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FURTHER MONOTONICITY PROPERTIES FOR SPECIALIZED
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Define Z(¢) to be the forward recurrence time at ¢ for a renewal process
with interarrival time distribution, F, which is assumed to be IMRL (increasing
mean residual life). It is shown that E¢(Z(t)) is increasing in ¢ = 0 for all
increasing convex ¢. An example demonstrates that Z(¢) is not necessarily
stochastically increasing nor is the renewal function necessarily concave. Both
of these properties are known to hold for F DFR (decreasing failure rate).

1. Introduction. It is shown in Brown [3] that if F'is IMRL (increasing mean residual
life) and Z(¢) is the forward recurrence time at ¢ for a renewal process with interarrival
time distribution F, then EZ(¢) is increasing in ¢ = 0. In this paper the result is strengthened
to E¢(Z(t)) increasing in ¢ for all increasing convex ¢. An example is given to show that the
result cannot be extended to general increasing functions, equivalently that Z(¢) need not
be stochastically increasing in ¢. The same example also shows that ' IMRL does not
imply that the renewal function M(¢) is concave, nor that EA(¢), the expected renewal age
at time ¢, is increasing. The table below summarizes the monotonicity results of this paper
and [3].

IMRL

DFR

Z(t)
(forward recurrence time)

E¢(Z(t))? for increasing convex
¢; Z(t) not necessarily stochast-

Z (t) stochastically increasing in
t=0

ically increasing

A(t) EA (t) not necessarily increasing A (¢) stochastically increasing in
(renewal age) t=0
M(t) t M (t) concave. The renewal den-

M) - ,_,. 1in ¢ = 0; M(t) not sity exists on (0, «) and is de-

creasing

(renewal function)
necessarily concave

The result E¢(Z(¢)) 1 for increasing convex ¢ does not appear to be provable by the
methodology employed in [3]. A new approach is followed based on a renewal theory
identity (Theorem 1) which may be of independent interest and use.

2. Definitions and preliminaries. A random variable X with c.d.f. F is defined to
have an IMRL (increasing mean residual life) distribution on [0, ) if u; = EX < 0, F(0—)
=0, F(0) <1,and E(X — ¢t | X > t) is increasing in ¢ = 0. The term increasing (decreasing)
is used for monotone non-decreasing (non-increasing). X is defined to have a DFR
distribution on [0, ) if F(0—) =0, F(0) < 1, and X — ¢ | X > ¢ (the conditional distribution
of X — ¢t given that X > ¢) is stochastically increasing in ¢ = 0. Lemma 1 below reviews
several properties of IMRL and DFR distributions.
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LEMMa 1 (i) F DFR < log F(x) convex < F is absolutely continuous on (0, ©) and
possesses a version of its pdf, f, for which the failure rate function h(x) = f(x)/F(x) is
decreasing.

(ii) F DFR with finite mean implies F IMRL; F IMRL does not imply F DFR.

(iii) F IMRL < G DFR where G(x) = (1/u) [§ F(y) dy.

(iv) FIMRL © E[¢(X — ¢t) | X > t] 1 in t = 0 for all convex increasing ¢.

(v) Mixtures of DFR distributions are DFR. A mixture of IMRL distributions pos-
sessing a finite mean is IMRL.

(vi) Define Z(t) to be the forward recurrence time at t for a renewal process with
interarrival time distribution F. Then F IMRL (DFR) implies Z(t) IMRL (DFR).

ProoOF. (i) The fact that a DFR distribution on [0, x) is absolutely continuous on (0,
) (it can have an atom at {0}) can be proved by following an argument of Barlow and
Proschan [1] page 77. The other implications are straightforward.

(ii) The first part is trivial. The distribution discussed in Section 5 (i) is IMRL but not
DFR.

(iii) E(X — ¢ | X > t) = 1/h¢(¢), where hg is the hazard function of G.

(iv) Let ¢ be an increasing convex function. Then ¢(x) = ¢(0+) + [§ ¢'(y) dy with
¢’ 1. The expectations Erp(X), Er[¢(X — ¢t) | X > t)], Ec[¢'(X — t) | X > ¢] are all well
defined with + as a possible value. If Er¢(X) = o then E[¢(X — ¢) | X > £] = o for all
t and the result is trivially true. If Er¢(X) < o then all the above expectations are finite.
Integration by parts gives:

1) Eff¢(X —t) | X>t] = (0+) + Er(X — t | X> t)Eg[¢'(X — ¢) | X > £]

Since G is DFR (iii), ¢’ is increasing, and Er(X — ¢t | X > t) 1, the result follows.

(v) The closure of DFR under mixtures is found in Barlow and Proschan [1] page 103.
Consider F(t) = [ F,(t) dP(«), where F, is IMRL, and P a probability measure. Define
pla) = Ep X and Gu(t) = (1/p(e) [¥ Fu(x) dx. ThenG(t) = (1/p) [7 F(x) dx = [ G.(t)-
((4/u) dP(a)). Each G, is DFR by (iii), therefore G is a mixture of DFR’s and is therefore
DFR. By (iii) Fis IMRL.

(vi) The distribution of Z(¢) is a mixture of the distributions of (X —s | X>s5,0=<s=<
t}. Thus the result for F DFR follows directly from (v). For F IMRL we can apply (v) and
obtain the desired result provided that we show that EZ(f) < . Since E(X —t | X > ¢) is
increasing: EZ(t) <= EX —t | X > t) = (1/F () [¢ F(x) dx < W/F(t)) < .

3. Identity. We will be working with two renewal processes: one with interarrival time
distribution F, the other with distribution G whereG(t) = (1/p) [§ F(x) dx. It is important
to note that the renewal process with interarrival time distribution G is not the stationary
renewal process corresponding to F' (which would have its first renewal governed by G and
all subsequent renewals governed by F') but rather a renewal process with all interarrival
times distributed as G. Define Zr(t)(Zs(¢)) to be the forward recurrence time at ¢ for the
renewal process with interarrival time distribution F(G). Define F 52, = Pr(Zg(t) > x),
and g5, to be the pdf of Zs(t) evaluated at x. Note that G is absolutely continuous and
thus so is Zg(¢). Define My, M¢ to be the renewal functions for the two processes. Both
start with a renewal epoch at {0}, so that, for example, Mz(t) = Y7o F}) rather than
)y F[f’. By Wald’s identity EZz(t) =pMp(t) — t. Since M#(t) — ¢ is of bounded variation
on [0, t] it makes sense to talk about dEZ#(y) = p dMr(y) — dy. Note that dE(Zr(y)) has
an atom of size u/F(0) at y = 0.

In Theorem 1 below we use the following version of gz

(2) &80 = ij F@t—y+ x) dMa(y)
O_
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Thus we regard gz, as having the above well defined value for each x rather than as
an equivalence class of a.e. equal functions.

THEOREM 1. Forallt=0,x=0:

t

t
88— dE(Zi(y)) =$g%w+ f 28—y dE(ZY)

0+

3) F 2‘}(» = J
o

Proor. For s > 0 define the following Laplace transforms:

00

Yi(s, x) = J' e g8l dt, Ys(s, x) = f e F5 dt,
=0

t=0

0

00

R.(s) = f e F(t + x) dt, Yar,(s) = f e dMxz(t),

=0 =0

Yr(s) = j e~* dF(t), and similarly ya,(s) and Yc(s).

=0

By (2):
4) (s, x) = p ' Re(s)¥n,(s)
Noting that F$), = ft_ F(t — y + x) dMz(y) it follows that:
®) Ya(s, x) = Ra(s)¥nr,(s)

From (4) and (5) we obtain:

Yo, X) _ pmhar(s)

6
© s 2 Yary(s)

From (6) we see that y./y; is independent of x. This suggests that Fz,, is the
convolution of gz, and a function which does not depend on x. Next:

(7 wdar(s) = p(1 — Yr(s)) ™!
®) Yag(s) = (1 — ¢a(s) ™" = (1 — [(1 — yr(s))/spD) "
From (6), (7) and (8):
dols, %) o Sl _
9) e n (1 — Yr(s)) s

But (1 — ¢r) ' is the Laplace transform uya,(s) and s~' is the Laplace transform of f(t)
= t. Thus ua,(s)/¥u,(s) is the Laplace transform of uMp(t) — t = EZr(t). The result now
follows.

Splitting the range Pf integration [0, ¢] into {0} and (0, ¢] and recalling that dEZ#(y)
has an atom of size u/F(0) at 0, gives the alternative expression in (1). 0

4. Monotonicity Result. The main monotonicity result is now derived.

THEOREM 2. If F is IMRL then E¢(Z(t)) is increasing in t = 0 for all increasing
convex functions ¢.
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PROOF. Since ¢ is an increasing convex function, ¢(¢) = ¢(0+) + [§ ¢'(x) dx with ¢’
1. It is straightforward to show that the expectations E(¢(Z#(t))), E(¢'(Zc(2))), Ead'(X)
are all well defined and are either finite or equal to +o depending on whether Er¢(X) is
finite or equals +oo.

Start with (3) (the identity of Theorem 1), multiply both sides by ¢'(x) and integrate x
from 0 to «. The left side, after integration by parts, reduces to E¢(Z#(t)) — ¢(0+). It is
ﬁmte (equals +o) if and only if E¢p(X) is finite (equals +o). The right side, after
1nterchangmg the order of integration, reduces to [§- E¢'(Zc(t — y)) dE(Z#(y)), and it too
is finite (equals +) if and only if E¢(X) is finite (equals +). Thus:

t

(10) E¢(Zr(t)) = ¢(0+) + f E¢'(Za(t — y) dE(Zp(y)).

0—

Since ¢’ is increasing and G is DFR (Lemma 1 (iii)) it follows from Brown [3], Theorem 3,
that E¢’(Zg(t — y)) is increasing in ¢ for each y. Since EZr(y) is increasing (Brown [3],
Theorem 2), ¢’ = 0, and E¢'(Zg(t — y)) is increasing, it follows from (10) that
E¢(Zr(t)) 1. O

5. Examples. (i) In this example F is IMRL, Z(¢) is not stochastically increasing, m
is not decreasing (and thus M is not concave) and EA(t) is not increasing.’ The hazard

function of F'is given by
1 O0=x<1
h(x) = 4 1=x<2

.01 x=2

For ¢t =1, X — t | X > t is stochastically increasing and thus increasing in mean. For 0
=ts=L,EX—-t|X>t)=1+ce’ wherec—e 1(99.75¢™* — .75) > 0. ThusFlsIMRL

For 0 < § < 1, Pr(Z(0) > 8) = e % For t = 1, the hazard function, hzm, for each
x € [0, 8] is a weighted average of 1 and 4, with 4 receiving positive weight. Thus hsi z(n >
1 for x € [0, 8] and consequently Pr(Z(1) > 8) < e~® = Pr(Z(0) > 8). Therefore Z(¢) is not
stochastically increasing.

Finally for s < 1, E[A(1 + €) | A(1) = s] = s + €(1 — s) + o(e), while E(A(1 + ¢€) | A(1)
=1)=1—38e+ 0(e). Thus E(A(1 + €)) =1 — e ! — 2ece™* + o(e) = EA(1) — 2ee™" + o(e);
thus (d/dt) EA(t) ) |l+ = —2¢! and EA(¢) is not increasing.

(i) Berman [2], page 429, raised the question of whether ¥ NWU implies that the
renewal density is decreasing. In the example below, F'is DFRA (and thus NWU) and the
renewal density is not decreasing. Recall that F is defined to be NWU if X — ¢ | X > ¢ is
stochastically greater than X for all ¢ = 0, and DFRA if H(t)/t = (— In F(t))/t is decreasing
in¢>0.

100 0=x<1
F'is defined by the hazard function A(x) = 1 l=sx<?2
2 x=2

Clearly F is DFRA (and thus NWU). Define p(t) = Pr(1 < A(¢) < 2). Note that p(2) =
p(2=) — Pr(N(2) = 0) = p(2—) — e ', Thus m(2—) = 100(1 — p(2—)) + p(2—) while m(2)
= 100(1 — p(2—)) + (p(2—) — €% + 271" = m(2—) + ¢ '°. It follows that for some € >
0, m(t) > m(s) for 2 + e >t > 2 > s > 2 — ¢, and thus m is not decreasing.

(iii) It does not appear that the prospects are good for deriving monotonicity results for
renewal processes with IFR interarrival times. Berman [2] points out that the convolution
of three exponentials with common parameter does not have an increasing renewal density.
Moreover, it is easy to construct absolutely continuous IFR distributions which are
arbitrarily close to a degenerate distribution, say for example a degenerate distribution at
{1}. Such a distribution has a renewal function which, for small to moderate ¢, differs little
from that of the degenerate distribution at {1}.
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6. Remark. In Brown [3], Theorem 3, it was shown that F DFR is a sufficient
condition for the renewal function to be concave. I conjecture that this condition is also
necessary.

Define 7 to be the class of distributions on [0, ») for which the renewal function, M, is
concave. Then & is closed under geometric compounding, i.e. if {X;, i = 1} is i.i.d. with
distribution F € &/ and N is independent of {X;} and geometrically distributed with
parameter p, then F, the distribution of Z{V X belongs to <. This is true because M,(t) —
M,(0) = p(M(t) — M(0)) where M, is the renewal function corresponding to F,. It is not
known whether the class of DFR distributions is closed under geometric compounding. If
it is not closed then the above conjecture is false.

REFERENCES

[1] BarLow, R. E. and ProscHAN, F. (1975). Statistical Theory of Reliability and Life Testing:
Probability Models. Holt, Rhinehart and Winston, New York.

[2] BERMAN, M. (1978). Regenerative multivariate point processes. Adv. Appl. Probability 10 411-
30.

[3] BrowN, M. (1980). Bounds, inequalities, and monotonicity properties for some specialized renewal
processes. Ann. Probability 8 227-40.

[4] MARsHALL, A. W., and ProscHAN, F. (1972). Classes of distributions applicable in replacement,
with renewal theory implications. Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, Vol. I, 395-415, University of California Press.

67 TINTERN LANE
SCARSDALE, NEW YORK 10583



