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Let {X(z), t € [0, »)} be a subordinator whose Lévy spectral function
H(x) satisfies the inequality

cix”* < —H(x) < cox™,

for all x > 0, for a a € (0, 1) and for certain constants ¢; and ¢z, 0 < ¢, < ¢z <
. In this paper we obtain (in the M, topology) the set of all almost sure limit

functions of the sequence
1

(n~"/"X(nt)) 108 log n te[0,1],n=3.

Introduction. Let {X(¢), ¢ € [0, »)} be a subordinator and let at any fixed ¢, the
characteristic function of X(¢) be given by

fiw) = eXp{t(f (e™ —1) dH(x))}, t € [0, ),
0

where H is the corresponding Lévy spectral function. Assume that the process {X(t), ¢t €
[0, ®)} has been defined over a probability triplet (2, %, P) and that there exist an a, 0 <
a<1,c and ¢z, 0 < c¢; < ¢z < o, such that for all x > 0,

(1) cx < —H(x) < cox™
Consider the version of X(¢) with its sample functions in D [0, ») and define
(2) Z,(t) = (n™*X (nt))/1o8loen

te([0,1],n=3.

In the space D = D [0, 1] of all real valued functions on [0, 1] that are right continuous
with finite left limits, let D; = D [0, 1] be the space of all functions which are non-negative
valued and non-decreasing and let D, = D; [0, 1] be the space of all elements of D; which
are step functions with at most countably many jump points.

For an a € (0, 1), which is specified, define

(3) A={x€D,1=x(t)<e” for 0<t=<1}
and

@ K= {x€ AN Dy;[[}1x(t) < e whenever
() <x)<:--<xtr), O0<th<b---<t=Lk=1]2...}.

In this paper we establish, under M; convergence, that the sequence (Z,) is relatively
compact with probability one (w.p.1) and has K for the set of all its almost sure limit
functions.

When H(x) = ¢ x™%, 0 < a < 1, the process X(¢) turns out to be a stable subordinator.
For such processes, M. J. Wichura (1974b) has presented a functional law of the iterated
logarithm. A comparison of the result of Wichura is made in Remark 2 of our paper.
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PRELIMINARIES, NOTATIONS AND LEMMAS. A sufficient condition for a sequence (x,),
xn € D to be relatively compact in the M; topology is that

(5) lim sup,_.. x,(1) < oo,

For x, € D, n =1, and x € D, we say that x,, M x (x> xin M, topology) if and only
if for each ¢ in a dense subset of (0, 1), lim,_,. x,(t) = x(2).

Notice that K is closed and that sup.cx x(1) < . Hence K is a compact set in D;.

Let {Y(¢), t € [0, )} be a stable subordinator with the Lévy measure u[x, ©) = cx™%, ¢
>0, x> 0. Set J,(t) = Y(¢) — y(t—).

For a non-decreasing (non-increasing) function f define f™* by f7!(y) = inf. {f(x) =
Yy = inf. {f(x) =y)}).
Throughout the paper, let R and N (integers), ¢ and ¢, with or without a suffix, stand for
positive constants; let i.o. and a.s. mean ‘infinitely often’ and ‘almost surely.’ For any
positive number x, let [x] denote the greatest integer < x.

LEMMA 1. The process
&(t) = Yosvse (—H) N (e(Ju(v)) ™), t € [0, «),

s a subordinator with the Lévy spectral function H.

ProoF. Define g(x) = (cx™')"* and h(x) = g(—H)(x), x > 0. Observe that g7'(x) =
cx™* h™'(x) = (~H)'g"'(x) and that A(x) and A7!(x) are non-decreasing functions of x.
With the A introduced, one can write

¢(t) =Yoo=t A'(Ju(v),  tE]O, ®).

As h7'(0) = 0, ¢(¢) becomes a non- negative valued process in ¢ with non-decreasing
sample functions. From the fact that Y(t) has stationary independent increments, ¢(£) can
now be claimed to be a subordinator. Let » be the Lévy measure of ¢(t); A = A; X A, be
a subset of the product space [0, ©) X (0, ) and let N(A) be the number of points ¢ such
that {(¢, A"'(J,(¢))) € A}. Then N(A) is a Poisson random variable (r.v.) with mean A(A;)
X v(Az), where A(A;) is the Lebesgue measure of the set A4;.

The number of ¢ with {(¢, A7'(J,(£))) € A} is the same as the number of ¢ with {(¢, Ju(2))
€ A;1 X h(A5)} where h(Az) = {h(x); x € Az}. Thus N(A) is a Poisson r.v. with miean A(4,)
X p(h(Az)). On comparison one gets A(A;) X »(A2) = A(A,) X p(h(Az)). This in turn implies
that »[x, ) = p[A(x), ©) = c(h(x))™ = —H(x), x > 0. The proof of the lemma is now
complete.

LeMmaA 2. Let (y.) be a sequence of positive numbers such that y, — © as n — © and
let 0 = t, < t; < . Then there exist constants 0 < c3 < ¢, < % such that

cs(tz — t1) < lim inf,,_,.. yaP(X(nt;) — X(nt,) = n'’*y,)

=< lim sup,-. ya P(X(nt;) — X(nt,) = n"y,) < ci(tz — t,).

Proor. Recall that the spectral function H satisfies the inequality ¢;x™® < —H(x) <
c2x % x> 0.

Let {Y:(t), t € [0, )} be a stable subordinator with the Lévy spectral function pui(x) =
—=c1x™% x > 0. Then the fact that —H(x) < — pi(x) implies that (—H) (x) = (—p1) (%),
which in turn implies that

(H) ey ()™ = (=) ey (0)™) = I, (1), x>0,

where J,(x) = Yi(x) — Yi(x—). By Lemma 1 notice that the r.v. Y., =v=ni,(—H) ™"
(1 (Jp1(v)) ™) has the same distribution as X(nt;) — X (nt,). Hence for any y > 0,
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(6) P(X(nt:) — X(nt1) = n"*y) = P(Yi(nt;) — Yi(nt:) = n'"y).
But
P(Yi(ntz) — Yi(nty) = n'*y,) = P(Y(1) = ( — t1)"*y) = cs(te — t1)yn",

for all n = N;.
Consequently, for every n = N;,

(7) P(X(nt:) — X(nt)) = nV%y,) = ci(tz — t1)y:*.

Similarly, let {Y»(¢), t € [0, )} be a stable subordinator with the Lévy spectral function
p2(x) = —c2x™*, x > 0. Noticing that —H(x) < —u2(x) and making slightly modified
arguments in the steps used in obtaining (7), one can show that for any y > 0,

(8) P(X(nt;) — X(nt)) = y) = P(Ya(nty) — Ya(nt)) = y).

Again, since P(Ys(nt;) — Ya(nt)) = n'*y,) = P(Ya(1) = (t2 — t:)"%y,) < calts — t:)y°, for
all n = N; (for some N, > 0), along with (8) we have

9) P(X(nt:) — X(nt;) = n'?%y,) < cu(t — t1)ya°%,
whenever n = N,. The proof is complete by (7) and (9).

LeEmMMA 3. For any € > 0 and for any t > 0,

(10) P(Z.(t) =eci0.) =0
and
(11) P(Z,(t) = e/~ j0.) = 0.

Proor. Define the integer sequence n, =[e”],r =1, 2, ... and the events
A, = {X(nt) = n'*(log n)™}
and
B, = {X(n.t) < n}{i(log n,)™}.
Observe that
(12) P(A,i.0.) = P(B;io0.).

Ya(log n) .
By (6) we have P(B,) = P{Y:(n,t) =n{5(log n,)} =P{ Y:i(1) = E——"%(ri%i)—} . Recalling
from Theorem 1, Feller (1966, page 424), that(e* ") P(Y(1) < x) — 0 as x — 0, one can find
an €; > 0 such that

nk% (log n,)~*
P{ Y1) = TX (il—/“)} =< exp(—r™9).

Hence Y72, P(B;) < . (10) is immediate by an appeal to the Borel Cantelli lemma and
(12).
To establish (11), define,

U, = {(X(n,1t) = n}*(log n,) 9%},  r=2.

Then by Lemma 2, there exists an R; such that P(U,) < ctr~"*? for all r = R,. By the
Borel Cantelli lemma we now get

(13) P(U,io0.) = 0.

For all nin n, < n < n,+1, (13) implies that



ITERATED LOGARITHM FOR SUBORDINATORS 1015

X(nt) X(n,.1t)

= =1as.
n’/"(log n)(l+e)/a n,’/"(log nr)(l+e>/a ’

which in turn implies (11).

THEOREM. The sequence Z,(t) = (n~""X(nt))"/"s'¢" ¢ € [0, 1], is relatively compact
with probability one and has K for the set of all its limit functions.

Proor. For each n = 3 and for each w € Q, Z,(¢, w) is nondecreasing in t. Hence all
the sample functions of Z,(¢) are located in D;. By (5) and (11) the sequence (Z,(-, w)) is
relatively compact over a set of probability one. Also, Lemma 3 establishes that the limit
functions are bounded and they take values in [1, e'/*].

For any € > 0, let

Ac={xE€D,e“=x(t)=e" for 0<t=<1)
and
K.={x€A.NDy, [k x(t) =e"™*  whenever
x(t) < x(t2) «-- < x(tz), o<ti<t .- <tr=lLk=12...}.

Notice that A C A., K C K. and K, C A.. By Lemma 3, our search for limit functions is
restricted to the set A.. We first establish that no element of A, — K. is a limit of (Z,). This,
along with the fact that the closure of A, — K. is compact, implies that P(Z, € A. — K. i.0.)
=0.

Let ¢ = 1 be any arbitrary integer and let 0 < ¢, < £, -.- < ¢, = 1 be ¢ arbitrary
continuity points of a function x € A.. Then a necessary and sufficient condition for x to
be a limit of the sequence (Z,) is that

(14) P{NL, (Z.(t) € (x(t) — 8, x(t;) + §))io} =1,

for every § > 0, for all ¢ = 1 and for all arbitrary points 0 < ¢, <#, - -- < t, <1, which are
continuity points of x.

If x € Ac — K., then one can choose either (a) continuity points 0 < ¢, <t --- < ¢, <1
of x such that 1 < x(¢;) < x(&) - - - < x(t,) and L (x(t)) > e'/*, or (b) a continuity point
t such that x(¢) < 1. In the case of (b), x fails to be a limit as a consequence of Lemma 3.

In the case (a), with no loss of generality, let x(¢) =e%, j=1,2 ... g. From the fact
that [[7, x(t) > e"/* we have $%_, d, > 1/a. Let dy = 0. We now claim that x fails to be a

limit function of (Z,) by establishing that for an €; > 0 with €, < min;<,<, (d'—_zd-:'-) and

with Y%, d; — e19 > 1/«

(15) P{NL, (Za(t) € (€%, e¥*9)) 10} = 0.
1
log X(nt,)) — —logn
. a .
ie. P{O;LI ( Tog log 7 E(d, —e€,d + 61))1‘0.} =0.
log X(nt) — 1 log n
Put Wa(t) = a ., te[0,1], n=3,
log log n

and notice that it satisfies the relation, W,.(t) = @ Wi(bmnt) + Cmn, t € [0, 1], where

log e

) =

L
log log n m aloglog n
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If m, n — « in such a way that m/n — 1 then observe that
Ann— 1, bpn— 1 and ¢p.— 0.

Hence by Lemma 5.2 of Wichura (1974a), (15) is established once we prove that over the
integer sequence N, = [exp(r/log r)],r = 2,

(16) P{NL, (Zn,(t) € (¥, e ))i0} = 0.
Define {, = 0. Then

P{NL, (Zn,(t) € (e¥, ™))}

P{NL,(X(N:t) € (NY*(log N,)'"<, N}*(log N,))"“*)}

= P{NL,(X(N:t) — X(N,t;-1) = Y% NY/*(log N,)“~)}.
By Lemma 2, one gets forallr = Rand forallj=1,2 --- g,
P(X(N,t)) — X(N:t-1) = % Ny/*(log N,)4™") < c1(log N,) =4~
Hence, for all r = R,
P(N{., (Zn(6) € (€979, d¥*)} < (callog N,)) B 977907 < ¢gr=te,

for some € > 0.

Now (16) follows by an appeal to the Borel Cantelli lemma. Below, we proceed to show
that every x € K is a limit function of (Z,).

Foranx € K,let0<t, <t --- <t, <1 be any ¢ continuity points and let s denote the
number of distinct members of the collection {1, x(¢1), x(¢z) - -+ x(¢;)}. When s > 1, let i
be the smallest j with x(t)) > 1 and let_i» be the smallest j(j > 1) for which x(;) > x(¢;,)
(if it exists) and so on. Define x(t) =%, j = 1,2, - -+, ¥ and write x(¢;,) = et 0<d <d;
.+. < ds = 1/a. Define the integer sequence m, = r’, r =1, 2 -.. and set t, = &(r) =
m._itv/m, . Then (14) is established once we prove that for 0 < € < d,/2,

(17 P(NL, (Zn(t) € (e ™) 10} = 1.
P{NL, (Zn (t) € (e¥7%, €579) i0)
= P{NL, (X(m,t) € (m}*(log my) &9, mY*(log m,) @+ i0}.
For the € fixed above, there exists an R such that for all » = R, the event
(X, (to) = mi/*(log m,)*?,
N5y (X(met;) — X(meti 1) € (my/*(log m,)%2, m}*(log m,)%*/?)),

N&,  (X(mt) — X(meti1) < mY*(log m,)*}
Tl g

C (N1 (X(mety) € (mY=(log m)¥~<, mY*(log m,)¥*))}.

Hence (17) is established if we show that

(18) P{X(m,to) = m}*(log m,)’*i.0.} =0
and
(19) P{N;_, (X(m,t;) — X(m,t,—1) € (m}/*(log m,)*"<%, m}/*(log m,)%*/%),

Niy---i, (X(mot)) — X(motj1) < my/*(log m)?) i} = 1.

By Lemma 2, there exists an R; such that for all r = R;,
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P{X(m.ty) = mY *(log m,)'%}
= P(X(m,-1t;) = mrl'/a(l‘)g mr)s/z)
< Cim,—1(m.(log m,)«/?) ™t < Cor~ 0+,

for some €; > 0. Consequently (18) follows by the Borel Cantelli lemma.
By (8), there exists an R, such that forallr = Ry and forallj, 1 <j<q,j# i1,6s -+ is

P(X(m.t) — X(m,t,—,) < mY*(log m,)"?)
(20) =1 - P(X(m,t) — X(m,ti—1) = mY=(log m,)"?)
=1 = P(Ya(mst) — Ya(miti-) = m,/*(log m)**) = 1/2.
Forj =i, i, - -+ i, one can find an Rs such that for all » = R;,
(21) : P(X(m,t;) — X(myt, ) € (mY*(log m,) ™/, m¥*(log m,)4**/?)}
= P{X(m,t;) — X(mt;_) = m;*(log m,)'"<?}
— P{X(mt;) = m}*(log m,)*</*}
= Ci(rlog r)~% </« — Cy(r log r)~&*e/2
= Cs(r log r)™ /%,
Now (20) and (21) imply that for all » = R = max(R;, Rs),
PN, (X(mt;) — X(myt; ) € (m¥*(log m)%~/?, m¥*(log m,)4+*/?))

(22) Nj-1  (X(myt) — X(mt;1) < mY*(log m,)?)}

j,‘ll,;z...

= Cy(rlog r)~Zm1 @~ /32 > op=ti-en

for some € > 0. (22) along with the fact that X(m,t)) — X(m.t;.1),j=1,2, -+~ q;r=1, 2
- - » are mutually independent, enable us to apply the Borel Cantelli lemma and claim (19).

REMARK 1. Here we introduce an important class of subordinators which come under
the scope of our paper. Let X(¢) be a subordinator with

(23) H(x) = —cx™{1 + Y&, aicos wlog x + Y%, b;sin vilog x}

x>0, where a,0<a<1,¢>0,a;, b;and v;,i =1, 2 - .. k are real constants such that H(x)
is non-decreasing, xH'(x) is non-increasing and xH(x) € L(—1, 1). Then for any fixed ¢ >
0, the random variable X(¢) is said to be a member of ‘class P, for some integer r, 0 < r
=<2k + 1 (for a description of P, see Zinger (1965)). This process X(¢) can well be called as
a subordinator of class P,. It is easy to see that (23) satisfies (1) and hence our result holds
for the subordinators of class P,.

REMARK 2. Let (X,) be a sequence of independent random variables with a common
positive stable distribution function of exponent o, 0 < a < 1, and let S, =Y} X;,n=1.
Then following the lines of proof of our theorem, one can show that the sequence

{£a(2) = (728, VElE"Y ¢t E[0,1), n=3,

is relatively compact with K as the set of all its limit functions. It is interesting to note
that, with a different sequence (a,) of normalising constants, M. J. Wichura (1974b) has
established that the sequence {n,.(t) = %t—] is relatively compact with the limit set K,,.
For a description of (a,) and K, see Wichura (1974b). Thus there are two functional laws
of the interated logarithm when the summands are positive stable. The determination of



1018 R. P. PAKSHIRAJAN AND R. VASUDEVA

the limit functions of (£,) is based on P(S, = n'/*x) for large values of x and that of (1,) is
based on P(S, < n'/*x) for x near zero and the two limit functions are not comparable.

REMARK 3. Let (X,) be a sequence of random variables described under Remark 2.
Define Y.(¢) = TV (1 — k/n)?X,, p = 0, t € [0, 1] and W,(2) = (n”VY,(t)) /55" ¢ €
[0, 1] and n = 3. It is interesting to note that the sequence (W,) is relatively compact and
has the set K for the set of its limit functions. This can be established by proceeding with
slight modifications in the proof of our theorem. The details are omitted.
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