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LARGE DEVIATIONS OF GOODNESS OF FIT STATISTICS AND
LINEAR COMBINATIONS OF ORDER STATISTICS

By PiIET GROENEBOOM' AND GALEN R. SHORACK?

University of Washington

Asymptotic behavior of large deviations of empirical distribution func-
tions (df’s) is considered. Borovkov (1967) and Hoadley (1967) obtained results
for functionals continuous in the sup norm topology on the set of df’s.
Groeneboom, Oosterhoff, and Ruymgaart (1979) extended this to functionals
continuous in a stronger 7-topology. This result is now extended to functionals
that are 7-continuous only on a particular useful subset of df’s. Applications
to the Anderson-Darling statistic and linear combinations of order statistics
are considered. We begin by correcting the work of Abrahamson (1967); from
this the role of the key weight function y/(¢) = —log ¢(1 — t) is discovered. It
is then exploited to the end indicated above, and it is considered as a weight
function in tests of fit.

1. Introduction and summary. Let X;, ..., X, be iid F with empiriéal daft F,. We
consider weight functions ¢ that are finite, positive and continuous on (0, 1). The weighted
Kolmogorov-Smirnov statistics with weight function  are defined by

K* = K}, = sup; n"*[F,(x) — F(x)]¢(F(x))
(11) K~ = Ky = sup. n'?[F(x) — Fa(x)[Y(F(x))
K=K,,= K;,v Ky,

and the weighted Cramér-von Mises statistic is

(1.2) C=Cyn= f n[F,.(x) — F(x)]%*(F(x)) dF(x).
These statistics are often used to test the null hypothesis that F is the true df of the X’s.

If £ is uniform (0, 1), then X = F~'(§¢) (where F7'(t) = inf{x:F(x) = t}) has df F. By
this inverse transformation we may suppose that

(1.1) K* = sup. U.(F(x))¢(F(x))

(1.2)) C= f UL(F(x))y*(F(x)) dF(x)

where T, is the empirical df of n independent uniform (0, 1) rv’sé;, - - - , &, and
Un(t) =n"?[[.(t) —t] for 0=<t=<1

is the associated empirical process. We note that
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972 PIET GROENEBOOM AND GALEN R. SHORACK
(1.17) K* = supo<i<1 Un(8)Y(t) if F is continuous

1
(1.27) C= J U2(t)y(t) dt if F is continuous.
0

We now assume that F' is continuous.

The evaluation of Bahadur efficiency of tests based on such statistics requires a large
deviation result for (1.1”) and (1.2”). It is closely linked to Chernoff’s theorem for
independent Bernoulli trials; that is,

(1.3) n"'log P(f,,(t) =t + a) - —f(a, t) from below as n — o,
for 0 <t <1, a = 0 where (in the notation of Bahadur (1971))
(a+t)loga+t+(1—a—t)logl—L_t if 0sa<1-t¢
(14) fla,t) = t 1-t¢
o if a>1-t
This function is given in Table 1. We now define
(1.5) &u(a) = infoc<1 fla/y(?), t).
We consider g; and g; in Table 2, where
(1.6) g =g, with i (¢)=1 and .(t) = —log[t(1—1t)].

THEOREM 1. Let X1, Xs, - - - be iid with continuous df F. Let  denote a finite, positive
and continuous function on (0, 1) that is symmetric about t = % and for which
lim,_o Y(t) exists in [0, ). Letting K* denote any of K*, K~ or K, we have

(1.7) lim n~'log P(K%.=n"%a) = —g,(a)
for each a = 0. Moreover, (when  puts too much weight in the tails)
(1.8) lim inf,o (log 1/t)/Y(t) =0 implies g,(a) =0 forall a=0.
REMARK 1. The Theorem (1.7) still holds if the assumption of symmetry is dropped
provided we replace g, by g7 where g7 is any of

(1.9) gr =g, of (1.5), gy=infocsc: fla/Y(t),1—t), &L =87AE&;-

REMARK 2. The function y»(¢) = —log(t(1 — ¢)) of (1.6) satisfies Theorem 1. Moreover
(1.10) fla/ya(t),t) > a ast|Oorast] 1,
and the positive minimum of this function will be attained in (0, 1). In fact
(1.11) 8u,(a) ~ e%a®/8 asal0,

while the point of minimization ¢, converges to a solution of (1 — t) = exp(—2) as a | 0.
Moreover, g,,(a) — © as a — ® (see Section 4). The function y, (¢) = 1 of (1.6) also satisfies
Theorem 1. It is known from Lemma 5.1 of Bahadur (1971) that

(1.12) gy (a) ~2a® asal0
and that this function approaches © as a 1 1.
REMARK 3. The functions ¥s(¢) = [¢(1 — ¢t)]° with & > 0, satisfy Theorem 1 and (1.8);

thus their g functions are identically zero. Intuitively, these functions are too severe
because they put too much weight on the extreme order statistics; we now demonstrate
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TABLE 1.

a+t l1—a-—t
+(1—a—t)log—

fla, t) = (a +t) log— =7

90 .0167 .1054

.80 .0084 .0367 .2231

.70 0062 .0254 .1163  .357

.60 0053 .0216 .0915 .226 511

50 0050 .0201 .0823 .193 .368 .693

40 0051 .0204 .0811 .184 .335 .551 916

.30 0058 .0226 .0872  .192 .339 534 794 1.20

20 .0074 .0282 1046 .223 .382 .583 832 115 1.61

10 0122 0444 1537 311 511 751 1033 136 1.76 2.30

.05 .0206 .0702 .2251 434 .688 983 1318 170 213 265 3.00
01 0588 .1690 4611 815 1217 1661 2144 267 325 3.89 425 461

t/a .05 .10 .20 .30 40 .50 .60 .70 .80 .90 95 99

TABLE 2.
&1(a) = 2a% g:(a) = e’a’/8 = .9236a”
Interpolate linearly in columns. See (1.6) for
definition of g, and g..

a gi(a)/é1(a) g:(a)/g:(a)
.00 1.0000 1.0000
.01 1.0000 9917
.02 1.0001 9835
.03 1.0002 9755
.05 1.0006 .9596
.07 1.0011 9442
.10 1.0022 9219
12 1.0032 .9076
.15 1.0051 .8868
.20 1.0091 8541
.25 1.0144 .8237
.30 1.0210 .7953
40 1.0390 .7440
.50 1.0646 .6989
60 1.1009 6591
.70 1.1540 .6236
.80 1.2394 5918
.90 14211 5632
97 1.9342 —
1.00 5373
1.50 4368
2.00 .3679
3.00 .2790
this. Let £,.1 < - - - < £,., denote the order statistics of uniform (0, 1) rv’s &, -- -, &. Then

[K:I:;.n = nl/Za] . [l/n = a(gnzl(]- - gn:l))‘s + gnzl]
D[l/n=atd +&.: and & =<1/(2n)]
D [&1 = (2n)' A 2ra)?]1 D[4 = (2n)" A (2na)),

and even the probability of the smallest event does not go to zero exponentially fast since
lim n~'log((2n)™" A (2na)™"%) = 0.
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Asymptotic distributions of truncated or restandardized forms of Ky, , . are computed
in Jaeschke (1979) and Eicker (1979). Again, truncation or standardization is needed to
avoid too heavy weights on the extreme order statistics.

CoROLLARY 1. If Xy, X,, --- are iid with continuous df G and if
(1.13) K7%,./n'? 5 ¢(G) as. asn— ©

for some ¢(G) = 0, then the exact Bahadur slope of the K},.-test for testing against the
alternative G is

(1.14) 2846 (G)).

REMARK 4. Abrahamson (1967) states a similar theorem. However, her proof fails (the
part when i = 1 is incorrect) in case {/(t) — ®, as ¢t | 0 or as ¢t 1 1. Moreover, her conclusion
is incorrect, because (as in paragraph two of her proof) she claims that f(a/y (), t) — o as
t | 0ort11; whereas in the case y(t) = (¢(1 — t))~'/% she considered, f(a/y(t),t) > O ast
1 0 or ¢ 1 1. Thus, her basic expansion of her log p}(€) following her (3.16) is incorrect, and
also her Table 1 is incorrect.

We will now relate Theorem 1 to some papers in the literature that consider the Sanov
problem, and we will present our second theorem along these lines. To this end, we

-introduce the following notation. Let D denote the set of all df’s on the real line R. For F,
G € D the Kullback-Leibler number K (G, F') of G with respect to F is defined by

f log (%) dG if GF
(1.15) K(G,F) =< 7R

© otherwise.
For a set  of df’s we define
(1.16) K(Q, F) = inf{K(G, F):G € Q).

REMARK 5. For ¢ as in Theorem 1 or Remark 1, define Tr7:D — R by

(1.17) Tr(G) = supser | G(x) — F(x) | (F(x)).
For a =0 let
(1.18) Q0 = {(G:Tr(G) = a}.

In Section 4, it is shown that if ¢ is bounded, then
(1.19) lim n~'log P(K},. = n'?a) = lim n™" log P(Tr(F,) = a) = — K4, F) = —g,(a)

follows from Theorem 3.1 of Groeneboom, Oosterhoff and Ruymgaart (1979) (henceforth
referred to as GOR(1979)). This also follows from Hoadley’s (1967) Theorem 1. That the
conclusion (1.19) holds more broadly follows from (1.7) and (1.25) below.

REMARK 6. As a matter of curiosity, we note that Theorem 1 implies that Sievers’
(1976) conditions are satisfied. In fact, the proof of Theorem 1 shows that the event {ﬁ,,
€ Q,} is contained in the union of eventsU#:; {ﬁ',, € U}, where k., = o(n), U;, is a convex
set of df’s and lim inf, .. K(U;n, F) = K (0, F). Using this fact, one can show that Sievers’
(1976) Condition II is satisfied. However, it seems difficult to prove this directly (i.e.
without essentially repeating the proof of Theorem 1).

Hoadley (1967) established the Sanov result (1.18) for certain functionals T:D — R
uniformly continuous in the sup norm topology on D. GOR (1979) extended this to certain
functionals continuous in a stronger 7-topology. This result is now extended to certain
functionals that are 7-continuous only on particular subsets of D. (The r-topology is
described in detail in Section 4 just after the proof of Corollary 1.)
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THEOREM 2. Let F be a continuous df on R and let T:D — R be t-continuous on
(1.20) D,.= {G € D:dr(G, F) = m}, where dr(G, F) = sup:er | G(x) — F(x) |¢2(F (x))

for each m > 0. Let

(1.21) Q. ={GeD:T(G)=a)},
and suppose K (,, F) < . Then
(1.22) lim sup,_.» n~" log P(T'(F,) = a) = — K(Qa, F).

Moreover, if the function t — K (,, F) is right continuous at t = a and u, — 0 then
(1.23) limuo " log P(T(F,) = a + u,) = —K (R, F).

There are several important facts that prove useful in the applications and throughout
the proofs. To avoid the impression of circular arguments, we prove these in this section.

PRroPOSITION 1. Let D,, and dr be defined as in (1.20).
(i) For m = mrg sufficiently large
(1.24) K®QN D, F) =K, F) for any F and Q having K&, F) < .
(ii) For continuous F any y positive on (0, 1),
(1.25) K(Qa, F) = gy(a) where Q. is defined as in (1.18).
(ili) Suppose F is continuous and G, are arbitrary df’s; then
(1.26)  lim supor 2K(G,, F) < B implies lim sup,or~'dr(G,, F) = (8B/e%)'2.

ProOF. (i) Since ty»(#) is bounded for ¢ < % and likewise (1 — t)y»(¢?) is bounded for ¢
= %, we have for all large m that

D;, C {G € D:suppw=1/2G (x)y=(F (x)) = m/2}
U {G € D: supr=1/2(1 — Gx)a(F (x)) = m/2}.

Also for m sufficiently large, we have

SUpr=1/2G (x) Yo(F (x)) = m/2 implies (K(G, F)) = m/4
(and a similar implication with 1 — G(x)) since

K(G, F) = G(x)log(G(x)/F(x)) + (1 — G(x)) log(1 — G(x))/(1 — F(x)).

Thus for some large m; we have that

K(G, F)=m/4=K(Q, F) +1 whenever dr(G, F)=m.

(ii) Since_FOF_1 is the identity for continuous df’s F, we can define the df G, on R so
that the df G, = G,° F~! on the unit interval has the uniform on intervals density

(@) &i(u) = {%:1+—a{;PitE;i(t)]/(l — 1 g ust
Note that G, € Q, since Tr(G:) = a, and note that

(b) K(Gy, F) = f(a/y(2), ¢).

Thus

(c) K(Q,, F) < inf, K(G,, F) = gy(a).

To obtain the reverse inequality, we note that for € > 0 there exists a df G € Q. for which
(d) K(G% F) < K(Q., F) + €.
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Now G € Q, implies | GX(t.) — t.| = a/yY(t,) for some ¢, in (0, 1). But the df G that is
linear from (0, 0) to (t., G#(t.)) to (1, 1) has the smallest Kullback-Leibler number, when
compared to the Uniform (0, 1) df, among all df’s that pass through the point (¢,, G*(t.));
and its information number is = K(G,, F) (note that G¢ = G, when G¥(t.) — la
= a/Y¥(t,)). Thus for e > 0 :

(e) K(Qo, F) + €= K(G3, F) = K(G,,, F) = f(a/Y(ta), t.) = g (a).

(iii) Assume there exist df’s G, contradicting (1.26), so that ¢, = r 'dr(G,, F) satisfies
lim sup ¢, > (8B/e%)'% Then with . as in (1.18) we have

B = lim sup r°K(Gy, F) = lim sup r°K(Q,, F)
(1.27) = lim sup r%g,(rc;) by (1.25) for any such ¢
= lim sup r%e%r%c2/8 for g, by (1.11)
>B
providing the necessary contradiction. O
Results analogous to (1.11) for other y’s produce, in conjunction with (1.27), results

analogous to (1.26) for other y’s; equation (1.12) allows this for ¢;. Thus, if F is continuous
and G, are arbitrary df’s, then ‘

(1.28) lim sup,j0 7 ?K(G,, F) = B implies lim sup;, ;o r* sup. | G(x) — F(x)| = (B/2)"2.

2. Applications to tests of fit. Three statistics will be considered in this section:
the two-sided Kolmogorov-Smirnov statistics, call them K; and K, of (1.1) with weight
functions ¥1(¢) = 1 and y»(¢) = —log(¢t(1 — t)), and the Anderson-Darling statistic A that
corresponds to (1.2) with weight function [¢(1 — ¢)]7/2

The key results for K; and K, are contained in (1.7), (1.11), and (1.12). The corollary
below presents the corresponding results for' A.

ExamMpLE 1. The Anderson-Darling statistic A = A4, = T(f,.), where T:D — R U
{0} is defined via (1.2”) by :

1
2.1) T(G) = f [G(t) — t]1?/[t(1 — t)]dt for GeE D.
0

We will now show that this functional is finite and 7-continuous on each subset
2.2) D,, = {G € D:supieo,n | G(t) — t|Ya(t) = m}

with m > 0. To see this, notice that the integrals over (0, n] and [1 — 7, 1) in (2.1) tend to
zero as 7 | 0, uniformly in G € D,, for each fixed m > 0. Also, for fixed 5 € (0, %), the
functional G — [;7" [G(¢) — t]*/[t(1 — t)] dt is obviously T-continuous (even continuous
with respect to the topology of weak convergence) on D. From these two statements the
7-continuity of T on D,, follows. (However, T is not continuous with respect to the 7-
topology on the whole set of df’s.) From Theorem 2, we obtain (2.3) below.

COROLLARY 2. Let F denote the uniform (0, 1) distribution. Let Q, = {G € D: T(G)
= a} for each a = 0, with T as in (2.1). Then: ‘

(2.3) lim, .. n""'log P(A, = a) = —K(Qa., F) foreach a=0.
(2.4) The function a— K(Q., F), a=0, iscontinuous.

(2.5) K(Qa, F)=a+o0(a) as alO.
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REMARK 7. Result (2.5) of Corollary 2 appears in Nikitin (1976), where it is stated that
it can be derived using the theory of branching of solutions of non-linear equations in
Banach spaces in Vainberg and Trenogin (1974). Some of the statements in Nikitin (1976)
are proved along these lines in Nikitin (1979) and a proof of (2.5) is announced as a part of
a forthcoming paper, Nikitin (1980). A more straightforward proof of (2.5) is given in
Section 4 below. Result (2.3) of Corollary 2 is used implicitly in Nikitin’s paper; he only
remarks that asymptotic probabilities of large deviations of functionals of cmpirical
distribution functions can be computed by finding the Kullback-Leibler numbers with
respect to the corresponding set of distribution functions. It is clear, however, that the
functionals, and also the Kullback-Leibler numbers of the sets of distribution functions,
have to satisfy certain regularity conditions (for examples where the relation between
Kullback-Leibler numbers and large deviation limits does not hold, see e.g. Bahadur and
Zabell (1979) and GOR (1979)).

Local Bahadur efficiencies of the Anderson-Darling test with respect to other well-
known goodness of fit tests are computed in Nikitin (1976), indicating that the Anderson-
Darling test is to be preferred for normal and logistic location alternatives and that
Watson’s test is best for Cauchy location alternatives.

ExaMPLE 2. (Logistic scale alternatives). Let the df F(x) = 1/(1 + exp(—x)) have
density f; note that F(1 — F) = f. For 8§ > 0 let Fy = F(-/6). Then two times

f [F(x/0) — F(x)*/[F(x)(1 — F)]f(x) dx
R

behaves as

(2.6) 21 - G)QJ x%f(x) dx = .430(1 — 9)* as 60— 1.
R
Thus, by (2.5), the exact slope of the Anderson-barling statistic for testing § = | against
6 # 1 also behaves as (2.6). The analogous result for the K,-test comes from
supxer | F(x/0) — F(x)|y2(F(x))

~ | (1 — 8) sup:er xf(x) log(1/f(x))| = .476|1 — 6| as -1
and (1.11); so that the exact slope of the K,-statistic behaves as
(2.8) (2¢%/8)(476(1 — 0))* = 419(1 — 0)> as 6— 1.

(2.7)

(The maximum of .476 is attained at approximately x = 2.168). Analogously, the K;-
statistic has exact slope

(2.9) 4(.224(1 — 6))>=.201(1—0)> as 0—>1

(since xf(x) attains a maximum of =.224 at x = 1.543). Thus the Bahadur efficiencies of
the A and K, tests with respect to the K, test converge to 2.14 and 2.08 respectively as
8 — 1; see Table 3 for the rate of convergence to 2.08.

Exact Bahadur efficiencies of K; and K,-tests for any fixed alternative can be computed
from (1.13) via Table 2. This was done for logistic and normal location and scale
alternatives; the results are given in Table 3. We note that the weight function .
outperforms 1y, for scale alternatives with a reversal for location alternatives.

3. Ai)plicationS to linear combinations of order statistics. Theorem 2 can also
be used to obtain large deviation results (and hence Bahadur efficiencies) for linear
combinations of order statistics. We consider linear combinations of order statistics of the

form
1

(3.1) T(F,) = j J(w)F7\ () du,
0
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TABLE 3.
a; = sup:[F(x) — F((x — L)/S) i (F(x)) for i = 1, 2. ez, is the Bahadur efficiency of the K ,-test
with respect to the K -test; here we are testing F while F((.—L)/S) is actually true.

L S a; as €21
Logistic scale 0.00 2.00 .150 .259 1.13
" 1.50 .0897 .167 1.38
" 1.10 0213 .0439 1.88
" 1.01 .00223 .00472 2.07
Normal Scale 0.00 2.00 .161 282 1.13
" 1.50 .0968 .185 1.46
" 1.10 .0231 .0498 2.07
" 1.01 .00241 .00540 2.31
Logistic location 1.00 1.00 245 378 .820
.50 " 124 .178 821
.10 " .0250 .0347 .863
.01 i .00250 .00347 .885
Normal location 1.00 1.00 .3829 .6983 .926
.50 " 1974 .3048 .865
.10 " .03988 05582 .865
.01 i .00399 .00553 .884

where o is an L;-function (i.e. f5 |J(u)| du < ®) and for a df G € D, the inverse G™' is
defined by G'(u) = inf{x € R: G(x) = u}.

In GOR (1979), large deviation results for statistics of the form (3.1) with score functions
having support contained in [a, 8] C (0, 1) are given. By Theorem 2, we can obtain an
extension of these results to statistics with score functions ./, whose support is not
necessarily restricted to a closed subinterval of (0, 1). This is shown in the next corollary.

COROLLARY 3. Suppose that F is a continuous df and that J is an L,-function
satisfying

1

f |J(u)F(1 — exp(—c/(1 — u)))| du < and

@ " e

J’ |J(u)F ' (exp(—c/u))| du < o for each c¢>O0.
0

8
(ii) J = 0 on an interval (y, 8§) C (0, 1) andf J(u) du > 0.
Y

LetQ,= {GED:r= [§J(u)G (1) du < ). Then, if F, is the empirical df of independent
random variables X,, - --, X, with df F,

(3.2) lim,_,., n"'log P(T(F,) = r) = —K(Q,, F).

(3.3) The function t - K(, F) is a continuous mapping from R into [0, «], where
[0, o] is endowed with the topology of the extended real line.

REMARK 8. It is shown in Oosterhoff (1978) that if J is monotonically non-decreasing,
a condition like (i) is not needed to ensure (3.2).

ExampLE 3. Let J(u) = u(1 — u), u € (0, 1), and let F be the logistic df F(x) = (1 +
exp(—x))~". It can be shown that Corollary 3 applies, and that

(3.4) K(Q,, F)~6r* as r}o.
Technical details can be found in Groeneboom and Shorack (1980).
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Consider location alternatives Fy(x) = F(x — ), 8§ > 0. Then [} J(u)F3' du =6 [} J(u)
du = (%)8 and hence by (3.4) the Bahadur slope of the sequence { [; J(u)Fr (u) du} at @
is asymptotically equivalent to 12( [} J(u) F (1) du)® = (%) 6% as 8 | 0. The Bahadur slope
of the most powerful test for testing 5, : 6 = 0 against an alternative § > 0 is given by

c(8) = 2{log 2 — log(1 + e%) + 2e°(e?® — 1)7'(fe® — arctan(%e(e’ — e7%)))})

(see Groeneboom and Oosterhoff (1977), page 21). By Taylor series expansion it is seen
that c(6) ~ (1)6? as 8 | 0. Hence the Bahadur slope of a test based on the sequence of test
statistics { [4 J( u) F7'(u) du} coincides locally with the Bahadur slope of the most powerful
test, as 6 | 0. It follows from Corollary 2 that the Anderson-Darling test also has this
property.

ExAMPLE 4. If @ is the standard normal df, then
® (exp(—c/u)) ~ —v2c/u, as u |0 and

®'(1 — exp(—c/(1 — u))) ~ \/12_—cu, as utl

Hence, in this case, Corollary 3 allows us even to take score functions / which tend to
infinity as u | 0 and u 1 1, for example score functions of type J(u) = {u(1 — u)}~/?*¢
with ¥ € (0, 1) and € > 0.

4. Proofs.

ProOF oF THEOREM 1. We first consider K*. Fix a = 0. For any fixed ¢ we have from
(1.3) that

(a) n'log P(K* = n"2a) = n"'log P(L'.(t) = t + a/Y(t)) = —f(a/y(2), t).
Hence
(b) lim inf n"'log P(K* = n*%a) = —infic0,1) fla/Y(t), t) = —gy(a).

We now turn to the other inequality. Note first that
(c) lim, o Y() = o implies f(a/y(¢), t) = (a/¥(t))(log 1/t) + o(1)
where | 0(1)| < € for all 0 < ¢ < some é..

If the condition of (1.8) holds, it follows immediately from (c) that g,(a) = 0. Thus (1.7)
follows trivially from (b) in this case. The conclusion (1.7) also holds trivially when a = 0.
Thus we now assume that a > 0 and

(d) lim inf, ;o (log 1/¢)/¢/(¢) > 0.
For each n we choose numbers ¢, ; < - -+ < #n,mn) such that
(e) 1-2/n<tyiftrisi<l—1/n for 1=i<m(n) and
(f) tur =1 — tomen = exp(—n?).
For 1 =i < m(n), we let Y, = max{y(t) :¢,, < t < tni+1}. Then,
P(supreq, .1 [Ta(t) = t10(8) = @) = P(Ca(tnin1) — tui = a/dn)
(8 < exp(—nf(@/¥n; + tni — tnit1, tasr1)) by (1.3)
=< exp(—n(gy(a) — €)) for all i and large n

by continuity and an argument analogous to (c). Note that
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(h) m(n) = o(n’)
(solve (1 — 1/n)™ = exp(—n?) for m). Also
P(supe=.,, |Ta(t) — t|4(t) = @) = P(supe=s,,,,,, | Tult) — t|%(t) = @)
@) = P(sup;=i,, [L.(t) — tl(t) = a) for all large n
< P(L'u(ts1) > 0) < nP(§ < tn1) = nexp(—n?)
< exp(—n?/2) for all large n
Hence (g), (h) and (i) give, for arbitrary € > 0,
_ limsup n"'log P(K* = n'a)
& = lim sup n"'log{m(n)exp(—n(g,(a) — €)) + 2 exp(—n?/2)} = —g,(a) + €.

Thus (b) and (j) complete the proof for K™.
Finally, K~ is completely analogous to K*; while

® P(K*=n"%a) = P(K=n'"%a)
=P(K*=n"%) + P(K~ =z n'?%a) =2P(K*=n"%a). O

PRrOOF OF (1.11). Let ¢ = ¢a(t) =t + a/ye(t) =t + a/y for ¢t € (0, 1). Then for a,
t such that ¢ < 1 we have

(@) f=fla/d, 1) = ¢ log(6/t) + (1= ¢)log((1 = $)/(1 = 1)).
Letting

N _ a(l —2t)
() o' = (dfdt)ba(t) =1+ 55—z

we note that
f' = (d/dt)f(a/y, t) = ¢Tlog(¢/t) — log((1 — ¢)/(1 — ¢))]
() —(/t) + (1 —¢)/(1 = 1))
= ¢'[log(1 + a/(¢y)) — log(1 — a/((1 — t}W))] — a/ (1 — t)).

We first fix 0 < 7 < 1, and then fix € > 0 so that (1 — 2¢)x — log(1 + x) > 0 for x = . Let
T = Tu(t) = (1/Y)log(1 + a/(ty)). We will now choose 8 so small that (for small a) the
function f(a/y, t) does not reach a minimum on [0, §]. We will do this by showing that
when a is sufficiently small and ¢ < some § we have

@) f<0ifa/(ty) =,

(i) /< O0if a/(ty) >nand T < ¢, and

(iii) f> inf, f(a/Y(r), r) f T > e.

It follows by analogy that f(a/y, t) does not reach a minimum on [1 — §, 1] when a is
small. It is trivial that

(d) f=d*/[2t(1 — t}Y*] + o(a®) uniformly for t€ [8,1—8];

while differentiating the main term in (d) yields a minimum of e’a®/8 whenever ¢ solves
t(1 — t) = e”2 Thus the result holds.

It remains only to prove (i), (ii) and (iii):

(i) In equation (c) we expand log(1 + a/(¢y)) to three terms, expand log(1 — a/((1 —
t)¥)) in an infinite series, and plug in (b) to obtain

,__ a 1-2t =0 -t® ¢'[(a\ o, 3( a Y
© f‘[t(l—t)ﬂi{ v T 2 +?{(E) +2"37<<1—t)¢)}}
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whenever a/[t(1 — t)y] < n. For ¢ < some &8; and a/(ty) =< 7 the rhs of (e) is dominated by
the term involving —(1 — #)%/2.
(ii) In equation (c) we have, for ¢ < some &, that
£ =1+ (a/ () /WIog(1 + a/(t)) — log(1 — a/(1 — })] — a/[t(1 — )]
=log(1 + a/(ty)) + (a/(th))e — [1 + a/(tY*)log(1 — a/((1 — t}W)) — a/(ty)
=(1-2¢)(a/(ty) + (a/(tY))e — a/(ty) — [1 + a/ty*)log(l — a/((1 — t)W))
< —ea/(ty) + [1 + a/(t4*)]2at/ t(1 - t))
=—[e—2(1 + a/@Y?) (/1 — t)]a/(tY) <O

using T = € in the second inequality, the definition of € in the third inequality and a <
some ao.
(iii) From (a) we have for ¢ < some 63

= (a/¥) log(1 + a/(t)) + (1 — ¢) log(1 — a/((1 — tW))
= ae = (ae/2) + ae/2

using T > €. But from (d) we have f =< (some K) a” on [8, 1 — 8] with § = §; A 8; A 8. Thus
for small a, f(¢t) > inf,.f(a/Y(r), r) if T > eand t < 6.

Note that (1.10), (1.4), and a slight modification of the above argument yield g,(a) —

O

® as @ — .
ProOF OF COROLLARY 1. Use Theorem 1 and Theorem 7.2 of Bahadur (1971). O

We now define the r-topology. Let # = {B, - - - , B,} denote a partition of R into Borel
measurable sets. Let

(4.1) Ky(G, F) = ¥ 121 Pa(B:) log Pc(B:)/Pr(B))

where Pr (or Pg) is the probability distribution corresponding to F (or G). For a set of df’s
Q let

(4.2) K,»(Q, F) = inf(Ky(G, F): G € Q}.

(We use the conventions 0 log © = 0 and a log 0 = —x for a > 0.) Consider also the
pseudometric dyon D given by

(4.3) ds(G, F) = maxi<izm | Pr(B:) — Pg(B))|.

The topology on D generated by all such d,will be denoted by 7 (cf. GOR (1979)); thus 7
is the smallest topology such that the sets {G € D: d»(G, F) < €} are open for each € > 0,
each F € D and each finite partition 2 In fact, these sets form a subbase for the topology.

Proor ofF (1.19). For bounded ¢, the function T of (1.17) is clearly T-continuous.
Thus, the second equality of (1.19) follows from Theorem 3.1 of GOR (1979). The third
equality of (1.19) follows from (1.25). O

REMARK 9. Ify is unbounded, then the proof of (1.19) fails since T’ is not 7-continuous
(hence a fortiori not continuous with respect to the topology on D induced by the
supremum metric, cf. GOR (1979) Lemma 2.1). Even the weaker condition

K(Qq, F) = sup{K»(Q., F'):2is a finite partition of R}



982 PIET GROENEBOOM AND GALEN R. SHORACK

fails, if K(Qq, F) > 0. This condition is used to obtain upper bounds for the probabilities
P(F,l € Q,) in Stone (1974) and also in GOR (1979). To show that the condition is not
satisfied we suppose for simplicity that F is the uniform df on (0, 1). If lim sup,o Y(¢) =
oo, there exists a decreasing sequence of points ¢, € (0, 1) such that lim,_.. t, = 0 and
lim,_,« Y(t,) = . Define the df G, € @, by the density

1+a/(td(tn),0<u<t,
&)=< 1—a/{(1 -t DY)}, th<u<l1
0, ué (0,1).

For each Borel measurable set B we have
limn—»oo J’ dGn(x) = f l(O,I) du’
B B

and hence K,(Q, F) = 0 for each partition # = {B, ---, B.}. Note, however, that
although the usual proofs fail, we still have (by Theorem 1)

lim, . n"'log P(F, € Q) = —K( ., F),
since K(Qq, F) = gy(a).

ProoF oF THEOREM 2. We will show below that, for all m = some m,, we have both
(a) K., F) = K&. N D,,, F) and
(b) K(Q. N D,,, F) = K(c1.(R, N Dy,), F).
Then, using Lemmas 2.4 and 3.1 of GOR (1979), and (b) at inequality (d) we have
lim sup,_..n "'log P(T(F,) = a) = lim sup,_.. n"'log P(F,, € Qa)
(c) = lim supn_= n"'log P(F', € Q. N D) for sufficiently large m
(d) = —K( Q. N Dy, F)
=—-K( ., F) by (a);
equation (c) holds because Theorem 1 implies
(e) lim supn—.n"'log P(F, € D) > —» as m— ©

since gy, (a) — ® as @ — o (see Remark 2).
Since (a) is merely (1.24), it remains only to prove (b). To establish (b), it suffices to
show that

(f) G € cl.( N D,) with K(G, F) < K(Q., F) +1

implies G € Q, N D,.. We suppose (f). We will first establish that G € D,,. Now for some
constants C; we have

dr(G, F) < supru=12 G log 2/F + suprw=12 (1 — G)log 2/(1 — F)
+ sup, 2F(1 — F)log 1/(F(1 — F))
=sup: [Glog 1/F + (1- G)log 1/(1 — F)] + C,
=<sup: [Glog G/F + (1- G)log(1 — G)/(1 — F)] + G,
=K(G, F) + C,
=K ., F)+C; by (f)

=m for m sufficiently large.



LARGE DEVIATIONS 983

Thus G € D,,. From the first half of (f) we thus have G € ¢1,(2, N D,,) N D,,. Since T is
T-continuous on D,,, &, N D,, is closed in the relative 7-topology on D,,; thus &, N D,, =
c1.(&, N D,) N D,,. Thus G € R, N D,, as we set out to show. Thus (b) holds. Using the
7-continuity of 7" on D,,, one can prove (1.23) along the same lines as Theorem 3.2 in GOR
(1979). ]

ProoF oF COROLLARY 2. It is shown in Example 2.1 that the function T defined by
(2.1) is T-continuous on each subset D,,, with m > 0. Hence, according to Theorem 2, result
(2.3) holds if the function a — K(f., F) is continuous from the right.

First of all, K(Q2,, F) is finite for all a € (0, ») (and also trivially for a < 0). To see this,
consider the df’s G., x € (0, 1), defined by

G:(t) = x tlio,0(8) + lixm(8).
Then

1 2 2 rx 1
T(G,) = Mdt = (1 - 1) f t/(1—t) dt +f (1 —8)/t) dt.
A t(1—1t) x A .

Hence T(G.) — o, as x | 0, but K(G;, F) = x(1/x)log(1/x) < o, all x € (0, 1).
Fix a > 0. By (1.24), there exists an m > 0 such that

K(Qe, F) = K(Qa N\ D, F).

Since Q, N D,, is T-closed, there exists by Lemma 3.2 in GOR (1979) a df G € €, N D,, such
that K(G, F) = K(Q., F). Because K(G, F) < o, we have G << F. Hence G has a density
g. Since G € Q, and a > 0, there exists x € (0, 1) such that G(x) # x, say G(x) > x. Without
loss of generality we may assume G(x) < 1. Let y < inf{t = x:G(t) < ¢t} havex <y < 1.
Define the df G;s by the density

g(t) + 8, te[x, x + 8]
gs(t)=< gt) —(y—x— 8785 te (x +6,y]
g(t), elsewhere,

where 8 > 0 is a suitably chosen small number. Then Gs(¢t) > G(¢) for ¢t € (x, y) and Gs(t)
= G(t), elsewhere.

Hence T(Gs) | T(G). It is clear that the Kullback-Liebler number K(G;, F) tends to
K(G, F) as 8 | 0. This implies that the function a —» K(Q,, F) is continuous from the right.
Thus, part (2.3) of the corollary follows.

By the continuity of T on D,, and Lemma 3.3 in GOR (1979), the function a —» K(Q,, F)
is also continuous from the left, implying (2.4).

Finally, to prove (2.5), we first observe that the df’s G, defined by G.(¢) = ¢ + ¢(1 —
t) \/6_a, t €10, 1], 6a < 1 have K(G,, F) ~ a, as a | 0. Hence

(a) K., F)<a+o(a), as alOo.
Fix € > 0. We shall prove
(b) lim inf,j0 a'K(Q, F) = 1 — €.

Since € is arbitrary, (2.5) will follow from (a) and (b).

Suppose that the collection of df’s {G,} satisfies K(G,, F) = K($., F) and T(G,) = a
(by the first part of the proof such a collection exists). By (a) we have K(G,, F) < a + o(a),
as a | 0. Hence, by (1.26),

(©) d#(Ga, F) < kva,

uniformly in a, where £ > 0 is some fixed number.
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Let n € (0, 1/2), then [7 (Ga(t) — t)*(¢(1 — t)) ' dt < k’a[? {¢(1 — t)log?(¢(1 —t))} " dt.
Thus by choosing 5 > 0 sufficiently small, we obtain [7 (Ga(t) — t)? dt < ea/2, uniformly
in a. By the same argument, we may choose 7 >0 such that [1_, (Ga(¢) — )*(¢(1 — ¢)) " dt
=ea/2.

Define the df H, by

7"'tGa(n), te[0,m)
H,(t) =4 Ga(?), t€n1-mn]
Gal—m) + 7't —1+n)(1— Gu(l —m)),tE (1 —n,1].
Then K(H,, F) = K(G,, F) and H, € Q1-¢g.. The df’s H, have the property

Hy(t) — ¢
(d) SuPtc—:(o,n-I-—ta(—l_—;)—I-S Mva
where M is some fixed number independent of a, since | H.(¢) — t| = |Ga(t) — | =
K+a/y(n) by (c) if ¢ € [n, 1 — ] and
t(l1—1¢ .
|H) — £ < 25" ax(| Galm) =1, [Gall =) = (L =)}, if ¢€ [, 1 -]

(1l —n)
Using (d), we now prove that K(H,, F) = (1 — €)a + o(a), as a | 0. Define the function
#(¢, 5, 2) by

o(t, ¥, 2) = (1 + 2)log(1 + 2) — ¥*/(t/(1 — t))
where ¢ € (0, 1), y € [—1, 1] and 2 = —1. We shall prove that

1
f o(t, Hy(t) — t, ho(t) — 1) dt=0(a) as al O,
0

where A, is the density of the df H,. Let p(t, y) = y(1 — 2¢)/(¢(1 — ¢)), t € (0,1) and y €
[—1, 1], and let

1
(e) I(H,) = f {&(2, Ya, P) — PP:(L, Ya, D) + 2ap:(t, ¥a, P)} dE
o

where
a
¢z(t; Ys z) = Ed)(t) Ys z)) Ya =ya(t) = Ha(t) - t) 2a = Za(t) = Hl(t) -1

and
P =p(t, ya(t)).

(It is true, but not needed in this proof, that the functions p(¢, y) correspond to an
“approximate” field of extremals for the function ¢(¢, y, 2), since they correspond to
approximate solutions f(¢) = at(1 — t) of the differential equation

/‘/ 2 N —
y'+ =0 {y+y'}=0,
which is the Euler-Lagrange equation for the minimization of the functional [§ ¢(¢, y(¢),

y'(2)) dt.)
Expansion of log(1 + p(¢, ¥.(¢))) and integration by parts twice yields

1

1
J’ 2a(t)9=(¢, ya, p) dt = f Za(t)log(1 + p(t, ya(2))) dt
0

0
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e 1-2¢ 1 (! s [1—2t\ 22
= J(; 2a(t)ya(t) =0 dt — EL 2a(t)ya(t) (t(l——t—)) dt + O(a™?)

1 ' 2 ' ytzl 3/2
_Efop(t,ya(t))dt+£ t(l—t)dt+0(a )s as al 0.

Here we used (d). Moreover, again by expanding log(1 + p) it is seen that

1 1
I {6(t, Ya, P) — P:(L, Yo, D)} dt =f [log(1 + p) — p — ya/(t(1 — t))] dt
0 0

__( a0 "
= ELP(t’y"(t))dt fot(l—t) dt + O(a”?).

Hence I(H,) = O(a*?). By the mean value theorem we have

¢(ty Ya, za) - ¢(ty ya,P) - (za —P)‘i)z(t, ya,p) =% (za - p)2¢zz(ty Ya, 0):

where 6 is a point between 2, = 2.(t) and p = p(¢, ya(t)), if 2. # p, and may be taken
arbitrarily (> — 1) otherwise (as usual we denote (8/32%) ¢ by ¢..). Thus[§ ¢(2, ya(t), 24(t))
dt — I(H,) = 0, implying [ ¢(¢, y.(2), 2.(t)) dt = o(a), as a | 0. Since

1 2 1 2
yie) [ HL0) =0 ~
J(; mdt—J;—t(l'TdtZ(l €)(l,

this implies K(H,, F) = (1 — €)a + o(a), a | 0. Hence we may conclude lim inf, o a "' K(Ga,
F) = lim inf,|o a 'K(H,, F) > 1 — ¢, which we set out to prove. O

REMARK 10. In the last part of the proof of Corollary 2, it was actually shown that
Weierstrass’ sufficiency conditions for a strong minimum of the functional [ ¢(¢, G(t) —
¢, g(t) — 1) dt, g the density of G, are “approximately” satisfied for the df’s Ga(t) = ¢ + ¢(1
—t) V6a. Note that we only have to consider values of the function ¢(¢, y, 2) with z = —1,
since g(t) — 1 = —1 for each density g. For Weierstrass’ sufficiency conditions, see e.g.
Gelfand and Fomin (1963), page 148.

ProoF OF COROLLARY 3. Let the sets D,, be defined as in Theorem 2. We first show
that the integrals

1
f JWw)G Y(u) du are well-defined for G € D,,, m > 0.
1)

Fix m > 0, G € D,, and let ¥ = y» (see (1.6)). Then
supee, (8 — GIF'(t))Y(t) < m.
There exists § > 0 such that ¢t — m/y(t) =1 — 2m/Y(t), if t € [1 — §, 1). Hence, for these

values of ¢

11 - <ag Y™ ~1
G\(1 - 2m/¥(t) = G (t W))sF ().

Putting u = u(t) = 1 — 2m/Y(t) (so 1 — t = t(1 — ¢)= exp(—2m/(1 — u)), we obtain for all
u(t) such that ¢t € [1 — 8, 1) (this is, for all z in some interval [1 — &, 1))

(a) G Yu) = F'(1 — exp(—2m/(1 — w))).
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Likewise there exists 8” > 0 such that
(b) G '(u) = F ' (exp(—2m/u))

for all u € (0, §”].
Hence, by (a) and (b) and conditions (i) and (ii):

f |J@)G(w)| du < .
0

Moreover, because of a common dominating function, the above argument shows that the
integrals of JG ' over (0, 7] and [1 — , 1) tend to zero as 7 | 0, uniformly in G € D,..
For fixed n € (0, 1/2) the function T,,: D — R defined by

]
T.(G) = f J(w)G (u) du, Ge D,

is 7-continuous on D (cf. Section 6 of GOR (1979)). This fact, together with the uniform
integrability of J(u)G ‘() for G € D,,, implies that the function T:D — R defined by

1
J(Ww)G (u) du, if GE D, for some m=0

0

TG) =

0, otherwise

is 7-continuous on each set D,,.

Thus (1.22) of Theorem 2 holds, if K(Q,, F) < . It remains to show in this case only
that ¢ - K(&, F) is a continuous mapping. If K(Q,, F) < w, then the continuity from the
right at ¢ = r can be proved by the argument of “displacement of mass” used in GOR
(1979), page 579. Since, if K(Q,, F') < «, we have by (1.24) that K(Q,, F) = K(2 N D, F)
for m sufficiently large, and moreover 7 is 7-continuous on D,,, the left continuity of the
mapping ¢t — K(, F) in ¢ = r follows from Lemma 3.3 in GOR (1979). If K(Q,, F) = o,
then (3.2) must still be established. In this case this mapping is certainly continuous from
the right at ¢ = r (by monotonicity). It is continuous from the left since trivially K(Q, N
D, F) = K(Q, F) for each m > 0, and then apply Lemma 3.3 of GOR (1979) to get left
continuity of K(, N D, F).

Let ro = inf{¢: K(Q, F) = o} (possibly r, = ). Then lim,;, K(Q, F) = » and hence, by
the last paragraph, we have

lim sup,... n~"log P(T(F,) = r) < lim,;,, lim sup,_... n"'log P(T(F,) = ¢t)
= lifntm, (—K(Q;, F)) = — x

using the case already proved. This completes the proof. 0O

Acknowledgement. We wish to thank the referee for pointing out relevant references
[14] and [15].

REFERENCES

[1] ABRAHAMSON, I. G. (1967). The exact Bahadur efficiencies for the Kolmogorov-Smirnov and
Kuiper one- and two-sample statistics. Ann. Math. Statist. 38 1475-1490.

[2] BAHADUR, R. R. (1971). Some Limit Theorems in Statistics. SIAM, Philadelphia.

[3] BAHADUR, R. R. and ZABELL, S. L. (1979). Large deviations of the sampie mean in general vector
spaces. Ann. Probability 7 587-621.

[4] Borovkov, A. A. (1967). Boundary value problems for random walks and large deviations in
function spaces. Theor. Probability Appl. 12 575-595.



LARGE DEVIATIONS 987

[5] EickER, F. (1979). The asymptotic distribution of the suprema of the standardized empirical
processes. Ann. Statist. 7 116-138.

[6] GELFAND, I. M. and FoMmIN, S. V. (1963). Calculus of Variations. Prentice-Hall, New York.

[7] GROENEBOOM, P. and OOSTERHOFF, J. (1977). Bahadur efficiency and probabilities of large
deviations. Statist. Neerlandica 31 1-24.

[8] GROENEBOOM, P., OOSTERHOFF, J. and RUYMGAART, F. H. (1979). Large deviation theorems for
empirical probability measures. Ann. Probability 7 553-586.

[9] GROENEBOOM, P. and SHORACK, G. R. (1980). Large deviations of goodness of fit statistics and
linear combinations of order statistics. Tech. Report No. 1, Department of Statistics, Univ.
of Washington, Seattle.

[10] HoaDLEY, A. B. (1967). On the probability of large deviations of functions of several empirical
cdf’s. Ann. Math. Statist. 38 360-381.

[11] JAESCHKE, D. (1979). The asymptotic distribution of the supremum of the standardized empirical
distribution function on subintervals. Ann. Statist. 7 108-115.

[12] MoguL’sKil, A. A. (1977). Remarks on large deviations for the w? statistic. Theor. Probability
Appl. 12 166-171.

[13] NIKITIN, J. J. (1976). Bahadur relative asymptotic efficiency of statistics based on the empirical
distribution function. Soviet Math. Dokl. 17 1645-1649.

[14] NIKITIN, J. J. (1979). Large deviations and asymptotic efficiency of integral-type statistics I.
Zap. Naucn. Sem. Leningrad Otdel. Math. Inst. Steklov LOMI 85 175-187 (in Russian).

[15] NIKITIN, J. J. (1980). Large deviations and asymptotic efficiency of integral-type statistics II. To
appear in Zap. Naucén. Sem. Leningrad Otdel. Math. Inst. Steklov LOMI 86 (in Russian).

[16] OOSTERHOFF, J. (1978). Large deviations of multivariate L-estimators with monotone weight
functions. Report SW 63-78, Mathematical Centre, Amsterdam.

[17] SaNov, I. N. (1957). On the probability of large deviations of random variables. Mat. Sb. 42 11-
44 (English Translation in Sel. Transl. Math. Statist. Prob. 1 (1961), 213-244).

[18] SiEVERS, G. L. (1976). Probabilities of large deviations for empirical measures. Ann. Statist. 4
766-770.

[19] SToNE, M. (1974). Large deviations of empirical probability measures. Ann. Statist. 2 362-366.

[20] VAINBERG, M. M. and TRENOGIN, V. A. (1974). The Theory of Branching of Solutions of Non-
Linear Equations. Wolters-Noordhoff, Groningen.

DEPARTMENT OF STATISTICS
UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195



