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SPECIAL INVITED PAPER
POLYMERS AS SELF-AVOIDING WALKS™*

By KaARL F. FREED
University of Chicago

A brief overview is presented of the relation of the properties of real
polymers to the problem of self-avoiding random walks. The self-consistent
field method is discussed wherein the non-Markovian continuous self-avoiding
polymet is replaced by a self-consistent Markovian approximation. An outline
is presented of the method of solution of the resultant nonlinear integrodif-
ferential equations. A description is also presented of the scaling theories
which provide a means for deducing some exponents in the asymptotic
dependence of walk properties on the length of the walk in the limit of infinite
length walks.

1. Introduction. It is useful to begin with a description of what a polymer is and of
what kinds of properties of the polymers are of interest to polymer chemists and physicists.
Then the probabilistic nature of the mathematical description of these “beasts” becomes
rather clear, and we can turn to a description of some of our recent work concerning self-
consistent field theories [15-17, 19, 27] and scaling theories [28].

Polymers are long chain molecules, composed of many repeat units (monomers) ranging
from a hundred or so up to 10°-10° units. Here we consider only linear polymers where the
monomer units are sequentially bonded to each other so there is a unique linear sequence
of successive units numbered 0, 1, - - ., N beginning from either end. A simple example is
provided by the polyethylene chain that is depicted in Figure 1. The repeat units are
—CHy— groups with carbon atoms forming the chain backbone and the hydrogens being
the side groups. The example is taken as a typical one for purposes of this paper.

Let r, be the vector from the origin of the ith vertex on the chain backbone (carbon
atom C; in Figure 1). Define the bond b; along the ith chain backbone bond as b; = r; —
ri;-1. Let 6, be the angle between the vectors —b; and b;.1, where 0 < §; < 7. (0; is the angle
C,—1 — C; — Ci+1 in Figure 1). As shown in Figure 1, the bond lengths | b;| have a fixed
value b > 0, and the bond angles 6; all have the constant value 8. (For other cases, where
e.g. atoms of two elements alternate along the backbone, see Flory, 1969, page 2.)

Then, the only degree of freedom in forming the polymer chain is associated with the
rotational angles ¢;, where ¢; is the angle between the plane formed by b;—. and b;_; and
the plane formed by b;—; and b;. The ¢; have to do with the relative orientations of
“pendant” atoms or groups off the chain backbone. ,

Here a good approximation is obtained by allowing the individual ¢; to assume |only
three discrete values with differing probabilities. There are often restrictions placed on
successive bond angles, ¢; and ¢;.1, providing a widely utilized ideal model of the polymer
chain [14]. This ideal model is clearly just a restricted random process where successive
monomer units may be added with certain probabilities assigned to the rotational angles
of the added unit. The resulting process is a simple Markov process, so an exact mathe-
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FiG. 1. Part of a polyethylene chain. The carbon atoms (C) are sequentially numbered, i =0, .-+ N.
Individual C; — Ci.+ bound lengths are fixed as are the angles 6; = X. (Ci-, — C; — Ci+1). There is some
freedom of rotation about the C;-, — C; bond as represented by the random variable ¢;. Various vinyl
polymers involve the replacement of one hydrogen (H) on alternate carbons by some other group of
atoms.

matical solution is clearly possible. (The phrase “Markov chain” is used sparingly, to avoid
confusion with polymer chains.) In practice, the three-dimensional character of the process
has led to complexities in the evaluation of desired properties, but hard work has enabled
the resolution of the problem [14]. Our interest lies, however, with the nonideal case which
is not so simple. This nonideal case is described below after briefly mentioning some of the
polymer properties of interest.

Certain physical properties of the polymers derive essentially from their chain-like
structure. These long range properties depend on the nature of the chain over distances
which are much greater than the length of an individual monomer unit. Hence, the detailed
chemical structure of the units is unimportant in the evaluation of the long range
properties. These features enable us to introduce mathematical simplifications by collecting
together a number of units, on the order of 10-30, into statistical segments, as the long
range polymer properties do not depend on the intimate details of the statistical segments.
Some long range polymer properties include the number of repeat units in the chain
(proportional to the molecular weight), the chain size and shape, its flow properties and
viscoelasticity, etc..

Polymers are of interest because they are fundamental building blocks in biological
systems. Our discussion here is limited to uncharged polymers, so we do not consider the
interesting biopolymers. Estimates have been given that about 60% of the chemical
industry is associated in some way with polymers, from the production of monomers to
that of the polymers themselves. Perhaps, this is one reason why so little polymer research
is carried out in major chemistry departments. To probabilists, statisticians, and theoretical
chemists and physicists, polymer systems provide a wealth of extremely challenging
mathematical and physical problems. In many instances polymers can be synthesized to
solve experimentally some mathematically intractable problems, thereby aiding us in
filling in the mathematical description.

The above noted simple ideal model of polymer chains leaves out an important feature
which is the source of nonideality. As we grow the chain by adding successive monomer
units, which satisfy the given bond length, angle, etc., constraints, distant monomer units
along the chain (monomers i and j for | { — j| > 1) may be placed at the identical position
in space. The positive size of the monomer units prohibits the multiple occupancy of space
by more than one unit. This prohibition defines an excluded volume interaction. Thus, if
the chain is sequentially grown, the ith unit must be added by requiring, in addition to the
constraints on the ideal model, that it not occupy the regions of space which have already
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been allotted to the previous units. This is a self-avoiding random process, a non-Markov
process. '

For the sake of precision, it should be mentioned that there are experimental conditions,
a particular temperature for a given solvent, where the polymers behave according to the
ideal model limit. The interested reader is referred to the polymer literature for more
details [14, 42].

In the next section we provide a mathematical representation of the polymer excluded
volume problem, and in Section 3 a self-consistent field theory is described. Section 4
discusses the scaling theories.

2. Mathematical models for polymers. Because our interest lies in long range
polymer properties, we may introduce the concept of a statistical segment, due to Kuhn,
containing say, n = 10~30 actual monomer units. Ignoring the excluded volume interaction
temporarily, the statistical segment contains a large number of degrees of freedom, the
orientation angles {¢:} within the statistical segment. The end-to-end vector for the
statistical segment is the sum of vectors along each of the bonds of the chain backbone,
e.g. the C-C bonds of Figure 1 in the segment. These bond vectors are functions of the
orientation, so the end-to-end vector, Ro., for an n-unit statistical segment represents a
sum of a large number of random vectors, Ro, = }}-1 b; with b; = Ro; — R j_1. The b; form
a Markov chain to which the central limit theorem applies [12, 29]. For instance, if the
rotation angle ¢; is uniformly distributed over 0 to 2, given b;_;, and hence the ¢; are
independent, then the mean square end-to-end distance, (| R |?) for this “freely hinged
chain” is given by the well known expression [42, page 37]

1—cosf 2cosf@ 1-—(—cosf)”
1+ cos @ n (L+cosf)

<IR|2>EE[IR0nI2]=nb2[

which in the limit of large r is asymptotic to nb%(1 — cos 8)/(1 + cos ). Cases in which the
¢; are not uniformly distributed have been considered [14, 42], but for n large they still
provide (|R|?) proportional to n.

Let As be the maximum possible value of | Ro. |. Then for n even,

[Ron| < |br+ba|+|bs+ba|+ -+ + |bny + bnl.

This inequality becomes an equality when all ¢; are 0. For each j, | b; + b,.1 | = 2b sin(6/2).
So if ¢; = 0 is possible, As = nb sin(6/2) for n even, and the two are asymptotic as n — »
for n odd. For n large enough the probability distribution for Re, is approximately Gaussian
with density

@2.1) [8/(27iAs)]* *exp[—3| r|*/ (21As)],
where
1 = lim,_...(As)'E[|Ro. |*]

is called the Kuhn length and is characteristic of the monomer bond lengths and angles.
[For constant b and 6 as above, and ¢; = 0 permitted, we have I = 2b sin(6/2)/(1 +
cos 0).] The size of the statistical segment is, in fact, chosen such that the limit (2.1)
appiies. For some types of polymers the accessible chain sizes are insufficient to insure the
limiting behavior (2.1), but we consider only those cases where the values of n in (2.1) are
large enough to apply the limiting form, but are much smaller than the total number of
. monomer units in the polymer chain. It should be noted that (2.1) applies to walks in 3-
space, but, as discussed later in this section, it is useful to generalize the analysis to d-
space.

We now invoke the simplifying model of the polymer wherein the chain is replaced by
N + 1 statistical segments with positions at the points {r;|i =0, 1, - .., N}. Still ignoring
excluded volume interactions, the probability density function for the segment positions of
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this Gaussian chain is
(2.2) Go ({r:}) = [TX: {[3/(27lAs) % exp[—3 | r;: — ri—1[*/(21A5)1},

corresponding to a random walk of N steps t; = r; — r,_; where the t, are independent and
identically distributed random vectors with a spherically symmetric Gaussian distribution.
In order to introduce a true excluded volume interaction, it would be necessary to
introduce a total prohibition for any pair of the {r;} to be equal, or more generally to have
| r; — rj| < € for some € > 0 and any i # ;. Instead, the mathematically more tractable soft
excluded volume interaction is utilized wherein for a given set of segment positions {r;}
the probability density is proportional to (2.2) times a factor exp(—n.v). Here n. is a
measure of the number of times r; and r; are close as we run over all i # j. The quantity v
is the excluded volume. Its variation goes from the ideal Gaussian chain limit of v — 0 to
a high prohibition of contacts when v — . A mathematical representation of this soft
excluded volume prohibition provides the unnormalized probability density function as

(2.3) G({r:}) = Go({r:})exp[— (v/2) T Xm0 J(r: — 1,)],

where J(r) is a nonnegative, sharply peaked function about |r| = 0 of the form, perhaps,
of J(r) = (4me*)'exp(— |r| € ") for € small, such that [drJ (r) = 1.

Taking the initial unit to be at the origin (that is ro = 0) the density function for the
location of the other end R, the end-to-end vector distribution, is

(2.4) P(rn, N) = [ it j drile({ri})/[H?;l j drjle({rf}),

and the mean square end-to-end distance is
(2.5) (|R?|) =fdr|r|2P(r, N).

Here, as always, (- ) denotes expectation E (-). Our interest is in the behavior of quantities
like (|R|?) as N — o where the power law dependence,

(2.6) (IR]?) ~ NZ, 1=2r=<2

for N — o displays the exponent » € [%, 1]. This exponent » has been the focus of many
theoretical studies. It is useful to mention briefly some approaches that have been applied
to the problem.

When v is small enough, it is tempting to expand the exponential in (2.3) in a power
series in v, the perturbation expansion. The leading few terms may be evaluated [42], and
if the dominant N-dependence is retained, the perturbation series is found to be an
expansion in powers of vl"“N'/2 This series is very likely asymptotic [8, 11, 33]. Such an
expansion is of no help in understanding the behavior as N — oo.

Another general approach to the problem considers walks on a lattice with a complete
prohibition for having more than one walk end (segment) reside on any lattice position [6].
With graphical methods it is possible to enumerate all the walks [6, 7, 20, 21, 30, 38] for N
=< 20, and then extrapolations to large N, although somewhat unsatisfying, are invoked.
For larger N, Monte Carlo sampling procedures are often employed [37, 39-41]. Here a
step is randomly added to a walk. If the last added unit ends at a position, ri.:, which
coincides with a previous one, i.e., it = I, { < last, the walk has zero weight and must be
discarded. The sample attrition is 1-O(exp(—aN)) for some a > 0, i.e., out of all N-step
random walk paths, only O(e ") are self-avoiding. So, “sample enrichment” methods
have been developed to arrange that many fewer attempts are aborted [37, 39, 40].

Our interest has been with analytical approaches which are capable of describing the
N — o asymptotic limits. In particular, these methods involve the self-consistent field
method, scaling theories, and the renormalization group approach [35]. A discussion of our
work on the former two is described in Sections 3 and 4, respectively.
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Both the totally non-Markovian nature of the problem and the emergence of fractional
exponents in (2.6) are indications of the essential mathematical difficulties posed by the
polymer excluded volume problem (2.2)-(2.6). However, let us indulge in some momentary
wishful thinking and assume that somehow we are given an explicit probability distribution
of the walks. We could then evaluate (2.5) directly, but it would also be possible to calculate
the expected density of walks at all points in space. Let Ro =0, Ry, -+, Ry_1, Rv =R be
random variables with joint density given by the normalization of (2.3). Using the
approximate delta function J, the sum of the conditional distributions of R;, j = N given
Ry = R, can be approximated by the number distribution (of total number N + 1) with
density given by

p(r|R) = E[YX,J(r — R)) |R],
that is

@7) p(r|r~>=[ o f dri][zy.oJ(r—mG({rj})]/ [ ey f dr?]G({ré}).

Given the “density of walks,” p(r | R) we approximate Y, .jx; J (r; — r;) for each i in (2.3)
by p(r:|R), so (2.3) is replaced by the self-consistent field (SCF) approximation [10, 13,
15-17, 19, 27] defined as follows:

This approximation replaces, for each fixed i, the sum Y, ;jx; J (r; — x;) by its conditional
expectation given ry. Note that Zﬁ-v.j-l J(r; — r;) = NJ(0), a constant which disappears
under normalization of (2.3).

Given any integrable density function G = 0, (2.7) defines from it a conditional density
pc(r|ry). Conversely, given any density function p = p(- |R) on R® depending on the
vector parameter R, we can define from it a density G, by

(2.8) G, ({r:}) = Go({r:})exp[—(v/2) X, p(r:|rn)].

Densities G and p such that G = G, and p = pg are said to define a self-consistent field [1-
5, 11, 12] and are written G = Gscr, p = pscr. One method of solution for Gscr and pscr is
to begin with some G or p, iteratively apply (2.7) alternating with (2.8), and try to obtain
convergence to solutions. Note that (2.8) is nonlinear in p. [Presently, nothing has been
proved about existence or uniqueness of solutions; Section 3 presents a method of attack.]

Note that, given p and given ry, the density G, in (2.8), when normalized, gives the
probability density of a Markov sequence ro, ry, - - -, rn—1. But, the dependence of pscr on
Gscr makes the pair of coupled equations highly nonlinear.

The SCF approach invoked here should not be confused with the deceptively similar
simple mean field theory which is widely used in statistical mechanics as follows: given a
set of random variables defined throughout all space or, more simply, on a lattice, the
simple mean field method produces an optimal approximate value for these random
variables which is constant throughout space or on the lattice. Near certain “critical
points” singularities emerge which are incorrectly represented by the simple mean field
theory because the fluctuations in the random variables become more important than their
mean. The SCF treatment of polymer excluded volume is qualitatively different as follows:
here we fix the position of one of the walk ends, so the self-consistent field is inhomoge-
neous; p(r | R) varies with r in an extremely complicated fashion. In fact, the walk density
may be viewed as a fluctuation imposed on empty space, so the polymer SCF approach
directly attempts to approximate this fluctuating density, providing a method of enormous
.mathematical complexity and of greater accuracy in contrast to the great simplicity of the
simple mean field method.

Flory’s approach [13] to this self-consistent field method is as follows:

Define the quantity,

(2.9) Zn = [Hi’il J' dri]G({ri} |ro = 0),
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so that G/Zy is the normalized probability density for the walks giveri by the Gaussian
distribution (2.2) and the excluded volume constraint (2.3). Approximate the distribution

G by
(2.10) Gn({r:}) = TTX: {[3a7%/(2nlAs) T %exp[—a2(r; — ri—1)?/(21A8)]),

with & = a (N) > 1 a parameter to be determined.
Using the relationship, (e*) = e (Jensen’s inequality), we have

(2.11)

Zy = [ N, J’ dl'i]G({ri})

-2 v
= a_aN [ ?Ll f dri] Gn {rz})exp[ 91As Zz— lrz ri1 Iz - 5 Zi;‘j J(ri - rj)]

-2
Za_sNeXp{[Hfilf ]GN({rz})[ 3IAs 1 ?Ll|l'i—l‘i—1|2—§2i¢jJ(l‘i—rj)]}-

Select a to maximize the right hand side. Then an approximate value of (| R |?) is obtained
from Gy {r;} as

(IR[*) =[ filfdr,} [rn |2 Gu({r:})

~ NY/@+d N _; o

(2.12)

where the result is quoted for a d-dimensional space.

The difficulty with the Flory approach is that the choice of different, apparently
reasonable, models for G other than (2.10) yields a different power law form in (2.12) [42,
pp. 97—102] The Flory formula, (2.12), is believed to be almost exact (for d < 4), but this
result arlses because of a delicate cancellation of errors that does not persist with other
models for G or other related problems. The prime deficiency of the Flory method lies in
its explicit lack of self-consnstency If we were to feed the model @G into (2.7) and use (2.8)
to iterate an improved value of G, it is unclear whether the procedure would ever converge,
because (|R|*) and Gscr, etc., depend on fractional powers of the variables.

Edwards’ method is to attempt to solve (2.8) for Gscr as a functional of the, as yet
unknown, p(r) = pscr(r|R) and then to choose an optimal value of this p(r) [10]. His
solution is again not self-consistent, but the results provide a preview of the correct SCF
dependences. Edwards obtains the Flory formula again. Let p(r) = [irj=,0(r) d where
denotes a solid angle. Edwards finds that p(r) varies as r*° for r in the range of the
maximum in the distribution P (r, N)—the kind of fractional power dependence mentioned
in the previous paragraph. It should be noted that, as N — =, p(r) for a random walk
varies as r~' while for a rigid rod (straight walk) it goes as r2, so the self-avoiding walk
must display some intermediate power [just as in (2.6)].

Since we are interested only in the asymptotic large N, long distance behavior of the
self-avoiding walks, it is rather immaterial (see more discussion in Section 4) how the
subdivisions NV and As are chosen so long as N is large and NAs = L is fixed.

In order to discuss self-consistent approaches to the self-consistent field method more
fully in Section 3, it is convenient to introduce the continuous chain limit of (2.3) wherein
N — o, As — 0, but NAs = L remains fixed.

On the space C[0, L] of all continuous functions from [0, L] into R?, let G be the
probability distribution of a stochastic process whose value at iAsisr;, i = 0,1 ..., N,
which is linear in between, and where the joint probability density of the r; is Gy (2.2).
Then as N — « and As = L/N — 0, G{ converges by the invariance principle (Donsker,
[9]) to the distribution, call it H, of (I/3)"/*W where s — W(s, w) is a standard 3-
dimensional Wiener process (Brownian motion process). Then introducing v — v(As)?/1?,
the limit yields a measure G on C[0, L] with
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L L
(2.13') dG(r(-)) = exp{—zilz‘f d,sf dsoJ[r(s) -—r(so)]} dH(r(-))
0 0
and which can be written heuristically as [18, 23-26]

L
G([r(s)] = @[r(s)]exp{— % j | dr(s)/ds|* ds
(2.13) 0

L L
- (v/2lz)f dsf dsod[r(s) — r(so)]} .
0 0

For any fixed value of R(L) = r, there is a good conditional distribution of the process R,
as with the Brownian bridge in one dimension.
In place of the numerator of (2.4) we can define

L L
(2.14) G, L) = E[exp{— v/(2lz)f dsf dsoJ R(s) — R(so))} |R(L) = r] .
0 0
Throughout the remainder of the paper this continuous chain representation is utilized.

3. Self-consistent solutions. Before analyzing the solutions of the SCF equations,
it proves instructive to introduce the method of random fields [26] which provides a direct
mathematical framework in which the self-consistent field method emerges as the natural
leading first approximation [10, 15-17, 19, 27].

Let ¢:r — ¢(r) be a Gaussian random process, indexed by r in R? having mean 0 and
covariance given by

(3.1) (6o (') = v (r —1')/I%

Expectations with respect to the distribution of ¢ are denoted (- ),.
Then for any measurable function r(-), [ & ds ¢(r(s)) is a Gaussian variable with mean
0 and variance [§ ds [§ dsoJ[r(s) — r(ss)], so it has the characteristic function

L L L
(3.2) <exp{if ds ¢[r(s)]}> 6= exp{-— v/ (21%) f dsJ' dsoJ[r(s) — r(so)]} .
0 0 0

Substituting (3.2) into (2.14) gives

(3.3) GR,L)=(GR; L|[¢]))s

where
L

(3.4) GR; L|[¢]) = E[exp{if ds ¢[r(s)]} r(L) = R] .
0

For a fixed function ¢ the function defined by (3.4) is known [18, 23, 24] to satisfy the
differential equation
l

9 2, - . -
(3.5) [i_gvr"’ up(r)]G(r, L|[¢]) = 8(L)s(r),

corresponding to diffusion in a purely imaginary field. The boundary conditions associated
with (3.5) are regularity of G as r — 0 and vanishing of G as |r| — .

Let J ! be the convolution inverse of ¢/, so that [formally]
(3.6) f dr” I\ —r")J@” —r') =8@r —r').

If J (k) and J~'(k) are the Fourier transforms of JJ and ~1, respectively, then (3.6) implies
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J'(k) = 1/J(k). In general J' may contain differential operators and generalized
functions.

Edwards’ approach is to approximate G(¢) by phase integral methods, assuming ¢ =
¢(|r|) and then to evaluate (- ), by steepest descents [10]. It is useful to dispense with the
initial approximation and to consider the formal content of the steepest descent approach
[15, 17, 19, 27]. As is described below, the formal application of this method to (3.3)
produces the SCF theory as the leading approximation. While the SCF method can be
motivated heuristically as described in Section 2, the formal analysis enables the treatment
of corrections due to fluctuations about the SCF [27], and it also provides the means by
analogy for introducing other self-consistent schemes which cannot be heuristically gen-
erated by arguments like the ones given in Section 2.

We are unaware of a rigorous treatment of the steepest descents in function space, but
perhaps one could be constructed by expressing the following heuristic equations on a
lattice of points X; with the variables ¢(X;) having mean 0 and covariance (3.1) with the
restriction of ¢J to the lattice points [15, pages 111-116]. The steepest descents approxi-
mation to the multiple ¢-integrations would then be converted to a continuum limit. In
the heuristic continuum limit notation (3.3) is written as [15, pages 111-116]

2
f 8¢G(r; L|[¢]) eXp[ - % f dr f dr'e(r)J (r — r’)¢(r’)}

P
f 8¢ exp[— % j dr j dr'o)J '(r — r’)¢(r’)]

Writing G([¢]) = exp{In G([¢])} the steepest descent method looks for the solution ¢o
making the exponential in the numerator integrand stationary

33a) G(,L)=

L
3.7) [———8—, {ln GR; L|[¢]) — (I%/2v) f dr J’ dr'J H(r — r’)¢(r)¢(r’)}] =0.
55(R) , —

Then we expand In G — (I%/2v) [f ¢J '¢ in a functional Taylor series about ¢ = ¢o
retaining the quadratic terms in the exponential. The functional derivatives of G arising
from (3.7) may be evaluated with the aid of (3.5). The simple saddle point approximation
then yields

(3.8) [% - é VZ + Vscr(r | R, L)]Gscr‘(l‘, r;s s'|R,L) =38@ —r')d(s — 5,
L
v j dsGscr(R, r; L, s|R, L)Gscr(r, 0; 5, 0|R, L)
(3.9) Veor(r|R, L) = —

Gscr(R, 0; L, 0 | R,L)

where Vscr = i ¢o and where the limit e — 0 has been invoked as no singularities can now
arise by virtue of taking J to be infinitely sharply peaked. Equation (3.9) may be seen to
be the continuum analog of the self-consistent field equations (2.7) and (2.8). Thus, the
dominant field ¢ is found to be purely imaginary, and the SCF method emerges as the
leading approximation in the evaluation of the ¢-average. Note again that (3.8)-(3.9)
present us with a highly nonlinear integrodifferential equation. However, that is an
enormous improvement over the original non-Markovian process as progress can be made
with the differential equation. The steepest descents method may be applied to the
approximation of ¢ — averages other than (G([¢])) [27].

The symmetry properties of (3.9) are highly instructive. It may be seen that Vscr(r | R,
L) has ellipsoidal symmetry about the chain end-points 0 and R. Consequently, the
solution of (3.8) is mathematically equivalent to the three-body problem of quantum
mechanics because of the inseparability introduced by Vscr. The approach to the problem
requires some simplifications.
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Gillis and Freed [19] chose the special case, R = 0, of a closed walk (or a ring polymer),
80 Vscr(r | L) is now spherically symmetric. Their treatment involves the derivation of new
SCF equations by the steepest descents evaluation of the ¢-averaging. Introducing the
eigenfunction expansion

(3.10) GR,0; L,0|[V] = j dE exp(—ELWY(R, E|[V]¥*(0, E|[V]),
0

with V = i¢ pure real, the eigenfunctions ¥ obey the equation

(3.11) [— é Vi+ V(r) - E]\P(r, E|[V] =o.

Interchanging the order of the [ dE and the ¢-integration in (3.3) and evaluating the latter
by steepest descents yields a set of SCF equations in E-space which is similar to (3.8)-(3.9)
except that E appears as a parameter as opposed to the derivatives and integrals associated
with its conjugate variables. These equations are simpler to solve than (3.8)-(3.9), but they
are just as nonlinear in G, and they do not have the simple physical interpretation of the
SCF equations.

We know that Vscr must contain fractional powers of r, so for the closed walk, where
Vscr(r) is spherically symmetric, this implies the form

(3.12) Vscr(@®) = yr *+yYr* + ..., —a<ada, ---,

with the severe difficulty posed by the fact that the powers a and a’ are unknown and
must be determined self-consistently. The procedure utilized by Gillis and Freed is to
integrate the equations term-by-term for (3.12) [19]. For instance, beginning with the form
Vo(r) = yr™% we calculate G([ V;]). This is used to obtain Vscr(r) whose leading dependence
for r — 0 is matched to y7~ to provide solutions for y and a. The exponent a turns out to
be % as in Edwards’ work [12]. The next step would involve using the first two terms of
(3.12) with y and a known, but ¥ and @’ unknown, to generate solutions for ¥’ and «’, etc.,
and this remains to be done. We do not pursue the details here as some are outlined for
the method of Kosmas and Freed [30]. It is just noted that Gillis’ approach yields (| R | %)
for a portion of the long ring polymer as given by the Flory formula (2.12) for 1 =< d < 4
and a power v = % (random walk) for d = 4.

The difficulty with the SCF method in L or E space resides in the ellipsoidal symmetry
of the problem [15]. However, the full end-vector distribution Gscr(r; L | [ Vscr]) contains
much more information than is required. It is sufficient to have some of the scalar low
order moments,

(3.13) (|R|?) =jdr|r|2"G(r; L)/J’ drG(r; L), n=12...

The numerator in (3.13) can be written as the ¢-average

(3.14) I =< f dr|r|*G(r; L| [¢])> -

The steepest descents evaluation of the ¢-average in (3.14) yields a set of self-consistent
equations for the saddle point V,, = i¢2.. The equations depend on n, but the important
feature is the fact that the V,, are spherically symmetric. Hence the eigenfunctions of
(3.11) for V— V), are separable as

' (3.15) U(x; E|[Van]) = 17w (r; E|[Van]) Yau(6, 6)

with Y, a spherical harmonic and u, satisfying (d = 3)
Lduy [p\(ﬂ 1)

(3.16)

T8 a r— + Vau(r) — Ejlux(r) =0.

It is assumed that lim,_ 72V,,(r) — 0, which is not valid for d = 4. For d < 4 it is possible
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to proceed to solve (3.16) by using the uniform asymptotic approximation (A = 0) [1, 34]
3.17) u(r; E|[Vzn)) = (6)2/4m)[B(r; E|[VarD) ][ (r; E |[Var])] ™
X Ai[-B(r; E|[Vza))],

gﬁm(r;EHVzn]) =J' dr'e(r’; E|[Vzn))
(3.18) r

= J’ 'dr’{(6/l)[E = (1/24(r")%) = Vau(r) ]}

with Ai the Airy function and r, the zero of the integrand in (3.18).

Only the A = 0 term appears in the SCF equations. Introducing the two solutions to
(3.16) for A = 0, u- and u- which, respectively, satisfy the proper boundary conditions for
r — o and r — 0 (exponentially decaying contribution to G and finiteness, respectively)
and the Wronskian, W, for these two solutions, the self-consistent equation for Vs, is found
to be [27]

Von(r) = zlaWJ dE exp(— EL)u(0; E|[Van]D {u>(r; E|[Var])

X u(r; E I[V])J’ dr'(r'y*uc(r’) + u(rju(r) J' dr'(r')"'u.(r’)
(3.19) 0 r

00

+ us(ru(r) f dr'(r') > u(r')} {j dE exp(— EL)
0

0
0 -1
Xu(o)f drr(r/)2n+lu(r/)} s
0

where the arguments E and [V.] are gmitted from the ’s for convenience. Kosmas and
Freed utilize the first term, V2,.°(r) = ‘anr ~e= in (3.19) and determine y;, and as, self-
- consistently [27]. They obtain vz, = y and az. = a, the same results as for the ring polymer
in the asymptotic limit L — . The contribution from the fluctuations, 8¢ about ¢, are
shown to alter only the total number of the distribution of walks but not the moments
(|{R|*),n=1, for L — o [27].

4. Scaling theories. Scaling theories have been developed to obtain information
concerning certain power law dependences [2-4]. These theories cannot generate the
structure of the distribution functions G(r; L) that is available from the SCF method, but
their simplicity is very useful. In this section we describe the scaling theories as presented
by Kosmas and Freed.

It is instructive to include a general interaction term as in (3.1) and to express explicitly
the normalization factor implicit in the Wiener measure by writing (V = (v/2)J)

Gr; L) =G(r|L,1,I%V)
4.1)

L L
= E[exp{—l2 f dsf dsoV[R(s) — R(SO)]} |IR(L) =r].
0 - 1)

Consider now the simple change in variables
(4.2) r'(s’) = bH 'r(s), s =0bl"s.
Letting N = L/l and substituting (4.3) into (4.1) and (4.2) shows that G is converted to
(4.3) G(r|L, I, I2V(k)) = (bl )¥*G(6Y?rl™" | bN, 1, b4~972-4 V(K b"/2 7)),
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where the heuristic representation (2.13) is a useful simple way to obtain (4.3) [28]. The
right-hand side of (4.3) corresponds to a walk with a scaled interaction V and different
values, L’ = bN, etc, of the relevant parameters. If the original problem, G(r| L, [, 1 “2P(k))
appears too intractable, perhaps the transformed problem, the right side of (4.3), is
simpler.

As an example choose

(4.4) bN =1,

then the argument of Vis k’N /27!, and L’ = bN = 1 is a walk of unit contour length. As
N —  the argument k’N"/2"' — 0 for K’ finite, so assuming V(k) has a Taylor series
expansion in k? implies that

(4.5) V&N = V0) + % V7O |K [N U2+ ..o,
and the scaled interaction in (4.3) gives
(4.6) N D21749(0) + Y% N@D2P7(0) | K’ |2 + O(N~2).

The leading term in (4.6) behaves as N*~%/2[~¢{(0) — oo for N — o and d < 4, so if V7(0)
is finite, the V(0) term strongly dominates for 4 > d > 2. Hence, for N —  and d > 2 only
the leading term of (4.6) need be retained. Since 7(0) has the inverse Fourier transform
8(r), Equation (4.6) demonstrates why the nature of the function V(r) in (4. 1) is quite
irrelevant for G(r, L) in the limit N — oo provided V is “polite” enough that (4.5) can be
used. This heuristically explains the universal character of the asymptotic properties of
whole classes of different self-avoiding walk problems, i.e., (3.1) with different choices for
V, and it justifies the use of the sharply peaked function J. For d > 4 and N — oo,
N@921=ay _, 0 for V (k) bounded, so the segment-segment interaction V is irrelevant for
d > 4. In this case the right-hand side of (4.3) is just the (d > 4)-dimensional Gaussian,
(N"72)92G(N~V*"'r | 1, 1, 0). Brownian motion for d > 4 self-intersects only on a set of
measure zero.

When the definition (3.13) for n = 1 is inserted into the identity (4.3) and the leading v
= V(0) term is retained, transformation to dimensionless spatial variables yields,

4-d

4.7) (|R|*)a= NI*fs(N 2 vl

4-d
with f, an unknown scaling function. For N 2 vl™¢ — 0 it is clear that f; — 1, the random
walk limit. This obviously ensues for N — o and d > 4 since v is bounded. Furthermore,

4—d 4-d
f. has an asymptotic power series expansion in powers of N 2z vl™¢. ForN 2z vl™ — o on
the other hand, (2.6) tells us that f, has a power law form

(4.8) fd(x) — x2(2v,';—1)/(4—d), x — oo,

so the proportionality constant in (2.6) varies as v*®¢~"/“~%) [28]. This information plus
an additional scaling argument suffices to enable the evaluation of the exponent », of (2.6)
and (4.8) [28].

Consider our polymer (or walk) in a d-dimensional space which is confined between a
pair of parallel hyperplanes with spacing D. The spatial integrals in the heuristic represen-
tation of (4.1) in the form of (2.13) only run over the semiinfinite region confined between
the hyperplanes, so G must develop an explicit dependence on D. The transformed function
corresponding to the one on the right in (4.4) then depends on D/IN'/? for the choice (4.4)
so the confined analog of (4.7) is

4.9) ( I R |2>d,D = lef:i,p (NTvl_d, D/lNl/z).

Clearly, as D/IN'? — o, the walk is effectively unconfined and fsp — fa. Since we may
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always rearrange the arguments of functions, (4.9) may be rewritten in the more suggestive
form
4-d

(4.10) (|IR*Yap = (R*)agap(N 2 vl D/[{|R|*)a]"?),

where the relevant variable D/[(|R|?)4]/ relates the confinement dimensions to the
dimension of an unrestricted polymer. The overall factor of (| R |* ). gives the correct limit
when D/[(|R[?*)4]'? — ® as then g4p must approach unity. It is assumed that the
dependence on N“~%/2]~? ig already totally encompassed by the (| R |?), parts, so (4.10)
is taken to reduce to

(4.11) (IRP)ap = (|RI*)a E(D/[{IR[*)al"?).

dJust like all asymptotic properties of long polymers, gs,p(x) is assumed to have a power
law form x?, for x < 1. However, when the spacing between the hyperplanes gets that
small, the polymer is a (d — 1)-dimensional one, so (4.11) and the power law assumption
imply

2

@12) (RPaio(RPao— (IRDADYIRPIP for 21,
TR

Comparing powers of N and v on both sides of (4.12) and eliminating y between the two
equations leads to the recursion relation [22, 28]

(4.13) 2-»3") =[4—d)/(5-d)]2 - ril1)

between vy and v4_:. A one-dimensional self-avoiding walk is just a rod. Consequently, a
boundary condition, »; = 1 in (4.13) yields

2 1=d=4
(4.14) Va= ”{
- d=4

2

which agrees with Flory for d =< 4. The results (4.14) are also in good agreement with
Monte Carlo calculations of Domb and others [6, 37, 39-41].

The scaling transformation can likewise be applied to the description of the asymptotic
N — o« properties associated with n-interacting chains in a volume in the thermodynamic
limit n — o, v — o, n/V finite—a set of mutually (and self) avoiding walks [2-4, 28]. The
analysis proceeds in a rather similar vein, and it has applications to a number of different
problems. However, there has been a slight subterfuge, and the scaling relationships are
not mathematically correct [28]. In the discrete representation (2.3) the large self-inter-
action term for i = j is explicitly omitted, whereas in the continuous limit of (2.13) and
(2.14) it has sneaked in, and it becomes infinite as € — 0 (this € was introduced first after
(2, 3)). The infinity must, of course, be removed by interpreting the double integrals in
(2.13) and (2.14) to omit a region of size a (a ~ O(l)) about s = so. Then all scaling relations
also contain a dependence on aN "2~! (choosing 8N = 1) which might appear to be
irrelevant as N — o. Unfortunately, the original problem contains integrals, the s = so
contributions, which diverge as a, € — 0, so the dependence on aN'/%/~! must persist. For
the polymer excluded volume problem the most accurate treatment, including the cut-off
a, comes from the renormalization group method and gives the result [31] »; = .59 which
is very close to .6 of (4.14). For other problems the errors incurred by this neglect of the
cut-off are larger, providing 5-10% accuracy for certain exponents and taking other small
ones to be zero. Nevertheless, the scaling approach is quick and simple for deducing the
information it provides.

Cursory reference has been made to the renormalization group method. As books have
recently been written on the subject [32], it would take up too much space to describe fully
the many variants of this approach. We can, however, provide a brief heuristic introduction
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to the general ideas behind the method. Suppose that in the evaluation of (2.9) with G of
(2.3) we begin by integrating over only the odd indexed r;,

(4.15) GP({r"}) = [ AT f drg,,_l}G({ri}) = exp[-F"({r"}],

where we set r{’ = ry. G'” now has half as many variables as in G, but the former still
suffices to determine Z of (2.9). We could continue this “decimation” transformation to
obtain G?({r{?}), G®, etc., in terms of the corresponding F®, F*®, etc. In the N — o
asymptotic limit the renormalization group method considers the fixed point solutions,
lim,, ... F™ = F*, as well as solutions in the neighborhood of this fixed point. The fixed
point solutions determine the properties of certain types of systems, such as the polymer
excluded volume problem and those where the presence of critical points produces long
range correlations in the system. The existence of fixed points has to our knowledge not
been proven. For the polymer problem the application of renormalization group methods
generally utilizes a formulation in terms of random fields [19]. The approach outlined in
(4.15) has not been given for the polymer problem, but a related one has recently been
developed [35]. However, (4.15) provides a simple introduction to the essential concepts of
the method.

A number of pertinent works have appeared after the completion of this manuscript.
Firstly, Westwater [43] has proven the existence of the probability measure (2.3) for
sufficiently small ». He has also proven [44] that the r — 0" limit of the self-consistent field
equations yields the limiting »~*/® discussed in Section 3 above. This work does not derive
the SCF theory which represents an interesting but nonrigorous approximation. Secondly,
we have utilized an alternative formulation of the renormalization group to calculate [45]
the unnormalized end-to-end vector distribution (2.14), the corresponding distribution
function for separations between pairs of internal segments on the chain [46], and the
coherent scattering [47] function,

L L L L
E[J dsf dsoexp{ik-[r(s) - r(so)]} exp {—(v/ZIz)J’ dsJ’ dsoJ[r(s) — r(So)]}] s
0 0 0 0

to lowest order in an expansion in € = 4 — d with d the spatial dimensionality. The
rationale for the e-expansion follows from the simple fact that an expansion of the exponent
in, say, (2.14) in powers of » generates a series in powers of the dimensionless quantity
»I"%L/1)*. The expansion parameter is troublesome [11, 33, 34] for L — o unless € is
taken to be sufficiently small; hence, a double expansion in »/~? and €. The renormalization
group theory then provides information concerning the general analytic structure of the
solution, enabling the analytic continuation from small € to € on order of unity.

Acknowledgments. I am grateful to Marios Kosmas and Pat Gillis for their thesis
research on this problem, and to the editors for their helpful comments on the manuscript.
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Professor Freed’s paper studies polymers by means of probabilistic models and tech-
niques of differing complexity and sophistication. The analysis of these models involves a
number of fascinating problems, some of which may be totally new to probabilists.
Although in several places the arguments are heuristic, the results are interesting and the
methods yield accurate numerical values. More work in making these arguments rigorous
seems worthwhile. Polymer systems bear numerous similarities to systems encountered in
statistical mechanics and a number of techniques used in the paper are closely related to
techniques used in the latter field. For example, in statistical mechanics, analogues of the
scaling theories discussed in Section 4 have had remarkable success in the study of critical
phenomena (phase transitions).

For probabilists, a polymer can be considered to be a sequence of random vectors {R;,
- -+, Ry} subject to an interaction known as the “excluded volume interaction.” The vector
R, denotes the end vector of the jth subsystem (or statistical segment) of a polymer
composed of N segments. It is useful to allow the {R;} to take values in R% d € {1, 2,
...}, with d = 3 being the most important. Polymers are related to self-avoiding random
walks, which are well known in the probabilistic and physical literature. Professor Freed’s
main interest is to describe the N — o asymptotic limit of polymer systems; e.g., the
asymptotics of E(| Ry|?), the mean square end-to-end length of the polymer.

A number of separate problems are considered in the paper. The first is to determine a
reasonable choice for the joint distribution of the {R;} (Section 2). The second is to find
accurate, tractable approximations to this distribution, according to the type of asymptotic
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information desired. For example, in order to study E(| Rx|?), a so-called continuous chain
limit is introduced at the end of Section 2. The distribution of the {R;}, a measure on R"?,
is replaced by a measure on function space (absolutely continuous with respect to Wiener
measure).

In Section 4, using the latter measure together with some clever scaling techniques,
Professor Freed gives a nice plausibility argument for the asymptotic relation

W ER AN whee nn (Y200 12020

and A is a positive constant. I consider (1) to be the main result of the paper. An important
feature of (1) is that the exponent v, is (believed to be) independent of the detailed form
of the excluded volume interaction; the particular form of the interaction affects only the
constant A. Interestingly, exactly the same asymptotic relation has been found numerically
for the mean square end-to-end length of self-avoiding random walks on regular lattices in
R? [Domb (1963)]. Again, the exponent », is independent of the form of the lattice (e.g.,
square vs. triangular); the latter affects A only. What we are seeing is the universal
character of the asymptotic properties of whole classes of different excluded volume
problems. See [Fisher-Sykes (1959)] for a discussion of the relationship between self-
avoiding random walks and the Ising model of ferromagnetism.

The fact that in (1) »; = % arises for d = 4 is related to the fact that in R? d = 4,
Brownian paths have self-intersections only on a set of measure zero. The (almost sure)
absence of self-intersections is tantamount to the absence of any excluded volume inter-
action, in which case one expects E(|Rn|?) ~ (const) N. Understanding the role of
Brownian self-intersections for d < 4 is a deep question which also arises in quantum field
theory [Symanzik (1969)]. For this reason a rigorous proof of (1) would be very worthwhile.
(As Professor Freed points out in the next-to-last paragraph of the paper, the values of v4
for d < 4 may not be exact because of difficulties caused by self-intersecting paths.)

In the middle of Section 2 and in Section 3, Professor Freed proposes a so-called “self-
consistent field” (SCF) approximation to the polymer distribution function and to its
continuous chain limit. This approximation has been used to study the asymptotics of
quantities as in (1), and it gives accurate numerical values. However, more work must be
done on the SCF approximation in order to justify the steps used in its construction.

In order to make this interesting paper more accessible to probabilists, I shall highlight
its main features.

A polymer is a long chain molecule composed of a large number of repeat units, called
monomers, which are sequentially bonded to each other in a linear sequence. The finite
size of the monomers prohibits the multiple occupancy of space by more than one monomer
unit. This prohibition defines an excluded volume interaction.

As a first step, one neglects the interaction and models the monomer by a Markov
chain. In order to simplify the form of this chain, the monomers are grouped into N
statistical segments, each consisting of a large number n of monomer units. The first unit
in the first segment is placed at the origin. The end-to-end vector for each segment can be
written as the sum of n differences of the successive monomer position vectors within the
segment. Since n is large, it is not unreasonable to suppose that this vector has a Gaussian
distribution. This leads to (2.2). In the absence of interactions, the polymer is modeled by
a sequence of N random vectors {R;} which represent the end vectors of the N statistical

segments. The joint distribution of the {R;} is the distribution function Go(ri, - -+, rn)
- with density ’
3N/2
@) &o(rs, -+-,rn) = (m) exp[—3 Y1 | v — 11| %/(21As)].

Here ro = 0 and / and As are physical constants (As is proportional to n).
To introduce a true excluded volume interaction, one multiplies the density go in (2) by
the characteristic function of the set {(ry, ---, rny) € RN . |r;—rj|>eforall0=i#;=<
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N7}, where ro = 0 and € is some positive number; one then normalizes the resulting density.
Rather than work with the new distribution (which is possible but cumbersome), the more
tractable “soft excluded volume interaction” is brought in. Let n.({r;}) be some measure
of the number of times r, and r; are close for all 0 < i j < N. One assigns the unnormalized
weight exp[—vn.({r,})]1go(r1, - - -, rny) to the configuration {r;} of segment positions; v is
the excluded volume, a physical constant. The typical choice of n. is

3) ne(()) = 5 Tosiuiy Jri = ),

where o/ is a nonnegative, spherically symmetric, sharply peaked function about r = 0; i.e.,
an approximate delta function. The factor % is present in (3) because each pair r;, r; for i
7 j should be counted only once. One now works with the new, non-Markovian distribution
function Gi(ri, -- -, ry) with density

—v
exp[? Yosin=n J(r; — l‘j)}go(l‘l, cee, TN)

4 ves =
“@ &x, - Ty normalization

Again, (4) is cumbersome to work with, so it is replaced by its continuous chain limit.
Let L be a fixed positive number and P, ;(R) d-dimensional conditional Wiener measure,
with variance /3, on paths {(R(s); 0 = s = L} which satisfy R(0) = 0, R(L) = r. Now set
L = NAs. The measure G, with density (2) is the projection of P, onto the cylinder sets
{R(s),0=s=<L: R(l-]f;—) €Il,j=1, ..., N — 1}, where {I;} are Borel subsets of R". In
the limit N —» o, As —» 0, NAs = L fixed, G, tends weakly to P,;.. We now state the
continuous chain limit. In (4), we replace v by v(As)?/I? obtaining a new measure Gi. In
the limit N — o, As — 0, NAs = L fixed, G, tends weakly to

L L
exp[—LzJ' J' J(R(s) — R(s0)) ds dsO:l dP:(R)
2l 0 0

(5) d Fr,L(R) =

’

G(r, L)

where G(r, L) is a normalization (the P, expectation of the exponential factor in (5)).

" This measure is the continuous chain limit of the measure G, with density (4). G(r, L) is

the unnormalized density of the endpoint R(L) of the continuous chain.

Section 4 applies scaling arguments to determine the asymptotics of E(| Ry |?) (see (1)).
It is argued that this quantity should be well approximated by [ |r |2G(r, L) dr/normali-
zation. The key scaling relation is (4.3). This leads to (4.7) and a second scaling argument
yields (4.14), which is (1) above. The discussion after (4.6) motivates the conjecture that
the exponent vq in (1) is independent of the particular form of the function ¢/ in (3)-(5).
But notice the difficulty which arises if </ is replaced by the quantity it is supposed to
approximate; namely, a delta function at 0. Then the double integral in (5) becomes the
local time at 0 of {R(s) — R(so), 0 <s, so =< L}. The latter is +o for d < 4. One can handle
this singularity by a cut-off (as discussed in the next-to-last paragraph of the paper) or by
renormalization [Symanzik (1969); Section 2.6-2.7, Section 4], [Varadhan (1969)].

The middle of Section 2 treats the self-consistent field (SCF) approximation to the
distribution G, with density (4). The function n. in (2) measures for each configuration
{r;} the number of times r; is close to r; for all i # j. The SCF approximation replaces n.
by a conditional average over all configurations (conditioned upon Ry, the position of the
last segment). In explaining this, I deviate somewhat from the paper. Let 5# denote the
class of all distribution functions on R™. For H € #, Ex{— | Ry = r} denotes conditional
expectation with respect to H, conditioned upon Ry = r. Define

6) p# (r:| 1) = Eg{Y josjmi=m J@xi— R)) | Ry =1}
and G € # as the distribution function with density
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v i
exp[—- 3 S pf? (x:] l‘N)jlgo(l‘l, cee, TN)

H =
@ g7(xs, oo TN) = normalization
The definitions (6)-(7) define a map r from #to #: r(H) = G*. An SCF distribution H*
is defined to be any fixed point of r; the associated conditional averages {p%} in (6) are
called self-consistent fields. They are related by equations (6)-(7) with H* written for H.
The SCF procedure can be regarded as an attempt to Markovianize the distribution Gi. If
the {p}‘," were explicitly known (which in general they are not), then for fixed Ry =
ry g would be the density of a Markov chain.

The SCF procedure is interesting but problematic since it is not clear that SCF
distributions even exist for given J and v. On the other hand, for suitable J, it should not
be hard to prove that SCF distributions exist for sufficiently small v > 0. (For v = 0, 7(H)
= @G, for all H € #'so that Gy is an SCF distribution.)

Equation (2.7) in the paper defines the analogue of my {p}y} as a conditional average
of a sum involving all 0 = j = N and with a general r in place of r;. This quantity is
proportional to a conditional density of walks. However, when inserted into (2.8), which
corresponds to (7) above, r is set equal to r;. In other words, (2.8) includes the large self-
intersection term which corresponds to j = i in the sum in (6) and which I have omitted in
order to stay consistent with (4). Also, (2.8) excludes the i = 0 term from the sum appearing
in (7). These changes seem to be significant and to need justification.

The author does not apply the SCF approximation just described. Instead, he shows in
Section 3 how self-consistent fields arise in a useful approach to the evaluation of quantities
involving the continuous chain limit (5). One first rewrites the latter as an expectation
with respect to an auxiliary Gaussian random process ¢, indexed by r in R®, where ¢ has
mean zero and covariance vJ(r — r’)/I% The method of steepest descent is now used to
evaluate the resulting expectation. As a result, the evaluation of quantities involving the
continuous chain limit yields a set of self-consistent equations for the corresponding saddle
points. These saddle points play the role of self-consistent fields. This method is formal
because it is assumed that in each case saddle points are unique. On the other hand, the
author outlines several calculations which show that the method yields accurate numerical

values.
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