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A CONVERSE TO THE SPITZER-ROSEN THEOREM

By PETER HALL

Australian National University

Let S, be the sum of n independent and identically distributed random
variables with zero means and unit variances. The central limit theorem
implies that P(S, < 0) — %, and the Spitzer-Rosén theorem (with refinements
by Baum and Katz, Heyde, and Koopmans) provides a rate of convergence in
this limit law. In the present paper we investigate the converse of this result.
Given a certain rate of convergence of P(S, < 0) to %, what does this imply
about the common distribution of the summands?

1. Introduction. Let X, X;, X5, - - - be independent and identically distributed random
variables with E(X?) = 1 and E(X) = 0. Then S, = ¥7 X; is asymptotically normally
distributed, and P (S, = 0) — %. Spitzer (1960) estimated the rate of convergence in this
limit theorem by showing that the series

Y2 n U [P(S, < 0) — %]

converges. Rosén (1961) showed that the series is absolutely convergent, and Baum and
Katz (1963) that if

(1) E|X|** < o
for some 0 < a < % then
2) Y| P(S, = 0) — %| < .

This problem is of course closely related to the question of rates of convergence in the
central limit theorem, for which if 0 < a < %,

R SUP_w<i<w | P(Sn = n'%x) — ®(x) | < o

if and only if (1) holds (see Heyde (1967); ® denotes the standard normal distribution
function). Koopmans (1963) and Heyde (1966) refined Rosén’s techniques and considered
the case of nonidentically distributed summands.

Our principal aim in this paper is to establish necessary conditions for the convergence
of series of the type (2), and to determine when the conditions (1) and (2) are equivalent.
We generalize the Spitzer-Rosén problem by studying series of the form

Y2 n~A(n) | P(S, < 0) — %],

where A is a nonnegative, measurable function satisfying mild regularity conditions.
Central to our discussion of necessary conditions is the class € of distributions F for

which

f sin tx dF'(x)

—o

does not change sign in some interval (0, €], € > 0. Trivially, ¥ contains all the symmetric
distributions. In Section 2 we discuss properties of the distributions in %, and give an
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634 PETER HALL

example of a distribution not in ¥. The Spitzer-Rosén problem is treated in Section 3, and
the proofs of our main results are placed together in Section 4.

The symbol C, with or without subscripts, denotes a positive generic constant. The
imaginary part of the complex number z is denoted by Im z.

2. The class 4. The class ¥ contains most of the distributions commonly encountered
in statistics.

THEOREM 1. Any distribution uniquely determined by its moments (all assumed
finite) is in €.

PrOOF. Let ¢(t) = E(e**) be the characteristic function of such a distribution. If Im
o(t:) = O for a sequence 0 # £, — 0 then

E(X) = lim.Im ¢(&) /t: = 0.

Proceeding by induction we deduce that E(X***') = 0 for all n, and so y(¢) = %[¢(t) +
¢(—t)] is the characteristic function of a distribution with the same moments as X. Hence
Y = ¢, and Im ¢ vanishes everywhere.

Therefore the distribution of any variable X satisfying Carleman’s criterion (that is,
3¢ (EX™)7'/2* = ) is in 4. However the class is much wider.

THEOREM 2. (i) The class € contains all distributions with E | X | < o and bounded
above or below. (i) If n = 0, E | X | **' <  and E(X***") 5 0 then the distribution of X is
in%. (iii) If E| X| < o, E|X|* = o for some a > 1, and either

) lim inf, .[P(X > x)/P(X < —x) — 1] > 0
or lim inf,.[P(X < —x)/P(X > x) — 1] > 0,

then the distribution of X is in .

Part (i) covers all scale and location changes of the lognormal distribution, which are
excluded from consideration in Theorem 1 (see Heyde (1963)). Part (iii) is particularly
relevant to the work of Section 3.

Proor. (i) If the distribution of X is bounded below then in view of Theorem 1 we
may suppose that P(X < x) < 1 for all x. In this case there exists a smallest integer n = 0
such that 0 % E(X***") < =, and then

t-—(2n+1)E(sin tX) — (_l)nE(X2n+1)

as t | 0. Part (ii) is proved similarly. (iii) Let n = O be the largest integer such that
E|X|?*' < w. We may suppose that E(X¥*') = 0 for 0 < j < n, for otherwise the result
follows from (ii). Let Fi(x) = P(0 =< X < x) and F»(x) = P(0 = —X = x) for x > 0, and define

f(x) = sin x — ¥ (=1)/x¥*1/(2j + 1)!.
Note that fand f’ do not change sign on (0, ®), and | f(x) | =< | x|***>. For ¢ >0 and A >0,

t @ | Esin t X| = ¢ f f(tx)d[Fi(x) — Fa(x)]
0

_ A2n+3

= g @n+d) J' f(tx)d[F1(x) — Fs(x)]
A

- 2A2n+3.

> f@n+D) f f tx)[Fi(x) — Fa(x)]dx
A
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In view of condition (3) we may assume that for some € > 0,
Fy(x) — Fi(x) =1 — Fi(x) — [1 — F2(x)] = €[1 — Fi(x)]
for all x > A. Therefore for all u > A,

t—(2n+3) IE sin tXl > t—(2n+2)e

J’ f(tx)[1 — Fi(x)]dx | — 2A%**3
A

»
= ¢ OO f | f(tx) | dFi(x) — (2 + N>,
A

Choose & > 0 so small that
|fx) | > % x**3/(2n + 3)!
for 0 < x < 4. Then if t < §/u,

I
=@ | E sin tX| = % €[(2n + 31" f x23dF (x) — (2 + A,
A

Our assumptions imply that E(X*)**** = o, and so by choosing p sufficiently large we
deduce that

lim inf,;, £ ®*? | E sin tX| > 0,
from which the result follows.

ExaMPLE. We exhibit a distribution not belonging to %. The lognormal distribution,
with density

p(x) = (2m)7*x7" exp[— % (log %)*], x>0,
has the same moments as a distribution with density
g(x) = p(x)[1 — sin(2~ log x)], x>0

(Heyde (1963)). Let X be an absolutely continuous variable with density r(x) = % p(x) if
x>0, and r(x) = % g(—x) if x < 0. Then
E(sintX) =% J p(x) sin(27 log x) sin(tx)dx = % (27)?h(¢),
0
say. We shall show that there exists a sequence 0 < ¢, — 0 such that A(%) = 0 for all &. If
this is false then

h(®) = J’ e /2 sin(2mx) sin(te®) dx

is of the one sign for all ¢ € (0, €], some € > 0. Without loss of generality it is positive. Now,
R’ (t) = —e2h(te?), and so W’ is strictly decreasing on (0, ee™%]. Since 4’(0) = 0 then A’ must
be negative on (0, ee~?], and since A(0) = 0 then A must be negative on (0, ee2]. This
contradicts our assumption. Similarly it can be shown that A does not vanish identically in
a neighbourhood of the origin.

The variable X has all moments finite and all odd order moments zero, but is asym-
metrically distributed, a curious pathology indeed.

3. The Spitzer-Rosén theorem. Let X, Xi, X;, --- be independent and identically
distributed variables with characteristic function ¢, E(X%) = 1 and E(X) = 0, and set S,
=¥ X;. Let \:R" — R be a measurable function with the properties



636 PETER HALL

(1) A(x)=0for0=x<1;
(ii) for any 0 < a < b < 0, SUPa<y<s A(xy)/A(x) is bounded as x — oo;

and )
(iii) for some & > 0, [§ A(x)x™* dx < o,
With each A satisfying (i)-(iii) we associate a function A defined by

At) = f Ax/t)e™ dx.
0

THEOREM 3. If

(4) ‘r Ax)x"*?log x dx <
(]
then condition (5) implies (6) and (7):
(5) fl |arg ¢(¢) | £ 2A(t) dt < oo;
(]
(6) Supn | X nTAM)[P (S, = 0) — ]| < o;
)] YT rTA(n) | P(S. < 0) — %| < .

Conversely, if the distribution of X is in € then (5), (6) and (7) are equivalent.

(We impose the restriction —7 < arg ¢ < 7.)

The first part of Theorem 3 represents a generalization of the results of Spitzer (1960),
Rosén (1961), Baum and Katz (1963), Koopmans (1963) and Heyde (1966). The converse
is entirely new.

By imposing a “smoothness” condition on the distribution of X we may obtain faster
rates of convergence than are possible under the condition (4). We adopt Cramér’s

continuity condition,
© lm supy¢j»=| () | < 1.

Condition (C) implies that ¥, P(X = x) < 1, and (C) holds if the absolutely continuous
part of the distribution of X does not vanish.

THEOREM 4. Let A be any function satisfying (i)-(iii), and suppose that (C) holds.
Then (5) implies (6) and (7). Conversely, if the distribution of X is in € then (5), (6) and
(7) are equivalent.

One rationale behind studying a limit theorem for the quantity P (S, < 0) — 1/2 is that
zero is not very distant from the median of S,. Indeed, the central limit theorem implies
that med (S,)/n?>— 0 as n — . If E| X|* <  and E (X®) = 7, and if X does not have a
lattice distribution, then med (S,) — —(1/6)7 as n — o« (Haldane (1942), Hall (1980)). In
this case it is appropriate to seek a limit theorem for the quantity P (S, < —(1/6)7) — 1/2.

We introduce the class ¢’ of distributions with £| X |® < o and such that E[sin tX — tX
+ (1/6)(t/X)?] does not change sign in some interval (0, €], € > 0. Sufficient conditions for
a distribution to belong to %’ may be established using the techniques of Section 2.

THEOREM 5. Assume that E| X |* < » and E (X)* = 1, E(X?) = 1, E(X) =0, condition
(C) holds, and A is a function satisfying (i)-(iii) and

(8) f Ax)x~2 dx < oo,
0
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Then condition (9) implies (10) and (11), and if the distribution of X is in €’ then (9), (10)
and (11) are equivalent:

1
9) f | Im ¢(¢) + % 7% |t °A(t) dt < oo;
0
(10) SUpn| YT R TAM[P(S. = —% 1) — %]| < oo;
(11) ST AN | P(S. = —% 1) — | <o,

We restrict our attention now to the special case A(x) = x*, x = 1, where « > 0. Our aim
is to replace the condition (5) by an equivalent condition on the moments of X.

THEOREM 6. Suppose E(X?) = 1, E(X) = 0 and the distribution of X is in €. If0 <
a < 1/2 and E (X™)**2* < « then the following four conditions are equivalent.

(12) E(X*)** < o,

(13) supn| X7 n* [P(S, = 0) — %]| < x;

(14) ST P(S, =0) — %| < oo

(15) ST R SUP—w<x<w| P(Sn = n'%x) — ®(x) | < 0.

The roles of X* and X~ above may of course be reversed. Theorem 6 is largely a
corollary of Theorem 3, and a similar corollary of Theorem 4 may be deduced by the same
argument.

4. The proofs.
PrOOF oF THEOREM 3. As in Rosén (1961, Theorem 2) we have for any § > 0,

8
(16) P(S,=0) - %= f 2mit) o™ (—t) — ¢™(t)] dt + R (nd) — %P(S, = 0)
0
where
R(n,8) = —7! f dF, (x) f t™'sin tx dt,
—o 8

F, denoting the distribution function of S,. If @ denotes the concentration function it is
easily seen from Petrov (1975, Lemma 3, page 38) that for any n = 2,

17) Q(| S |; log n) = C(log n)/n'2.
From this fact and the inequality ‘

(18)

f t™' sin tx dt‘ = Cmin(l, 1/8| x|)
é

we find that for0 < <1,
W|R(n,a)|sU +27:%j
|x|<log n Jlogn<|x|=(j+1)logn

|x|>nlogn

=Ci{nV2logn + 61 Y= n"%(log n)(jlog n)' + n™'}

dF, (x)

f t!sin tx dt
(19) 8

=C:8'n"logn,
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where C; depends on neither § nor n. Conditions (ii) and (4) imply that
STAMIn2log n < o,
Choose 8, | 0 so slowly that 8,n'?/log n 1 ® and
3T 82 A(n)n"*? log n < oo.
Set § = 8, in (16); in view of (17) and (19) it suffices to prove Theorem 3 with the quantity
P(S, = 0) — 1/2 appearing in (6) and (7) replaced by

8y
An=— f (2it)'[¢"(—t) — ¢"(t)] dt
0

nl/2s,
= J t7 ¢ (¢/n'?)|" sin[n arg ¢ (t/n'/?)] dt.
0

For sufficiently large n we have |¢(t/n'/?)| < e™*/* for all |¢| < n'/%8,, and so if each
=1,

nl/25,
Y nTA(n) | AL = C YT A(R) j t7!|arg ¢ (¢/n"/?) |e”/* dt
(1]

1
<c f t | arg o (1) | [S5 A(n)e™/*] .
0

Using condition (ii),

o

Ax)e ™ dx < G f Ax)e ™ dx = Cot A (2),

0

o

YA e ™ =G j

0

and so (6) and (7) follow from (5).

Conversely, suppose that the distribution of X is in %, and condition (6) holds. We may
neglect the case where arg ¢ vanishes in a neighbourhood of the origin, for then (5) holds
trivially.

Without loss of generality, arg ¢ (¢£) = 0 in (0, €]. Since |sin z — z| =< | z|%/6,

nl/2,
An=J' t7' ¢(t/n'?)|" n arg ¢ (¢/n') dt
0

n1/2s,
+Anj t7| ¢ (¢/n'*) |"[n arg ¢ (¢/n'*)]* dt
0

=40 + AnAn2y

say, where | A, | = 1/6. We may write arg ¢ (¢) = t?a(t) where a(t) — 0 as t — 0. Let {e,}
be a sequence of positive numbers chosen such that

(1= &)/ + )} = ([1/2)/0)"" = kn,

say. (On this occasion [x] denotes the integer part of x.) Then {e,} is bounded away from
zero, and for large n,
nl/28" .
Az = J t° exp[—1(1 — %en) 2 ]a’(t/n'?) dt
0

nl/2,
=C f t exp[—%(1 — €,)t%]a’(t/n'?) dt
(]

RV25,k
=C; f t exp[—%(1 + €,)t2]a®(t/n'%k,) dt
0
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[n/2)/28(/21
=o(1) f t exp[—%(1 + €,)t*]a(t/[n/2]"?) dt
0

= 0(Apn/21,1)-
(Note that {8.} is decreasing.) Since A(n)/A([n/2]) is bounded as n — o then
SrTA@A =3 n A ) (1 + 0.)Am
where 71, — 0 as n — . Therefore (6) implies that
(20) 35 n7A(n) | At | < oo.

Choose § > 0 so small that e ™ < | ¢(t) | < e /4 for | | < 8. For large n we have n'/?5,
> log n and

8
n” Ay = f t7o(t)|" arg ¢ (¢) dt
0

8

1y
= j t e argp(t)dt—m f tle " dt.
0

n~12logn

The last written term is 0(n~*) for all 2 > 0, and so in view of (iii) and (20),

8
> Y7 An) J t7'e™ arg ¢ (t) dt
0
&
= J t7|arg ¢(t) | [T Mn)e ] dt
0

8
=C f ¢~ axg ¢(8) |A(t) dt,
0

from which follows (5).

Proor oF THEOREM 4. Using condition (C) we improve on two estimates used in the
proof of Theorem 3, and then the proof can be completed as before. In place of (17) we
note from Petrov (1975, Lemma 3, page 38) that for any € > 0,

e

Q(|Sn|;e_‘”)SCe_‘"j |6 (t)|™ dt

(21) e
=2C{e™" + [supy»1 | $(£) |17} = O(e™")

where 0 < € < €. To improve on the estimate (19) we observe that for 0 <§ <1,

2" o )
7| R(n, a)|sl/2f 6@ " + |6(=8) "] dt+j f £ sintxdt‘ dF, (x)
8 —o0 on

< [supj¢>s| 6 (2) |1" 10g(27/8) + CP(|S.| = 2™ or >2")

J27r<|x|=(j+1)27" J<|x| =j+1

For each 8 > 0, [sup>s| ¢ (¢) |]* = O(e™") for some € = €(8) > 0. Choose 8, | 0 so slowly
that [supjy>s | $(¢) |]* = O(n™*) for all 2 > 0, and such that 8, > 2. Then the first term
on the right hand side is O (n™*) for all £ > 0. Using (18) and (21) we see that the two series
on the right are respectively dominated by

J t~!sin tx dt] dF, (x).
on
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C YT PG2 T <|Sul = (G + 1)27) /2727 = C2Q(] S.|; 27")log(2")
= 0(e™)
for some € > 0, and
Ci 317 (j2") ' = C27" log(27).
Finally,
P(|S.|=2™" or >2")<Q(|S.];27") +27"E(S}),
and combining these estimates we find that
|R(n,8,)| =0@n*) forall k>0.

In view of this result, (iii), (16) and (21) it suffices to prove Theorem 4 with P(S, < 0) —
% replaced by A,, and the proof goes through as before.

PROOF OF THEOREM 5. Let m = —%7. From Gil Pelaez’ (1951) inversion formula and
the techniques above we deduce that there exists a sequence §, | 0 such that for any & >
0,

Sn
P(S.<m) — % = f (2mit) [emp"(—t) — e ™" (t)] dt + O (n~*)
0
On
=7 j t7'| ¢ (¢) | *{sin(tm)cos[n arg ¢ (¢)] — cos(tm)sin[n arg ¢ (¢)]} dt
0

nl/2s,
= f £ (¢/n"") |"((tm/n'?) — n arg 9(t/n'")} dt + O(n™).
0

(Note that arg ¢ (£) = O(| £|®) as t — 0.) Since (d/dt)| $(t) | = —t + O(t?) as t — 0 then
(d/dt)| o t/n?) |* = —t|d (t/n'?) "7 + rua(t) = —t|d /n'?) |* + rua(t),

where for large n, |t| =< n'/?6, and j = 1, 2, | ry(t) | = Cn™’[1 + | ¢t]|*]e™*/*. Using this
estimate and integrating by parts we see that if 6, — 0 slowly,

nl/2,

nl/2g,
J t7 o (t/n'?) |"(tm/n'?) dt = mn f o /02y |M(t/n?)P dt + O(n7).
0

[

Therefore
nl/25,

P(S,=m)—%=nz" j t o (t/n"?) | {m(t/n'?)® —arg ¢ (t/n'?)} dt + O(n7"),
0
and if each 8, = 1 we see from (8) that

1
YenTAN) | P(S.=m) — %= 7' 3T An) f t o) || mt® —arg ¢ ()| dt + C:
0
1
= Czj t7 ) arg ¢ () + % 23 |[IF A(n) e ™74 dt + G
0

1
= Csj |arg ¢ (¢) + % r£3 |¢3A(t) dt + C:.
V)
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Therefore (10) and (11) follow from (9). The converse is proved as before. Note that arg
¢(t) =Im¢(t) + O(t*) ast— 0.

Proor oF THEOREM 6. Condition (15) is equivalent to E|X|?**?* < w; see Heyde
(1967). Therefore it suffices to prove that (5) and (12) are equivalent. Now,

Im ¢ (¢) = | ¢ (¢) |sin[arg ¢ (¢)] ~ arg ¢ (¢)

as t — 0, and since the distribution of X is in € it suffices to prove that (12) is equivalent
to

(22) lim,_,o

j E (sin ¢X)¢~ 6+ dt‘ < o,

Define

I(e) = 'j E (sin tX)¢ G+ dt' = ‘EJ (£X — sin £X) ¢+ dt‘ ,

Ii(e) =E f (Xt —sintX* )%™ gt and I-(e) = EJ (¢X~ — sin tX )¢ B2 gy,

The functions I, and I_ are nonnegative, and I..(¢) — I_(¢) < I(e) < I.(e) + I_(e). Since

f (tx — sin tx)t~ @+ dt = C x>+
0

where the positive constant C, depends only on a, then
lime o I(€) = CLE(X™)*** < oo,
and therefore lim,_, I(€) < o if and only if (12) holds.
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