?
J10

can be treated quite analogously.
Hence it suffices to prove (1.4) for k:s such that

(2.4) |(k — EZ,)/DZy | < VDZ,/~10

Following an idea from Rényi (1962) we introduce the following random variables. We let

2.5) U, be the time, which’ the increasing sequence Zo, Z1, Zy, - - - spends
in the state “exactly j boxes are occupied”, j=0,1,2, .-, N— L
Then
(2.6) Us, Uy, Uy, - -+, Un-; are independent random variables
2.7 P(U,-=m)=<1—%,)<%)m 1, m=12-...,j=01...,N—-1,
i.e., Ui — 1 has a geometric distribution with parameter (1 — j/N). Set
(2.8) Vi=%3% U, ‘ k=12 ...,N.

The interpretation of V; is that V; is the time needed to reach the state “exactly & boxes
are occupied”. We have, and this is the desired representation,

(2.9) P(Z,= k) = P(V, =n).
From (2.9) we get

| P(Z, < k) — ®((k — EZ,)/DZ)| = | P(Vi > n) — ®((EVi — n)/DV,)|

(2.10)
+ | ®((EV:x — n)/DVi) — ®((k — EZ,)/DZ,)|.
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Our program is to show that both terms to the right in (2.10) are dominated by quantities
of the type C/DZ,.

We shall therefore need various estimates of the moments of the Z-, V- and U-variables,
and these will be derived in the subsequent Sections 3 and 4. The proof of (1.4) will be
concluded in Section 5. Section 6 contains the surprisingly easy proof of (1.8).

3. Estimates of EZ, and DZ,. We first note that in proving (1.4) we can without
loss of generality assume

3.1) D’Z, =z 100,

since if (3.1) does not hold then (1.4) is trivial. From (1.3) we see that D?Z, = N(1 —1/N)"
— N*(1 -1/N)*™ - (1-2/N)™ = Ne™, i.e., (3.1) implies

(3.2) Ne™ z 100,
(3.3) N = 100.

Our main aim in this section is to prove the following two lemmas.

LEMMA 3.1. Define ri(n, N) by the relation

(3.4) EZ,= N1 -e™®)+ rin, N).
Then if (3.3) holds we have
(3.5) 0 = ri(n, N) = 0.511 pe™.

LEMMA 3.2. Define r:(n, N) by the relation
(3.6) D?Z,=Ne™{1—e(1 + p)}{1 + ran, N)}.
Then if (3.3) holds we have

6.13 pe™
3.7) | ro(n, N)| = NP0 =07 p)]
If (3.1) holds we have
(3.8 | 72(n, N) | =0.024.

Proor oF LEMMA 3.1. By Taylor expansion we have (using 1 — x = exp(log(1 — x)))
e ™= (1 —x)" = exp(—nx — % nx*(1 — x)7%), 0 = x < 1. This together with the inequality
0=1—-e”? =y, y=0yields
2

2(1'l—f.’xi)2€_nx’ 0§x<1’n=0’1’2’...

With x = 1/N and observing (1.2) and (3.3) we obtain

(3.9) 0se™-(1—-2x"=

_ 1\" pe™® _
. =rnn, N) = r-1-%<) |= =o0. P,

ProOF OoF LEMMA 3.2. By (1.3) and (3.6) we have

Ne™{1 —e™®(1 + p)}rz{n, N) = N{(l —%) - e"’} + N{e'z” - (1 —%) }

(3.11) 2
_2p B —l n _3 n
+N<pe N(l N) +N<1 N) )

By Taylor expansion we have (using 1 — x = exp(log(1 — x)))
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*®

(3.12) exp —nx—lnxz———n—x—s——— =E(1-x%"=exp —nx—-lnxz 0=x=1
' 2 31-x)3)° - 2 ’ =T="

which together with the inequality 0 =1 — e™ =y, y = 0 yields

1
0= exp(—nx —5 nx"’) -1 -x"

3
(3.13) = exp(—nx - -21- nx?)(l - exp(-— é-(l—nf-x—)é,))

3
nx
S e aa— - .
=230 =27 exp(—nx)
By using (3.9) in the first two terms in (3.11) and (3.13) twice on the last one (with x =
1/N and 2/N) we obtain (note (3.3))

) ~ pe_p 2pe_2"
4 1-—- P =
Ne™{1 - e+ p)}| roln, N) | =550+ 7 g02)?
8 n 2 n
2 i T
(3.14) +N (3 <098 N ¢ t3xo09 N E )
+ N2 £_+exp _2_p —expl —= || e
N N N

By the simple inequality |z + e ™2 — e™*| = 2u? u = 0 (which is easily proved by Taylor
expansion) where we set u = p/N

(0.511 + 5.61 e ? + 2pe P)pe™™ 6.13 pe™”

3.1 , = =

(815) [ raln, NY | Ne”(1— e ?(1+p)} Ne?(l—e?(1 +p))
proving (3.7). By inserting this in (3.6) and using pe® = e and (3.1) we get

6.13
(3.16) Ne?{1—e™®(1 + p)} = D*Z, — 6.13pe™ = 100 — —= 97.7.
By combining (3.16) and (3.7) we get (again using pe ™ = e™’)
6.13
X , =——=0. a

3.17) | 72(n, N)| 9776 0.024

4. Some estimates of the moments of the U- and V-variables. Throughout this
section U and V denote the random variables which were defined in (2.6)-(2.8), (2.11) and

(2.12).

LEMMA 4.1. For k < N define r3(k, N) and ry(k, N) by

(4.1) EV,=—Nlog(l — k/N) — rs(k, N),

4.2) D%V, = N{k/(N — k) + log(1 — k/N)} — ry(k, N).
Then we have

(4.3) 0= rg:(k, N)=%k/(N — k),

(4.4) 0 = ry(k, N) =% NE/(N — k).

LEMMA 4.2. For k < N we have
NK?

(4.5) YIS E| U,-—EU,~|3§2W.
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Proors. By (2.7) we have the following well known formulas

(4.6) EU;=(1-j/N)7, D= (j/N)1—j/N)™
From (2.8) and (4.6) we get

4.7 EVi=Y*3 (1 —=j/N)y'=NYXN i1 1/,

while (2.8), (2.6) and (4.6) yield

(4.8) D*V, = 333 G/N)YA = j/N)? = N L. npe1 (N = v)/¥%,

By applying the following two estimates (which are easily proved by the Euler-McLaurin
summation formula) we obtain (4.3) and (4.4).

m 1/1 1
(4.9) 0= log<—> - Yrem l/r=- (— - —>, l1=n<m.
n 2\n m
1 1 m 1
. = —— =) =logl—) - %2, - =2 - 2 =
(4.10) O_m<n m) og<n> Spr1 (m— ) /v _2(m n)/n’, 1=n<m.
The estimate (4.5) follows analogously from the following results (4.11) and (4.12)
1 (1 1)\’
(4.11) Yins (m —v) /¥ == m(- - —) ) l1=sn<m.
2 n m

If the random variable X has the distribution P(X = k) =p(1 —p)* L, k=1,2,..- 0<p
=1 then

1_
(4.12) E|X-EX['=s4—".
o

The estimate (4.12) follows since <note EX = %, E(pX)?*=2—-p,E(@X) =6 —6p + p2)

E|pX—-1PP=E(pX+ 1)(pX - 1)?

(4.13) = E(pX)* - E(pX)* = E(pX) + 1 = (1 - p)(4 —p).
(In fact it can be shown by tedious calculations that the constant 4 in (4.12) can be replaced
by (12/e — 2), and that this constant is the best possible.) Hence Lemnia 4.1 and Lemma
4.2 are proved. [

Thereby we have obtained our basic moment estimates. However, as stated in Section
2, we are interested in the behaviour of EV;, DV, and other quantities when £ lies in the
vicinity of EZ,, more precisely, cf. (2.4), when k& satisfies

(4.14) k = EZ, + 6(DZ,)*", 18] =1/V10

Our next task will therefore be to recast the estimates in Lemmas 4.1 and 4.2 for k: s of the
type (4.14). We continue to use the notation

(4.15) p=n/N.

LEMMA 4.3. Let k satisfy (4.14) and define rs(n, N, ) and rs(n, N, ) by

(4.16) EVi=n+ ON(e?/N)V*{1 — e *(1 + p)}¥* + rs(n, N, 8),
(4.17) DV, = Ne?{1 — e?(1 + p)}{1 + rs(n, N, 6)}.

Then, if also (3.1) is satisfied we have

(4.18) | rs(n, N, 8)] = 1.63¢”(1 — e ) + 0.666° VN e”2{1 — e?(1 + p)}*?,

(4.19) | re(n, N, 8)] = 2.29 | 8 |{N(1 — e (1 + p)} ~* + 1.08{Ne (1 — e P(1 + p))} 7,
(4.20) | re(n, N, 6)| < 0.242
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LEMMA 4.4. Let k satisfy (4.14) and assume that (3.1) holds. Then
(4.21) *3E|U;— EU; = 2.63Ne®(1 — e™)%.

To prove these lemmas we shall need the following auxiliary results.

LEMMA 4.5. Let k be as in (4.14) and define r.(n, N, ) and rg(n, N, 8) by

(4.22) 1—k/N=e™P{1+rin,N,8)},
(4.23) k/N =(1—e™P){1+ rs(n, N, 8)}.
Then

(4.24) r:(n, N, 8) = —0(e?/N)/*{(1 — e™”(1 + p)}**{1 + r2(n, N)}** — e’ri(n, N)/N.
If also (3.1) is satisfied we have

(4.25) | r1(n, N, 0) | =1.018]6 |(e?/N)/*{1 — e™(1 + p)}** + 0.511 %,
(4.26) | 72(n, N, 8)| = 0.107,

(4-27) I rB(n) N’ e)lé | r7(n’ N) o)l/(ep - 1))

(4.28) | rs(n, N, 8)| = 0.024.

ProoOF oF LEMMA 4.5. By using (4.14), (3.4) and (3.6) we get
k/N=EZ,/N + 6(DZ,)*?/N=1—e?+r/N
(4.29) + ON¥4e~*/A(1 — eP(1 + p)}¥A(1 + )"/ N.
Hence
(4.30) 1—k/N=e?(1—0(?/N)/*{1 —e™P(1 + p)}*(1 + r))¥* — e’r;/N)

proving (4.24). By using (3.8) and (3.5) we obtain (4.25). To obtain (4.26) dominate p/N by
e?/N and apply (4.14) and (3.2). Turning to (4.27) and (4.28) we note that by (4.22) and
(4.23) we have

(4.31) rg = —r./(e” —1).

which proves (4.27). In virtue of (4.27), (4.25) and the fact that p = e?(1 — e™)
e?(1+p) 0511
e’ -1 N

(432) | rs| = 1018] 8](e?/N)V4{1 — e™(1 + p)} 1=
By using the simple estimate (1 — e™®(L + p))/(e” — 1) = %e™’, p > 0 and the same
reasoning as above we easily obtain (4.28). 0

ProoF oF LEMMA 4.3. By inserting (4.22) into (4.1) we get
(433) EVp,=-Nlogle®{1+r})—rs=n—Nri+ N{r;—log(l1+r)} —rs.
Hence by (4.24), the inequality | x — log(1 + x)| = %x?/(1 = | x|), | x| < 1 and (4.26)

|rs | = N|0|(e?/N)*{1—ePA+p)}** |1+ 1) — 1|+ eny

(4:34) ' + BN ()21 = 0.107) " + | 72 |

By (3.7), (3.8), the inequality |(1 + x)** — 1| = % |x|(1 - [x])74, | x| <1, (3.5), (4.3)

_ 3 6.13e?(1 —e™®) ~1/4
< N 16 (e?/N)A(1 — 342 -
|rs|=N| 6|/ )41 — e™”(1 + p)} INO—e?0+p) (1 — 0.024)

(4.35) 1
+0.511e”(1 — e™?) + 0.63N(r7)* + 3 (k/N)(1 — k/N)™".
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In virtue of (4.25) we get
N = 1.018%0%(e?/N)2{1 — e(1 +p)}¥2N

(4.36) :
+2X 1.018 X 0.511 X | 8 |(e?/N)Y*p + 0.511“1’1V

By (4.14), (3.2) and the inequality p = e”(1 — e™?), p > 0 this yields
(4.37) N(r7)? = 1.0376% VN e?*(1 — e?(1 + p)}*% + 0.107¢”(1 — 7).
Hence from (4.35), (4.37) and Lemma 4.5 we see that (using (3.16) and (4.14))
| 75| = 0.47e”(1 — ™) + 0.511e”(1 — e™) + 0.660% VN e”*{1 — e™?(1 + p)}**
+ 0.07e”(1 — e™) + %(1 — e7?)(1 + 0.024)e”(1 — 0.107) 7},

which yields (4.18). In order to prove (4.19) and (4.20) we use (4.22) and (4.23) in (4.2) and
obtain

(4.38)

D*Vy, = N(e’(1 — e™®)(1 + rs) /(1 + r7) + log(e {1 + rv})) — ru
=N —1=p+ (e’ —1){Q +r)/A +r)—1} +log(l + r;) — rs/N).
By (4.17), (4.26) and the inequality |log(1 + x)| =|x|/(1 — | x]), | x| < 1, we have

(4.39)

- e’ —1 i
| 76 | =ep—_1_—p(| ro| +|rs])(1 = 0.107)

(4.40) + (€ —-1—-p) | r|1-0107)"
+ (" —=1-p)'|r|/N.

By (4.27) and (4.4) we get
(4.41) |re|=112{(1 — e +p)} ' A + )| rr |

+ %{1 — eP(1 + p)} '(k/N)(1 — k/N)72.eP/N.
In virtue of Lemma 4.5 we have
(4.42) (R/N)-(1 — k/N)™* = (1 + 0.024)(1 — 0.107) 2e®(1 — e7).
Inserting (4.42) and (4.25) into (4.41) we obtain

| re | = (1.12)(2)(1.018){Ne™”(1 — e (1 + p))} /| 0|

(4.43) + (L.12)(2)(0.511){Ne™”(1 — e (1 + p))} 'pe?

+0.65(1 — e ) {Ne (1 — e?(1 + p))} 7,

which by elementary inequalities yields (4.19). To get (4.20) from (4.19) we use (4.14) and
(3.16). 0

ProOF OF LEMMA 4.4. Combining Lemma 4.2 and Lemma 4.5 we obtain
(4.44) YYE|Ui— EU; P = 2N(1 — e?)%%(1 + 0.024)%(1 — 0.107) %,
which yields (4.21). ’
5. Conclusion of the proof of (1.4). The estimate (1.4) follows readily from (2.10)

and the following two lemmas. Recall the remark in Section 2 saying that it suffices to
consider k-values satisfying (4.14) and the remark in Section 3 that it suffices to consider

the case (3.1).
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LEmMA 5.1. For k as in (4.14) we have when (3.1) is satisfied
(5.1) | P(Vi>n) — ®(EVr — n)/DV:)| = 6.46/DZ,.

LEMMA 5.2. For k as in (4.14) we have when (3.1) is satisfied
(5.2) | ®((EVx — n)/DVy) — ®((k — EZ,)/DZ,)| = 3.11/DZ,.

ProoF oF LEMMA 5.1. By the Berry-Esseen theorem (see e.g. Loéve (1977), page 300
and van Beek (1972)), Lemma 4.4 and Lemma 4.3 we obtain

| P(Vi>n) — ®((EV: — n)/DVy)|

(5.3) =0.7975 X 2.63Ne®(1 — e *)*(DV;)~*
= 2.10Ne®™(1 — e™®)*(Ne”{1 — e™P(1 + p)}(1 — 0.242))7%/2
(1 —e™)?

=319+ {Ne?(1—e™(1+p))} %

—eP(1+p)

By using (3.6), (3.8), the fact that (1 — e™)?/{1 — e™(1 + p)} = 2, p > 0 we obtain (5.1)
from (5.3). 0

In the proof of Lemma 5.2 we shall need the following estimate.
LEmMA 5.3. Under the assumptions of Lemma 5.2 we have
(5.4) |(k — EZ,)/DZ, — (EVy — n)/DV; | = 2.500% + 2.15/DZ,.

PROOF OF LEMMA 5.3. (4.14) together with Lemmas 3.2 and 4.3 yield
A= |(k — EZ,)/DZ, — (EV, — n)/DV} |
=|6(Ne™®)* {1 —e™P(1 + p)}*(1 + rp)"/*
(5.5) — 0-N(e?/N)"*{1 — e™?(1 + p)}*
-{NeP(1 — e™(1 + p))} 2(1 + re) /% |
+ | 75| {NeP(1 — eP(1 + p))}*(1 — 0.242)7'72,

In virtue of (4.18) and the simple inequalities |[(1 + x)V* —1|= %] x|(1 — |x|)"¥% |x| < L,
and |1 +x)2-1|=%|x|(1 = |x|)™% | x| < 1, we obtain

A=|0|{NeP(1—eP(1+p)}40.25|r|Q—|r ) +%|r|1—|rs )™
(5.6) + 1.88{Ne=?(1 — e~?(1 + p))} ™2 + 0.764".
By using (3.7), (3.8), (3.16), (4.19), (4.20) and (4.14) this yields
(5.7) A =2500% + 2.12{Ne™”(1 — e?(1 + p))} "~
In virtue of (3.6) and (3.8) we get
(5.8) A = 2.500% + 2.15/DZ,

proving Lemma 5.3. 0

PrOOF OF LEMMA 5.2. By the mean value theorem we have
(5.9) ®(x) — D(y) = (2n) V:(x — y)exp(—%{x + 8 (y — x)}D), 0<d<l1.

Hence we obtain with x = (¢ — EZ,)/DZ, and y = (EV, — n)/DV,



692 GUNNAR ENGLUND

| ®((k — EZ,)/DZ,) — ®((EVy — n)/DV})|
(5.10) = (27r)"%(2.5060% + 2.15/DZ,)exp(—%{6~DZ,

- + 8((EVx — n)/DV, — 6vDZ,)}%).
If| 6] VDZ, = 1.5 then the right hand side of (5.10) is dominated by
(5.11) (27)7Y2 (2.50 X 1.5% + 2.15)/DZ, = 3.11/DZ,.

If, on the other hand, | §| vDZ, = 1.5 then by Lemma 5.3, (3.1) and (4.14) we have
2.50 | 6| . 2.15 )
vDZ, | 8| vDZ,-DZ,

(EV: — n)/DV,, — 6¥DZ, | < | 6| VDZ, (
(5.12)
=0.394.| 0| VDZ,,

yielding that the right hand side of (5.10) is dominated by
(5.13) (27)V?2.50(DZ,) ~'6*DZ, exp(—%0°DZ,{1 — 0.394)?)
+ (27) 722,15 exp(—%4 X 1.5%{1 — 0.394}%/DZ,,

which by the simple inequality xe™** = (ae)”" yields that (5.10) is dominated by 2.99/DZ,
when | 8| vDZ, = 1.5. This combined with (5.11) yields (5.2). 0

6. Proof of (1.6). Chebyshev’s inequality yields
(6.1) P(EZ, — N3 DZ, < Z, < EZ, + V3 DZ,) = %.

As the distribution of Z, is concentrated on the integers 1, 2, ..., min(n, N) and as the
interval (EZ, — V3 DZ,, EZ, + 3 DZ,) contains at most [2v3 DZ, + 1] integers, (6.1)
yields that the largest point mass p(n, N) in the distribution of Z, satisfies

%

6.2 Ny z————,
62) pin, N) 2v3DZ, + 1

Furthermore, as ®(x) is continuous we have

(6.3) SUP—w<i<wo | P(Zr < x) — ®((x — EZ,)/DZ,)| = %p(n, N).

(1.6) now follows from (6.3), (6.2) and the elementary inequality

(6.4) (6v3 x + 3)™' = (6v3 + 1)"'/max(x, 3) = 0.087/max(x, 3). 0
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