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SPLITTING AT BACKWARD TIMES IN REGENERATIVE SETS

By OLAV KALLENBERG

Goteborg University

By a backward time is meant a random time which only depends on the
future, in the same sense as a stopping time only depends on the past. We
show that backward times taking values in a regenerative set M split M into
conditionally independent subsets. The conditional distributions of the past
may further be identified with the Palm distributions P, with respect to the
local time random measure ¢ of M both a.e. E{ and wherever {P,} has a
continuous version. Continuity of {P.} occurs essentially where E{ has a
continuous density, and the latter continuity set may be described rather
precisely in terms of the growth rate and regularity properties of the Lévy
measure of M.

1. Introduction. Reversal of a Markov process X at a fixed time clearly yields a new
Markov process Y, though the time homogeneity is usually lost. Still it makes sense to ask
to what extent the (non-homogeneous) strong Markov property carries over to Y. More
precisely, we consider random times 7 such that the corresponding variables on the
reversed time scale are stopping times for Y (we shall call such variables T backward times,
since they only “depend regressively on the future” of X), and the question is under what
conditions 7 splits X into conditionally independent paths, and in case of splitting, what
can be said about the conditional distributions of the pre-r process. Reviewing the splitting
literature with this general problem in mind, one recognizes coterminal and cooptional
times as special backward times for which splitting has been established under various
conditions ([14], [4]). Note also that the desired splitting is known in full generality in the
case of discrete time and state space ([7], Lemma 3.12).

In the present paper we shall mainly deal with the case when 7 takes values in a perfect
and closed regenerative set M with empty interior. (Recall that a random set M C R, is
regenerative, if every stopping time 7 in M splits M into conditionally independent subsets,
such that the post-r set has the same distribution as M, apart from a shift by 7. For a
formal definition and basic properties, see e.g. [3], [6], [12]. The discrete case is similar but
simpler. The assumption that M be closed is not very restrictive, since the closure of a
regenerative set with empty interior is automatically regenerative.) The above case plays
a key role, owing to the celebrated Ito [6] representation of X as a Poisson process of
excursions on the inverse local time scale for M. On the original time scale, an equivalent
description of X is in terms of the local time random measure £ of M and the associated set
of excursions, which may be regarded as marks attached to the gaps of M. To avoid
obscuring details, we shall treat the unmarked case first, and then indicate briefly to what
extent the arguments carry over to the general case (which requires some caution with the
choice of o-fields).

To describe our main results, we shall need some notation. Let the basic probability
space be (2, & P), and denote P-integration by E. Write f(P) for the distribution of the
random element f. Lebesgue measure on real intervals will be denoted by A. By ;1 << pe2 we
mean that y, is absolutely continuous with respect to p. For arbitrary u; and ue we further
define

pr A pe=sup{p:p=p and p=p},
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which clearly corresponds to taking the minimum of the (u: + p2)-densities.
Since the renewal measure p = E¢ is locally finite, the Palm distributions P, on Q and
with respect to £ exist and are given by
E[(dt); A]
A—W—, AE.?{ t>0 a.e. p,
(cf. [9]). Intuitively, P, is the conditional distribution, given that ¢ € M. Though this
conditioning makes sense only when AM > 0 a.s., (see e.g. [3]; this case will be referred to
below as Kingman’s case [10]), a formal justification may be given in general in the form
of a limit theorem (Theorem 4.2). '

In Theorem 2.1 we prove that any backward time r € M splits M into conditionally
independent subsets, the conditional distributions on the left being given by {P,}, both a.e.
7(P) A p and wherever {P,} has a continuous version. Thus, in particular, the conditional
distributions on the past are given by the Palm distributions if either 7(P) < p, or {P,} is
continuous a.e. 7(P). The main object of Sections 3-5 is to examine when these conditions
are fulfilled. According to Theorem 3.1, the first condition holds (for arbitrary random
times) whenever 7 is located at a fixed local time distance from a gap in M, including the
cases of left and right endpoints, henee in most interesting cases.

For the purpose of dealing with the second condition, note that the inverse (cumulative)
local time is a subordinator 7. Let » be its associated Lévy measure, and write {u‘} and
{ji*} for the corresponding semigroups of infinitely divisible distributions and their char-
acteristic functions. Utterly weak restrictions on » (see Section 5) ensure the validity of the
condition

(C): [i* is integrable for every t > 0.

Note that (C) holds iff u‘ << A for every ¢ > 0 with a bounded density p(¢, -), and that
p(t, x) is then strictly positive within the supporting interval and jointly uniformly
continuous for ¢ bounded away from zero. In this case also p << A with a lower semicontin-
uous density p = [§ p(¢, -) dt. (In Kingman’s case, p is proportional to the p-function of
M)

In Theorem 4.3 we prove that, under (C), the continuity set of p is inherited by the
family {P,}. In the positively recurrent case, i.e. when m = ET < «, this statement applies
to the point at infinity also, with P acting as limiting distribution. In fact, a much stronger
statement at infinity, involving uniform mixing under P;, will be proved in Theorem 4.4.
Finally, Theorem 4.6 shows, again under (C), that almost every P, resembles P at the
origin.

The regularity properties of {P,} are hence linked to those of p, so we are led to study
the renewal density in further detail, which is done in Section 5. In Theorem 5.2 we give
a rather precise description of the continuity set of p in terms of the growth rate at zero
and the regularity properties on (0, ©) of the Lévy measure ».

For a convenient probabilistic description of M, we choose ¢ rather than M as our basic
random object, which is possible since £ and M determine each other uniquely (a.s. and up
to a normalizing factor for £). Accordingly (unless otherwise stated), we take £ to be the
space of Radon measures p on R, and Fas the o-field generated by the mappings p — pB
for all B € #(R.), the class of bounded Borel sets in R.. Endowing @ with the vague
topology makes it Polish with % as its Borel o-field. Hence there is no problem to define
conditional distributions on £. Weak convergence of probability distributions on (2, %) is
in the sense of the vague topology. In Section 4 we shall also consider convergence in the
supremum norm || - || for signed measures on £ and related spaces. For general background
on random measures, we refer to [9].

The shift, killing and reflection operators 6;, k; and @; on £ are defined for arbitrary
t >0 by

(0p)B = u(B + t), (kep)B = p(B N [0, £]), (@B = pu(t — BN [0, £]) + w(BN (2, )),
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where B € #(R.) is arbitrary. Note that they are all Zmeasurable. We further define %
and % to be the o-fields in  generated by % and 6; respectively. A measurable mapping
7:Q — R, will be called a forward (=stopping) or backward time respectively, if {r < ¢}
E Zor {r =t} € % as. (P) for every ¢ = 0. We further define the (cadlag Markov [12])
processes G:, D;, A; and R; on R, by

Gt=Sup{SStZSEM}, Dt=illf{$>tZSEM}, At=t—Gt, Rt=Dt—t.

Recall that, if AM = 0, a fixed ¢ > 0 lies a.s. in a gap (contiguous interval) I of M. In this
case, G: and D, are the left (gauche) and right (droite) endpoints of I, whereas A, is the age
and R, the remainder of I at ¢.

We conclude by listing some further notational conventions. The restriction of a
measure g to a set B is denoted by Bu. On R., a measure p will be identified with its
cumulative function u(¢) = p; = p[0, t]. The Fourier transform of p will be denoted by
and the Laplace transform by ji. Powers p” or p are in the sense of convolution (*). The
symbol L denotes mutual singularity. Finally, indicator functions are denoted by 14 o’
1{.}, and Dirac measures by J..

2. Decomposition. The main purpose of this section is to prove, in Theorem 2.1, a
decomposition of our regenerative set M at backward times in M. Applications and
extensions of this result are discussed at the end of the section. Though splitting at more
general backward times is formally outside the scope of the present paper, we cannot resist
proving in Theorem 2.2 that arbitrary backward times split a Lévy process.

By saying that a random time 7 splits ¢ (or M), we shall simply mean that the
conditional distributions of £, given r = ¢, are a.s. such that the past k. and the future 6, of
t are independent. Splitting of cadlag random processes is defined analogously. (It is
evident from our proofs that all splitting results below can be extended to splitting in the
sense of conditional independence of &, and a suitably defined “o-field of post-r events”.)
In the same spirit, we may regard the conditional distributions of the past of 7 as a
measurable family of distributions on £ indexed by R. and unique a.s. 7(P). The Palm
distribution at ¢ and with respect to ¢ was defined a.e. p in Section 1. For the sake of
brevity, its %.-image will be called the left Palm distribution at t.

THEOREM 2.1. Backward times in M are splitting. The conditional distributions of
the past for two backward times T and 1’ agree a.e. 7(P) A 7/(P), and those for 7 coincide
with the left Palm distributions P, both a.e. p A T(P) and wherever { P} has a continuous
version.

ProoF. We may assume that AM = 0 a.s., the modifications needed in Kingman’s case
being obvious. We shall proceed in five steps.

1. Here we prove the splitting for a special type of backward times. More precisely, we
assume that either r = 0 or A,+; = 1, and that {7 + 1 = ¢} € «, as. for every £ > 1, where
o, = o{As; s = t}. Since {A;} is Markov [12], the random time 7’ = [ + 1 —] splits {4.},
say with conditional distributions P.,. of k., given that 7' = n > 0 and A, = x, ie. given
that 7 = n — x. This is equivalent to saying that 7 splits £ with conditional distributions P,
of k., given that 7 = ¢, where P, = P, , for ¢ = n — x. The Markov property further implies
that the P, can be chosen independently of 7. The same proof applies to the set of random
times 7 such that, for a fixed ¢ > 0, either 7 = 0 or A,+. = ¢, and moreover {r + e =f} €
4, a.s. for all ¢ > ¢. Since the latter 7-set is non-increasing in e, the P, can be chosen
independently of &.

2. Here we show that t a.s. avoids right endpoints. To see this, fix a £ > 0, and let §; be
the number of gaps up to time D; of size >s. From the nature of T' it is clear that the first
n gaps of length >s are exchangeable. Since 8 is invariant under permutations of these
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intervals whenever 8; = n and R, > s, it follows that the gaps of size >s prior to D, are
conditionally exchangeable, given B, on the set {s > R:}. (Note that R; is f-measurable.)
Letting s | R;, we may conclude that the intervals >R; are conditionally exchangeable,
given 8. Hence

1) P[D.— G.>¢| B]=PB./Br,<B./Br as.on{R.<h}), 0<h<e

Now fix an ¢ > 0. Let vy, be the number of gaps up to time 7 of size >s, and note that
Ye/vr— 0 a.s. on {r > 0} as h — 0, since v is a.s. unbounded on this event. Hence we may
choose A > 0 so small that P{y./yr > ¢, T > 0} < &. Putting ¢, = nh and I, = (., tn+1), We
then obtain (with A¢- = 0)

(2) P{A,_>e}=e+PlA,_>¢ev/vn=e)=e+ Yo P{1EL,A,_>¢& v/ =< ¢}.

Here the nth term equals, with ¢ = ¢, and with B based on this particular ¢,
P{T=DtEIn,Dt_ Gl>€)ﬁe/ﬁhse}

=E[P[D;:— G:>¢| %,B); 7= D: € I, B./Br < €]
= E[P[D;— G:>¢/Bl; r=D: €I,, B./Br<¢€] < e P{r € L.},

where we have used in turn the definition of backward times, splitting at .D;, and (1).
Inserting this into (2) yields P{A.- > ¢} = 2¢, and since & was arbitrary, it follows that A,
= 0 a.s., as asserted.

3. Here we prove that ¢ obeys a 0 — 1 law on the immediate left of T. For this purpose,
fix s, ¢t > 0, and note that the processes {7, x € [0, s]} and {T; — Ts—, x € [0, s]} have the
same distribution, apart from the interchange of right and left continuity. This remains
conditionally true, given ¢ and 6; with & > s, since on the latter event, these two quantities
are invariant under the reflection which relates the two processes. Letting s — £ along a
fixed countable set, it follows easily, e.g. by considering the associated random measures,
that the above conditional symmetry extends to the (open) interval (0, ;). The latter
symmetry is clearly equivalent to a similar symmetry of ¢ on the interval [0, G.]. By the
definition of backward times, a further conditioning on T makes no difference provided
that 7 > ¢, and on that event the symmetry remains true under conditioning on = only.
Letting t — T along a fixed countable set, and noting that then G; — 1 a.s. by step 2 above,
we may conclude that ¢ is symmetric (even unconditionally) on [0, 7]. The asserted 0 — 1
property now follows from the Blumenthal 0 — 1 law for £ at 0.

4. Here we extend the splitting to arbitrary 1. Write %, = o(r, 6,), and similarly for
other random times. A bar over ¢ will denote P-completion. Define

T.=sup{tEM N[0, 7):R,=1/n},nE€ N,

(sup @ being interpreted as 0). Then ¥, D ¥,, and since 7, — 7 a.s. by step 2, it is easily
verified that 4, | %,_, where 4, = N %_,,,. But %,_ = %, by step 3. Hence, by
martingale theory, P(- | 4,) — P(- | 4,) as. Now fix a ¢ > 0, and let A € %. Then
PA| 4, =P, Aas on {1, >t} by step 1, so we get P, A — P(A | %) as. on {r > ¢}
since {7, >t} 1 {r >t} a.s. Hence P(A | %,) is a.s. measurable on {r > ¢} with respect to
7 and the tail of the sequence {r — 7,}. But the tail o-field of {r — 7,} is trivial by step 3,
and so the measurability is on 7 alone, i.e. P(A | 4,) = P(A | 7) a.s. on {r > t}. This is
clearly equivalent to the asserted splitting. The stated independence of the choice of 7
follows immediately from the splitting by an independent randomization of r, the random-
ization parameter being thought of as %.-measurable.

5. Here we establish the connection with the Palm distributions. For this purpose, fix
b > a > 0, and define

1. =sup{t € [0, b]: ¢&[¢, b] = x}, x > 0.
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Then each 7, is clearly a backward time, so by the randomization argument in step 4 and

Fubini’s theorem, there exists a family of conditional distributions P, on %, serving

simultaneously for almost all 7, (A). By the same argument, the P; coincide a.e. p A 7(P)

with the conditional distributions on the past of 7 for any specific backward time 7.
Write I = [a, b]. Note that

¢l =sup{x: 7. €I} = J 1{r. € I} dx,
0

and hence that ¢ = [ 1{r. €-} dx on [0, b]. Letting A € #,, we get

0 0

1[r, € I, A] dx =J

0

E[tI; A]=E J Plr. €I, Aldx = f dx J PA P{r. € dt}
0 I

[

= JP:A j P{r,€dt} dx = JP,A EJ {r. Edt} dx = fPtA E¢(dt).
I 0 I 0

1

Since a, b and A were arbitrary, this shows that £,(P,) equals the Palm distribution of ks
at ¢ for fixed s < ¢ and for ¢ > 0 a.s. p. It remains to let s — ¢ along a fixed countable set.

If 7 is a.s. a left endpoint, then 7(P) < p by Theorem 3.1 below, so in that case the
conditional distributions on the left can be chosen as the Palm distributions. This applies
in particular to the auxiliary random times 7, in step 4. Now suppose that {P;} has a
version which is left continuous on some set C C R.. Since 7, 1 7 a.s., and moreover
P,A— P(A | 7) as. on {1 > s} for any A € %, s > 0, we may then choose the conditional
distributions on the left to agree with {P.} even on C. [0

The case when the regenerative set M is embedded in a Markov process is more
complex, mainly due to the fact that, by definition, backward times may depend not only
on “the future” but also on “the immediate past”. When only M is considered, this causes
no trouble because of the 0 — 1 property on the left proved in step 3 above, but in the
Markov setup, the analogous splitting statement is no longer true in general. In fact, even
for the age process {A;} based on M, splitting at backward times requires conditioning on
both 7 and A,_, and then the simple connection with the Palm distributions is lost.

One way out of this trouble is to assume that the conclusion in step 2 is fulfilled, i.e.
that 7 a.s. avoids right endpoints. Another way is to think of the excursions as marks
associated with the left endpoints, and to define { %} accordingly. In both cases, the above
proof goes through without changes. A third possibility is to impose conditions on X which
imply a 0 — 1 law on the left of backward times. We may e.g. assume X to be a Lévy
process based on an infinite Lévy measure. This is a consequence of the following theorem
and the fact that X is a.s. continuous on the time set where X hits a fixed point u (hence
X(7) = X(r =) = u in this case). Write ji for the characteristic function of X(¢).

THEOREM 2.2. Let X be a Lévy process, and T a backward time based on X. Then the
pre-t and post-r segments of X are conditionally independent, given v and X(r—). Under
(C), the conditional distributions on the past, given =t > 0 and X(1—) = x, may further
be taken from a fixed jointly continuous family {P..}.

The continuity here is in the sense of weak convergence with respect to the Skorohod
J1 topology in D[O0, 1] (cf. [1]) for the rescaled processes {X(st), s € [0, 1]}. Since, as it
turns out, the conditional processes on the past have exchangeable increments, it is
equivalent (and in fact simpler) to state the continuity in terms of the associated canonical
random elements (cf. Theorem 2.3 in [8]).

Proor. It r takes values in a fixed countable set, the splitting is an immediate
consequence of the Markov property, and it follows for general 7 by approximation from
the left as in steps 3-4 of the previous proof.
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To prove the second assertion, note that (C) implies X;(P) << A for every ¢ > 0 with a
density p(¢, -) which is bounded and jointly continuous for ¢ bounded away from zero.
Letting 0 < s <t and A € %, we get a.s.

E[p(t —s,x — X;); Al

Epit—s,x—X,) ’

P[A| X, =x]= x € R,

so by dominated convergence, the left-hand side is jointly continuous in total variation on
4. Since the increments of X are conditionally exchangeable on [0, ¢], the stated continuity
now follows easily by Theorem 2.3 in [8]. 0

One interesting consequence of Theorems 2.1 and 2.2 (and of Theorem 4.2 below) is the
fact that, for Lévy processes X which hit points and satisfy (C), horizontal and vertical
window conditioning are asymptotically equivalent as the window size tends to zero. More
precisely, writing H,(¢, x) and V,(¢, x) for the events that the graph of X intersects the sets
[t — & t+ €] X {x} and {¢} X [x — ¢, x + €] respectively, it is seen that P[. | H.(¢, x)] and
P[. | V.(t, x)] both approach P,. on the left and 6,(P) on the right of ¢ (in an obvious
sense).

3. Distributions of random times in M. The local time ¢ of M may be defined as a
constant times the dual previsible projection of the point process M, of left endpoints
belonging to gaps >¢ (provided that »(e, ©) > 0). Taking expectations, it follows that EM,
is proportional to p. Hence 7(P) < p for any random time 7 in M., and this result extends
by an obvious truncation argument to arbitrary random times in the set of left endpoints.
(This simple fact was used in the proof of Theorem 2.1.) We shall extend the above result
to a much larger class of random times, which also includes the right endpoints. Though
the present study was motivated by Theorem 2.1, the results may have some independent
interest.

THEOREM 3.1. Let v be an M-valued random time at a fixed local time distance from
a gap. Then 7(P) < p.

Proor. For definiteness we may assume that A M = 0 a.s., the opposite case being
similar. Let {B,} be a countable partition of the interval (0, o] into relatively compact
Borel sets. Then every gap of a fixed sample path of M can be characterized uniquely as
being the kth gap with size in B, for some k& and n. This yields a measurable partition
{Ar} of Q, where A, is the event where the (unique) gap related to 7 is the one indexed
by n and k. Let 7., € M be the a.s. unique point at the given right or left distance ¢ from
the gap with index (n, &), (if such a point exists; otherwise we put 7., = 0). Since 7 = Y.
14,,Tne, We get 7(P) = Y nr PlTnr € +; Anz], so it is enough to prove that 7,..(P) < p on (0,
) for fixed (n, k) with »B, > 0. To simplify the notation we may henceforth omit the
subscripts n and 4.

It is easily seen from the Itd (1972) representation of M that

1) r=Ts+ Y1 B,

where T is a subordinator based on B°y; ¥ is obtained from the position of the kth atom
of an independent Poisson process with rate » B by adding or subtracting ¢ and reducing
to zero when the resulting quantity is negative; 81, Bz, - - - are i.i.d. random variables which
are independent of 7'’ and ¢ with distribution By/vB; and k is some Z,-valued random
variable which is zero on the set {# = 0}. The crucial property of 4 is that $(P) << A on (0,
), and since ¢ = 0 implies 1 = 0, we may assume without loss that ¢ > 0 a.s. We may
further reduce as above to the case when k = m is fixed.

Writing u’ and p” for the infinitely divisible distributions based on B°» and By
respectively, and letting ¢’ be the local time random measure associated with ', we get

@) T4(P) = Ep"® = f p"P{® € dt} < J’ p" dt = E¢'.
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Next define ¢, as £, except that the gaps in B which occur before local time 7 are omitted.
It is clear from the It6 representation of £ that &,(P) agrees with the conditional distribution
of £, given that no B-gaps occur before local time n. Since this is an elementary conditioning,
it follows that E¢, << E{ = p. For fixed ¢ > 0 we now make a measurable partition & = U
A,, such that on A,, ¢ = £, on [0, £]. Then ¢’ = Y 14, £, on [0, £], and we may conclude as
before that E{’ < p on [0, ¢]. Since ¢ was arbitrary, the same relation holds on R.. Hence
T3 P) < p by (2).

By (1) it remains to prove that px(Bv)™ < p. To see this, note that u”**(By)™ < " for
all £ > 0, since p”* is a compound Poisson distribution based on Br/»B. Convolving with
p” we get p‘x(Bv)™ < p', and the desired relation follows from this by integration with
respect to ¢t. 0O

The above technique is readily adapted to prove absolute continuity on (0, «) for
virtually all random times of practical interest (except in Kingman’s case, when the
absolute continuity fails even for the basic quantities G: and D,). Thus it is natural to
conjecture that, when AM = 0 a.s., every random time in M would have the stated property.
A counterexample is given below for a certain rather special class of regenerative sets. The
random times under consideration have the further interesting property of being simulta-
neously forward and backward.

THEOREM 3.2. There exist regenerative sets M with A\M = 0 a.s. such that the random
times T are both forward and backward and have p-singular distributions.

ProOF. Define » = Y, k™'§,,, where the constants c, < (k!)~* will be chosen later, and
note that »R, = o« while [x» (dx) < . Clearly T, = Ya.(¢)cs, where a; are independent
homogeneous Poisson processes on R. with rates 27", Since P{ax(t) =2} = 0(k %) as &
— o for every ¢ > 0, it follows from the Borel-Cantelli lemma that a.s.

3) lim supgow oz =1, £=0,

and we may assume without loss that (3) holds identically.
Define for fixed {c:}

A= {T7 arcr; a1 =n, az as, -+ € Z,, sup ax < ®}, n € Z,.
Then AA, = 0 for all n, since for fixed b > 0 and for every n = 2,
AT arcr; a1, @z, -+ € Z,, sup ar < b} < b™' sup{35 arck; sup ax < b} < 2b™/n!,

which tends to zero as n — . Together with (3) this implies that, for fixed £ € Q, ¢ >0, n
€ Z, and ¢y, c3, - -- as above, and for c; € (0, 1) a.e. A,

@ ait) =n iff T;€ A,.

Now suppose that £ and {c:} are such that (4) holds simultaneously for all n € Z, and
t € N. If (4) fails at some ¢, it must be because T; € A,, for some m # a;(¢). But then (3)
shows that (4) fails for all subsequent ¢, which is a contradiction. Thus the exceptional
null-set for ¢, can be chosen independently of n and ¢. By Fubini’s theorem, almost all ¢,
C2, +++ (A) are such that (4) holds a.s., simultaneously for all n and ¢

The sets A, are measurable, since the corresponding sets with a fixed bound for {a:)}
are closed. The function fi = ¥, nla_is therefore measurable, and (4) implies that a.s. a:(t)
= fi(T) for all . In the same way, it is possible for almost all {c;} to construct measurable
functions f, f3, - - - such that

(5) ar(t) = fe(T), t>0,kE N, as.
Next note that, by the law of large numbers,
(6) limn e Y7 ar(®)/3F k' =¢, ¢t>0, as,
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the exceptional null-set being independent of ¢ because of the monotonicity of both sides.
Putting f = g°(fi, f2, - - -) where

g(ay, as, --+) =lim inf, . Y1 ax/Y7 277,
it follows from (5) and (6) that
(7) f(Ty)=t t>0, as.
In particular,
(:=&=fD), x>0, as,

so the process {£,} is adapted not only to {£} but also to {%.}. Since {£,} is further a.s.
continuous, its passage times 7 must be both forward and backward.
Finally put F, = f~'{¢}, ¢ > 0, and note that, by (7),

HsFt=P{Tsef—l{t}} =P{f(Ts) = t} =83y¢) S,t>0,

and therefore

th=f Ms. tds=f Bs,tds=0’ t>0.0
0 0

4. The Palm distributions. The main object of this section is to examine the
continuity, asymptotic, and other properties of the family {P,} of Palm distributions with
respect to the local time random measure ¢ of M. For the sake of simplicity we consider
the unmarked case only. Most results carry over without changes to the case when
excursion marks are attached to the intervals.

First we describe the basic structure of the P,.

LEMMA 4.1. Fort>0a.e.p,

(key 0)(Py) = ke(P)) X P, Q«(Py) =P,

and

1) ke(Pe) = f dx k:(P[- | T: = tDp” (dt)/p(dt).
0

Proor. LetI=[a, b]and A € &%, B € %, be arbitrary. Since £I = [ 1{T, € I} dx, we
get by Fubini’s theorem and splitting at 7',

© ©

{T. €I, AN B) dx=f P{T.€I, AN B} dx

0

E[tI; AN B] =Ef
0
= f E[P(ANB|Ty); T. € I dx
0
= f E[P(A | T)P(62,B); T: € I] dx
0

= f dx f P(A | T: = t)P(0.B) p*(dt)
0 I

= f P(6.B) f dx P(A | T: = t) p*(dt).
I 0
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On the other hand, we get by the definition of Palm distributions

E[¢; ANB] = j P.A N B) p(dd).

I

Since I was arbitrary, it follows that, for A € &, and B € %, with a and b fixed and for p-
a.e. t € (a, b),

P.(A N B) = P(4,B) f dx P[A | T, = t] p*(dt) /p(dt).
0

For a.e. f, we may now use a montone class argument to extend the last relation to
arbitrary A € % and B € %, This proves the asserted independence, as well as the
identities of k,(P;) and 6,(P,).

To prove the symmetry assertion, note that, for fixed x > 0, the processes {T., s €
[0, x]} and {7 — T.-s, s € [0, x]} have the same distribution except for an interchange of
right and left continuity. This symmetry of T is clearly preserved under conditioning on
the invariant variable T, and under this conditioning, the above symmetry is equivalent
to symmetry of the inverse process {£;, ¢t € [0, T.]} under the reflexion ¢ — T — ¢. Hence
QuP[- | T:=t]) = P[- | T: = t] ass., and inserting this into (1) yields the desired conclusion.
]

Lemma 4.1 and the methods proving it give rise to some nice formulae. Note in
particular that (with E; denoting P;-integration)

pn+1( dt)

p(dt)’

and further that, whenever p has a Lebesgue density p,

E£ (ds) _p(sip(t—s)
ds p@)

E&l =n! t>0aep, nEN,

(2) ae. st 0<s<t

Intuitively (and in Kingman’s case even formally), P, is the conditional distribution,
given that ¢ € M. For a precise statement, let P, be defined analogously by conditioning
on {t € M.}, where M., is the e-neighbourhood of M. Let us further define the measures p,
by

pd = JP{tGME} dt=EX(M.N I).
1

THEOREM 4.2. For any finite interval I,

. 1 1
(3) lune—»O p—é‘I L Pt,e pe(dt) p—I J; Pt p(dt) = 0.
Moreover, P,. —>, P, wherever {P,} is weakly continuous.

This approximation of P corresponds to Kingman’s [11] intrinsic description of £ Other
elementary local time constructions give rise to alternative but less natural approximations.

Proor. Define for each ¢ > 0 the random measure {, = A(M, N -) on R,, and note that
pe = E{.. Let m. = E{.(T1), and put & = {./m.. By [11] we have £(t) — £(t) a.s. ase — 0,
simultaneously for all ¢, and we shall need the fact that this convergence is true in the L,
sense also, i.e. that £(¢) is uniformly integrable. This is obvious for ¢ = T, since in this case
both sides have expectation n, and it extends immediately to the random times ¢ A T, ¢
>0, n € N. It remains to observe that, by Wald’s identity,

E(&@) — &t A T)) < E(((@®)] +1—n). — 0.
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The L, convergence implies that E[£1; A] — E[¢I; A] holds uniformly in A for every
finite interval I, and (3) follows if we divide by the corresponding expressions with A = &,
since E¢1> 0.

Suppose next that P. is continuous at ¢. Clearly

{tEMe}={D¢_est+s}={G,+eZt—s}, 0<8<t.

Let s <t — e and u > ¢ + ¢ be fixed, and conclude by splitting at D,_. and Gi.. respectively
that &;(Py,[- | 6.]) is a mixture of k,(P.-) while 8,(P,[- | ks]) is a mixture of §,°6;*(P) for ¢’
€ (t — ¢, t + €). Hence the former measures converge uniformly (an any metrization of the
weak topology) to ks;(P;) and 6,_.(P) = 6,(P.) respectively. By the definition of weak
convergence, the uniformity of this convergence implies that even

(s, 0u) (Pre) —w ks(P2) X 0u(Pr) = (ks, 0.)(Pr), s<t<u.
Our argument further shows that, for any ¢ > 0,
lim sup,.o Pe.{&[s, u] > c} = P{E(t—s) = c/2} + P{((u—t)=¢c/2} >0, s,u—t
so the above convergence of P, extends to the whole line by Theorem 4.9 in [9]. 0

Motivated by Theorem 2.1, we next examine the continuity of the family {P,}.

THEOREM 4.3. If (C) holds and p is continuous at some u > 0, then P, is weakly
continuous at u. Indeed,

4 lim, ., [|(%s, £)(Pe) — (s, §)(Pu)| =0, s<u.

Proor. By Lemma 4.1,

E[{ (dt); & € B]

o =p@t)P.{¢t€ B} =fp(t, x) dx.

B

Splitting at D, and using Fubini’s theorem, we thus obtain for any C € % and B € #(R.)

E[{(dt); C & — & € B] _ EP(C| D,)E[§ (dt — D,); &-p, € B/Di]
dt dt

=EP(C| D) j p(t— D, x) dx,
B

and hence by extension, for any A € % X #(R.),

) o BLE@D; (66 — &) € 4]

qalt a E ff P(dy | Ds)p(t — Ds, x) dx.
t A

Now the functions p (-, x) are uniformly equicontinuous for x bounded away from zero,
80 g4 is continuous whenever the R.-projection of A is contained in some interval [r, r’]
with 0 < r <7’ < o, But the integrability at infinity is uniform in ¢, since g, is continuous
for A = Q. = Q X [r, ») (cf. the proof of Theorem 5.2), so ¢ is in fact continuous whenever
A C Q,, and this continuity is clearly uniform in A for fixed r. Writing A, = A N ,, it
follows in particular that g, is equicontinuous for fixed .

Abbreviate g4 = g, g4, = gr, go, = pr. Suppose that p is continuous at u > s, and let £ >
0 be fixed. By monotone convergence we may choose an r > 0 such that, for all A4,

0=q(u) — q-(u) =p(u) —p-(u) <e.
New we may choose 8 > 0 so small that for all A
lp@) —pW)<e |g(t) —gw)|<e |t—u|<s.
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For such ¢ and all A,
0=q(t)—q@®)=p@®) —p.@)=<|p@#) —p@)| +|p@) — p-@)| +|p() — pr ()] <3z,
SO
q(t) —qw) = |q@®) — g @) + |g-() — ¢- )| + | ¢-(u) — g ()| < 5e.

Thus g = g4 is equicontinuous at u, and hence so is P.{(£, & — &) € A} = qa/p. This yields
(4) since ¢{; is %-measurable.

By Lemma 4.1, || (:-s(P2) — (Gu—s(Po)]| = O for fixed s <u as t — u, so
([t — 5, ©)E)(Pr) =w ([u — 5, ®)E)(P), t— u.

Since moreover {P,} is tight at the origin for ¢ near v, it follows easily by Theorem 4.2 in
[1] that P, —,, P,. 0O

The above connection between the continuity sets of P. and p is not merely technical.
In fact, it is easily seen from the definition of Palm distributions and from the proof of
Theorem 5.3 below that P. is discontinuous on the set S; defined in Section 5.

The above argument is easily modified to apply to the case when u = o, yielding
convergence of P; towards P whenever p(t) — m™' > 0. A strengthened version of this
result involving a uniform mixing property will be proved next.

THEOREM 4.4. If (C) holds and m < o, then

u+l
(5) lim, e SUPy,—r=s f "(kry 0r+s)(Pt) - kr(P) X (0r+s°Qt)(P)" dt=0.

If moreover p(t) — m ™, then (5) can be strengthened to

(6) lmls—wo SUP¢—r=s "(kr, 0r+s) (Pt) - kr(P) X (0r+s° Qt) (P)" = 0-

The convergence and mixing property in (6) has a counterpart for P itself. Write P for
the stationary version of P, which exists when m < co.

LEMMA 4.5. If (C) holds and m < o, then
lim, oo SUPe=0 [|(Be, Bevs) (P) — Re(P) X P|| = 0.

PRrROOF. Since m < o and moreover T1(P) < A by (C), the embedded renewal process
Y %=1 87, can be coupled to its stationary version, (cf. [13]). Applying the same coupling to
£, we get
lim,... ||6:(P) — P|| = 0.

Since P(0) = 0, it follows in particular that {R.} is tight. For fixed ¢ > 0, we may therefore
choose r > 0 so large that

supi=o P{R:>r} <e,  supe |0:(P) — P|<e
Taking s = 2r, it follows by splitting at D, that
(&, Oevs)(P) — ke(P) X P || < E || 0.5(P[- | D)) — P||
<sP{D.>t+r}+E[|| Oss0,(P) — P|; D, st +r]=2e.

PrOOF OF THEOREM 4.4. We prove (6) first. Let A € %, and conclude as in the proof
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of Theorem 4.3 that

E[£(dt); A
@ aa®) =ZE DA _ ppa | Dype - D).
Putforr>0

q4,(8) = EP(A | Dy) J p(t — D, x) dx,

and note that g4,(t) - PA/m uniformly in A by dominated convergence. Abbreviating g
= Q4, @r = Qar Pr = Qg,, We hence obtain for fixed r

1 1
| g(t) — g-(8)| < | p(¢) — pr(t)| = ‘ o m ‘ =0,

so q(t) —» PA/m, and therefore

q(¢) PA/m
A = — —_—
A0 m A
uniformly in A. This proves that
)] ‘ lime,., |s(P; — P)| =0, s>0.

Let ¢ > 0 be arbitrary. By Lemma 4.5 and the fact that P(0) = 0, we may choose s > 0
so large that

| 6.(P — P)| <&, P{Do>s}<e.
For t = 3s, the first inequality yields
| k25°@Qu(P — P)|| < || ezs(P — P)|| <.
By (8), we may next choose ¢, = 3s so large that
|| kos(P: — P)|| <&, t=t.
Combining these bounds and noting that P = @«(P), we get
|| so0s(P: — Q:(P))|| < 3e, P{R,>s} <3e, Q(P){R;>s}<2e.

Hence it follows by splitting at D, that

| ke—s(P: — P)|| = || 6s(P: — @:(P))|| = || Ds(P; — Qu(P))|l

=< P{D, > 2s} + Q.(P){D, > 25} + || ks°0:(P: — Q:(P))|| < 8e.

Indeed, Theorem 2.1 remains valid for each P,, and the family of conditional distributions
is the same as for P because of (2). Since || k.—s(P. — P)| is nonincreasing in s < ¢, our
argument proves that

(9) linls_>m SUp;=s " kt_s(Pt - P)" =0.

From (9) and Lemma 4.5 it follows that the family A,(P), 0 = r = t < o, is tight.
Splitting at G, for arbitrary r € [s, ¢] and using (9), we may conclude as in the proof of
Lemma 4.5 that

lim, o SUPs<r=¢ “(kr—s, 0,)(P;) — kr—s(P) X or(Pt)" =0.

It remains to note that 6,(P;) can be replaced by 6,°Q,(P) because of (9).
Turning to the proof of (5), conclude from Lemma 5.1 below that (C) implies

u+1
lim,,o f

1
p(t)—;ldt—o.
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Arguing as before, we thus obtain

u+1
lim,, J supa
u

ga(®) —-’14‘ dt = 0.
m

!, we get for large ¢

(@) —%A \ +PA \p(t) - ‘)/p(t)

Since moreover liminf p(¢) = m™

qal(?)

PA—PA|=
| P I=17®

—PA‘_<_<

=< 4m supa

PA
qa(t) — y ‘

Hence

u+l
lim, .. j Iks(P: — P)|| dt =0, s>0.

Proceeding as in the proof of (9), we may conclude that

u+l1
(10) lims—wo SUpPy=s J "kt—s(Pt - P)" dt=0.

Splitting P; at G-, for 0 < r < ¢ — 2s yields
"(kt—r—2s, 0t—r) (Pt) - kt—r-Zs(P) X 0t—r(Pt)" = Et " kt—r-Zs(PG,_, - P)"
= Et[" kt—r—2s(PG,_, - P)"; At—r = S] + Pt{At_r > S}.

Since the random elements involved here are defined on M N [s, ¢ — s], it follows from (10)
and Lemma 4.5 that the right-hand side can be uniformly approximated in the mean sense
for large s by the corresponding expression in P and its expectation E. But then A, becomes
stationary, so we may introduce a random variable A with A(P) = A(P). Forr=u — 2s
we then obtain the uniform bound

u+l
f E[" kt—r—ZS(Pt—r—A - P)"; A=< S] dt + P{A > S}.

Here the second term tends to zero, and by Fubini’s theorem the first term equals

u+1 u+l-r-A
E[ f | kir26(Por-a — P)|| dt; A < s] = E[ f | kes(P. — P)| dt; A< s].

—r—A

Since u — r — A = s, we may conclude from (10) that the inner integral on the right tends
uniformly to zero as s — «. Hence so does the whole expression. It remains to note that
0,—.(P;) can be replaced by 6,—,°Q.(P) because of (10).0

It is interesting to notice that (6) remains true under the same conditions for the wider
class of conditional distributions on the past occurring in Theorem 2.1. In fact, these
distributions were obtained as set-wise limits of Palm distributions P,, so any bound on the
values of ks(P;) for s < t remains valid for the wider class. This applies in particular to (9).
The remainder of the proof didn’t depend on the nature of P,.

From (7) it is clear that %,(P;) < k,(P) holds under (C) for all s < ¢ and for ¢ > 0 a.e. p.
We shall prove that the two measures actually agree asymptotically as s — 0.

THEOREM 4.6. Under (C),
limeo || &s(P: — P)| =0, ¢>0a.e.p.
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ProoF. Letting 0 < s < ¢ and splitting at D,, we get for A € %
EP(A | D,)p(t — D)

P = p(®) ’
SO
p(@#) | P.A— PA|<EP(A|D,)|p(t—D,) —p@#)|<E|p(t—D,)—p(t)
Now
pr= rp(-, x)dx1p, r—0,
133135 ]

so for fixed ¢, ¢ > 0 and s’ € (0, ¢) we may choose r > 0 so small that
p(t) _pr(t) <eg, E(P(t - Ds’) _pr(t - Ds’)) <e.

Now Ep (t — D,) = p(t) is independent of s, while

E[{(dt); & — & > 7]

Ep.(t — D,) = a

is non-increasing in s for fixed ¢ and r, so we get in fact
E(p(t— D;) —p(t— D)) <e, s=<s'.

Since p, is bounded and continuous and since D; — 0 a.s. as s — 0, we may next choose s”
=< s’ so small that

E |p-(t —D,) —p(t)) <e, s=s".
Combining these estimates, we get for s < s”

p@) || k(P — P)| < E | p(t — Ds) — p(t)]
=E(p(t— D;) — p-(t — D)) + E | p-(t — D:) — p-(¢)| + (p(2) — p-(8))
< 3e.0

Note that the last theorem is false without condition (C). In fact, letting » be such as in
Theorem 3.2, it is easily seen that k.(P;) L k(P) for t > 0 a.e. p and for all s € (0, t].

5. The renewal density. Motivated by the results in Section 4, we devote this final
section to a study of the continuity and asymptotic properties of the renewal density p =
dp/d\. We may restrict our attention to the case when AM = 0 a.s., since the existence and
continuity of p are automatic in Kingman’s case [10]. Note that p exists and is lower
semicontinuous whenever (C) holds. A simple sufficient condition for (C) is that

(1) lim, o u72 | log u |"'p2(u) = oo,

where

(2) vo(u) = f x2v(dx), u=0.
0

For general infinitely divisible distributions on R (which occur in Theorem 2.2), (2) should
be replaced by

vo(u) = o + f x2p(dx), u=0,

where o is the variance of the Gaussian component. To see that (C) follows from (1), it
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suffices to note that, for fixed ¢ > 0,

—log | i(w)|* = tJ’ (1 — cos ux) v(dx) = % twir(u)=2|logu|

when u is large enough, and hence that |fi (&)|° = 0(z™?) at infinity.

It is remarkable that so little is needed to ensure absolute continuity of the u’. (This
seems to have remained unnoticed, despite an extensive literature on related matters; see
e.g. [16].) Note that (1) requires only slightly more than » to be infinite. In fact, » is finite
if lim u™?|log u |"v:(u) = 0 for some r > 1, and infinite if limsup & 2va(u) = co.

Under (C), p admits a Stone [15] type decomposition:

LEMmMA 5.1. If (C) holds, then p exists and may be decomposed into p’ and p” = 0,
where p” is integrable while p’ is >0 on (0, ©) and continuous on [0, ©] with limit m™" at
infinity.

Here and below, we shall make use of the formula
®3) p=x8 +p' +p’+ .-,
where i = [§ p‘ dt. Note incidentally that the renewal theorem for p, i.e. 8,(p) —, A/m (cf.
e.g. [3] or [5]), follows immediately from (3) and the classical renewal theorem.

Proor. By [15], the second factor in (3) may be written in the form «x’ + k”, where
k” is finite while k’ has a continuous density which converges to m™. Since u' has a
uniformly continuous density, we may assume that p' < «’, in which case the density is
positive also. The above properties of k’ and k” are clearly preserved under convolution
with i, so we may take p’ and p” to be the densities of u*k’ and p*x” respectively. O

For the next result, we need to introduce the index
4) a = sup{r = 0: lim, o u"»;(u) = ®},

and to define d = [a@™'] — 1 whenever « > 0. Our « should be compared with the classical
index B of Blumenthal and Getoor [2], which is given by

1
6)] B= suP{r: f x"v (dx) = °°} = sup{r: limsup,o &' »;(u) = o).
0

The general relation is 0 < a = 8 =< 1, though « and B8 will often agree in practice. Note
that a > 0 implies (1), and hence also the existence of p.

We shall further define the singularity set S of v to be the set of all ¢ € [0, ] such that
» has no bounded density in any neighbourhood of ¢. Note in particular that 0 € S, since
v is assumed to be infinite. Put Sy = {0}, and define S;, S, - - - recursively by the relation
S, = S.-1 + S (addition being in the pointwise sense).

THEOREM 5.2. If a > 0, then p exists and is further continuous on [0, ©]\Sa.

Note in particular that p is continuous on (0, «] if a > %, or if « > 0 while » has a
bounded density on [e, ®) for every £ > 0. Furthermore, p (t) — m™" as t — « whenever a
> 0 while » has a bounded density at infinity.

ProoF. Defining «’, k” and p as before, write
(6) o=+ x(u sk’ + k"*u').

Here k' and p' have uniformly continuous densities, and since this property is clearly
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preserved under convolution with finite measures, it is shared by the second term in (6).
Moreover, the density of the second term tends to m ' by the classical renewal theorem.
It is thus enough to prove the continuity assertion for ji in place of p. Note that, since the
densities of u‘ are uniformly equicontinuous for ¢ bounded away from zero, the continuity
of p on a closed interval is equivalent to uniform integrability at £ = 0 of the corresponding
densities. This equivalence will be used repeatedly without further comments.

Let us first assume that » is restricted to some finite interval (0, b]. Starting from

i) = J e “ul(dx) = exp{— tj 1- e‘“")v(dx)},
0 (1]

we get by formal differentiation under the integral signs

(7) f xe” p‘(dx)=tﬂ‘(u)f xe™ y(dx),
0 (]

which may be justified for z > 0 by Fubini’s theorem, since both sides of (7) are continuous.
By analytic continuation and dominated convergence, (7) extends to purely imaginary u,
and in particular we get the estimate

=< tme ",

j xe™ p'(dx)
0

where ¥(u) = u?r,(1"")/3. Since
kav(dx) = b+ f xv(dx) =b"'m, k=1,

we get in the same way by repeated differentiation

=W 21':=1 C‘nk(tln)kbn_k

@)

f xneiuxut(dx)
0

for some constants c.. € N. To see this, note that the factors ¢ and the integrals [ x*e™*.
v(dx) always come together, and that the sum of the exponents of x in the latter integrals
equals 7 in each term. As for the coefficients, it is easily checked that c,1 = ¢.. = 1, and
that

Cnithk = RCnp + Cnp-1, NEN, 1<k<n.
It follows that
Cop=eVED peN, 1<k=n.

Indeed, this is obvious for 2 = 1 and % = n, and it follows easily by induction for n = 2 and
1 <k = n. Thus the sum in (8) is bounded by a geometric series with quotient tme™!/b,
and we get the estimate

9) f x"e" u'(dx)| = 2tmb" e W t< be™"/m.
0
We now define
n=n()= [logi], t<t E.i’
mt me
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and let p’ be the measure on R. given by

t x n()
p’ (dx) = j (—) p'(dx) dt,
b \c
where ¢ = be®. By (9) we get

n(t) 2 t
5’ <._ et Ptk m(em d+1_ —ty(u)
p’(u)] dt = 7\ t*le dt
0

Jomfem\! [ 67+ 1)

T b\ b (d+2) (\I/(u))d+2
Since d + 2 = [a”'] + 1 > a7, it follows that 5’ is integrable, and hence that p’ has a
uniformly continuous density. The densities of the measures (x/c)"“u’ (dx) must then be
uniformly integrable at ¢ = 0, and so the same thing is true for the densities of u‘ on
[¢, ). Thus ji has a continuous density on [c, ») which tends to zero at infinity.

Next assume that » = »’ + »” where @ = »”R.. < «, and write p’*, Y’ etc. for quantities
based on »’ in place of ». Note that » and »’ have the same index . The decomposition of
v induces a division of the gaps into two types, and on the local time scale, the gaps of type
2 form a Poisson process with intensity a. Thus gap number n occurs at a local time with
probability density a"t*'e~*/(n — 1)}, t = 0. Using the regenerative property and the fact
that the type 2 gap sizes are independent of the remainder of the process and mutually
independent with distribution »”/a, we get for any ¢ > 0

€ € n € e—t
f “t dt = f [L dt + Zn-l +w-j tn—le—at<#/t*f ‘u/s ds) dt*(v”/a)"
(10 o e o

=Yn-o —j t"u't dtxp”"

By the uniform integrability argument, the asserted (uniform) continuity on the left for &
= 1 will follow, if we can prove the corresponding (uniform) continuity on the right for ¢
= 1. But for ¢ = 1, the characteristic function of the sum over n > d is bounded by

)i _ l (d+ 1)

and this being integrable, it follows that the corresponding density is uniformly continuous.
Now let »” = »” be such that »” — »” =< rA for some r < o, and conclude by induction
that

v"*=9»"" + na""'r\, n€ N.
The sum up to d in (10) is then bounded by

1 ) n. 7/ ”mn nan_lrsn*-lx
(11) A mjo 't dexr” ™ + zg-ow
Here the density of the second sum is bounded by ree®/a, which tends to zero as ¢ — 0, so
it is enough to consider the first term in (11). Suppose that »’ is restricted to (0, b], and
conclude as above that all the integrals in (11) have uniformly continuous densities on
[¢, ) where ¢ = be®. This settles the behavior at infinity, and it also shows that the density
must be continuous outside the set [0, ¢] + (A,)4, Where A, is the support of » — » A rA, and
(A;)q is defined as S; by iterated addition. Since (A4,)q is closed and ¢ can be made
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arbitrarily small, the discontinuity set must in fact be contained in (A,)q for any r > 0.

It remains to prove that N,(A4,)s = Sa. For d = 1, this is obvious from definitions, and so
we get in general Sy = (N, A,)a C N, (A,)a. Suppose conversely that x € N.(A,)q, and
choose x,; € A, such that x = x,,; + - -« + %x»,q for each n. Next choose a subsequence such
that x,; — some x; for each j, and note that x, EN A, =S, wherex =x; + -+ + x4 € Sy,
as desired. [

Theorem 5.2 is nearly sharp in the following sense. Put

a = sup{r = 0: lim, o u” f (1—e™*)p(dx) = °°},
()

and note that a = o’ = 8. (All three indices will agree when » is sufficiently well-behaved.)
Define d’ = [a’™* —] — 1, and note that d’ = d when @’ = a and a~' & N. Further define
So= {0}, Si= {0} U {x> 0: v{x} > 0}, and recursively S, = S;,_; + S1.

THEOREM 5.3. If p exists at all, it is discontinuous on Sy-.

Proor. By the definition of o,

o n+1
lim inf, u_l{j 1- e"‘")v(dx)} =0, n=d’,
0

and since

© o —n-1
f t*i'(u) dt = n'{f a- e"‘")v(dx)} ,
0 0

the measure [¢° t"u’ dt can have no bounded density near the origin when n < d’. Arguing
as in the preceding proof, we may conclude that p, if it exists, must be unbounded on the
right of every atom of ([¢, ®)»)” for ¢ > 0 and 0 < n =< d’, and hence discontinuous on S
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