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THE OSCILLATION BEHAVIOR OF EMPIRICAL PROCESSES

By WINFRIED STUTE'
University of Munich*

In this paper we study the local behavior of empirical processes for
independent identically distributed random variables on the real line. The
results are applied to get best rates of convergence for various types of density
estimators as well as error estimates for the Bahadur representation of the
quantile process obtained by Kiefer.

0. Introduction and Main Results. Let &, &, --- be a sequence of independent,
identically distributed (i.i.d.) random variables on the real line, defined on some probability
space (£, <, P). Denote with

F(t) = P({w € 2:b41(w) =t}), tER,

the joint (continuous) underlying distribution function (d.f.). Suppose that F'is partially or
completely unknown. One problem which arises in this context is that of constructing, for
each n € N, an empirical estimate F, = F,.(&1, - - -, &) of F. The empirical d.f. which has
been vastly investigated in the literature is obtained by assigning equal mass 1/n to each
of the observations, i.e.

Fn(t) = n_l ?—1 1(—°°,¢]°£i’ te R)

where 1z denotes the indicator function of B C R. The article of Gaenssler and Stute
(1979) reviews some of the most important properties of F,,, both in the finite and infinite
sample case.

Suppose that &, &, - - - is an i.i.d. sample with uniform distribution on the unit interval.
Let

FY(p)=inf{t€ R:Fit)=p}, 0<p<l,

denote the inverse function of F. It is then straightforward to see that & := F'(&), i =1,
2, .- is an i.i.d. sample with distribution function F. Hence in what follows we may and
do assume that £ has the above representation. Write F, for the empirical d.f. of &, - - -,
¢,. Since F~!(p) < tif and only if p < F(¢) we obtain

(0.1) F.(t) = Fu(F(), tER.
The corresponding empirical process is defined by
an(t) = n'2[F(F71(8) — ¢], 0<t<l
Note that F(F~'(¢)) = ¢ for all ¢ if F is continuous. Thus, by (0.1),
an(t) = n2(F,(t) — t), 0=t=1,

where a,(0) = 0 = a,(1). Hence under a continuity assumption on F, a;, is the empirical
process pertaining to a uniform sample. In particular, it is distribution-free.
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The now classical invariance principle of Donsker states that
(0.2) a— o B° as n— o,

where “%” denotes convergence in distribution in the Skorokhod-space D[0, 1] (cf.
Billingsley (1968)). Here B°(t) = B(t) — tB(1), 0 = ¢ < 1, is a tied-down Brownian Motion
(Brownian Bridge), a centered Gaussian process with continuous sample paths, B°(0) = 0
= B°(1), and covariance

cov(B°(s), B°(t)) =s(1—¢) for 0=s<t=<1.

For the proof of (0.2) one has to show that

(a) a, has asymptotically the same finite-dimensional distributions as B°,

(b) if £ {an} denotes the distribution of a,, then {& {a,} :n € N} is relatively compact
in the space of all probability measures on D[0, 1].

While (a) is an immediate consequence of the multidimensional CLT, the proof of (b)
may be finished in two steps. First one shows, using an Arzela-Ascoli type argument for
the space DJ[0, 1], that (b) is implied by the following condition:

(0.3) For each ¢ > 0 and every 5 > 0 there exists some a > 0 such that for all large enough
neN

P({wn(a) = e}) =,
where
Wn(@) = SUP|—s|<a | A (t) — an(S) |
is the oscillation modulus of ax.

The proof of (0.3) needs some technical calculations involving both the path and
distributional structure of a,. A survey of available methods may be found in the article of
Gaenssler and Stute (1979). The following classification may serve as a brief reference.

1. The direct method. In his textbook Billingsley (1968) obtains (0.3) from some
general fluctuation inequalities, while in Takacs (1967) the result follows from a theorem
on processes with interchangeable increments and step functions as sample paths. See also
Parthasarathy (1967).

II. The indirect method. The problem is one of finding, for each n € N, a Brownian
Bridge B, such that with high probability, a, is close to By . The study of such “strong
approximations” was initiated by Brillinger (1969) and Breiman (1968), and by Pyke and
Root (1968). While their approach is based on the classical Skorokhod embedding scheme
the approximation of Komlés, Major and Tusnady (1975) is obtained from a quantile
transformation of appropriate binomial random variables. The error term is determined
by the degree of approximation between binomial and normal tails. We should also
mention the very insightful proof indicated in Breiman’s book, where (0.3) is related to the
oscillation of the partial sum process of independent exponential random variables. While
I provides a direct proof of (0.3), one can see that in II an estimate for the approximating
process corresponding to (0.3) is needed. In summary, this shows that the local behavior
of one of these processes is responsible for (b).

This was our primary motivation for the present paper. As a main result' we shall show
that, in a sense, the uniform empirical process has asymptotically the same local behavior
as its limit, the Brownian Bridge.

THEOREM 0.i. Let (a.). be any sequence in (0, 1) with a, | 0 satisfying

() na, 1w (ii) In a;' = o(na,) (iii) Ina;/Inlnn— o
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Then

|an(t) - an(u)l =1

V2(¢ — ©) In a'

where 0 < ¢ = ¢ < o are two preassigned constants.

limn—»oo SUPca, <t-u=<ca, P - a.s.,

The condition ca, =< t — u prevents ¢ — u from being too small. If one admits arbitrarily
small intervals the factor £ — « has to be replaced by a..

THEOREM 0.2. Under the conditions of Theorem 0.1 one has

lim, e wa(@,)/v2a,Ina,'=1 P —as.

Compare Theorem 0.2 with Holder’s condition of Brownian Motion. In fact, (i)-(iii)
from above will be needed to guarantee that w.(a.) has a “normal” behavior. Condition
(ii) is always satisfied if a, — 0 sufficiently slow. On the other hand, (iii) prevents a, from
being too large. As an example, a, may be equal to n™ times a logarithmic factor (0 < A
< 1). Since the set of conditions (i)-(iii) will be needed throughout the paper, to simplify
somewhat the refereeing, any sequence satisfying the assumptions of Theorem 0.1 will be
henceforth called a sequence of bands (bandsequence).

Work is in progress to handle also the case when a is “locally Poisson.” Theorems 0.1
and 0.2 will be proved, among others, in Section 2. Section 1 contains two well known facts
about the Markovian structure of empirical distribution functions and exponential bounds
for binomial tails, which will serve to bound the tails of w,(a) (Lemma 2.4). This bound
will be essential to show the “lim sup” part in Theorem 0.1 and 0.2, respectively. As one
further application we give a simple proof of tightness for the weighted empirical process
as considered by O’Reilly (1974). We also included a version of Theorem 0.1 for the non-
transformed empirical process B,(t) := n**(F.(t) — F(t)), t € R, pertaining to a sample
with d.f.F. This is useful to prove exact rates of convergence for various nonparametric
density estimators (Section 4). Finally, Theorem 0.2 may be applied to get exact estimates
in the Bahadur representation of the quantile process obtained by Kiefer (Section 3).

1. Two Auxiliary Leminas. In this section we summarize two well known facts
about empirical distribution functions and binomial tails, which will be needed later on. In
the following F, is the empirical d.f. of a sample with uniform distribution on [0, 1].

LEMMA 1.1. The process nF,(t), 0 < t < 1, is a Markov-process with the following
property: under the condition nF,(z) = s, the process nF,(t), z < t < 1, has the same
distribution as (n — s)F,—((t — 2)/(1 —2)) +s,z<t=<1.

In other words given that s points of the sample are less than or equal to z, the process
nF, on z < t <1 is stochastically the same (up to the summand s) as that process resulting
from distributing n — s points according to the uniform distributionon z < ¢ =< 1.

Let T} be a sequence of finite subsets of [0, 1) such that T := U,T. is dense in [0, 1).
By the preceding lemma, nF, when restricted to T, is a discrete-time parameter Markov-
process for which Strong Markov holds. For the process on [0, 1), we shall get appropriate
estimates by letting m tend to infinity and then use the fact that F), is uniquely determined
by its values on T. Finally, we need a sharp upper bound for binomial tails. In this form
(1.1) below is also a special case of a general inequality of Bennett (1962).

LEMMA 1.2. Let n have a binomial distribution with parameters 0 <p <1 andn €
N. Then for each z >0

(1.1) P(lm—np| = 2) <2 exp{—np[(1 + z/np)In(1 + z/np) — z/np}.
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Substituting y = z/np, we get for the exponent in (1.1)
—np[(1 + y)In(1 +y) — y] =: H(y).

Since
Y
H(y) = —npj In(1 + x) dx, y>0,
0
and
ln(lT+x)_) 1 as x}0,

we obtain that for each 0 < § < 1 there is some x; > 0 such that

exp[—(1 — 8)z%/(2np)] if z=< npx;
(1.2) P(ln—np|lz2) =2 {exp[_(l — $)mz/2] i

2. The Oscillating Behavior of Empirical Processes. In this section, let 4 be any
nonnegative continuous function on the unit interval with A(¢) % 0 for all 0 < ¢ < 1. In
many statistical applications it is necessary to study the weighted empirical process a,(t)/
h(t), 0 < t < 1. Clearly, if 1/h is bounded on [0, 1], then by Donsker’s theorem

an/h—4B°/h as n-— oo,

For arbitrary A’s we obtain the same result when restricting the processes to interior
sets of (0, 1). Hence it suffices to study a,./h at the endpoints of [0, 1] in the case

lim inf, .o A(¢) = 0 = lim inf,.; A(¢).

For symmetry reasons we shall only discuss the critical point ¢ = 0. Suppose that & is
nondecreasing in a neighborhood of zero with A(¢) | 0 as ¢ — 0. It is intuitively clear that
the stochastic behavior near zero will depend on how rapidly A(f) converges to zero, as
t — 0. If the rate is slowly enough one might guess that the limit is again B°/A. On the
other hand, if A(f) is too small, a departure from this limit would only be natural. In the
following we may assume w.l.o.g. that A is nondecreasing on the unit interval.

Let B(-, p; N) denote the distribution function of the binomial distribution with
parameters 0 <p < land N € N, ie.

B(t, p; N) = ¥, (IZ) pt(1—-p)V*
Put
B*(t,p; N) := B(t + Np, p; N).

Hence B* is equal to B centered at expectation. Fix0<a <1 and 0 = ¢ <1, and let T'be
any finite subset of the interval [qa, a). In the following lemma we relate the stochastic
behavior of F,.(-) on T to that of F,.(a).

LemMA 2.1. In addition to a, q and T, suppose that 0 < § <1 and 0 < w are such that

(@) h(a) — h(qa) = Sh(a)/4

Gi) a=8/4
(iii) 8a =< nw?h*(a)s>
Then

P([F.(a) — al/h(@) > w(l — 8) | super[Fau(t) — t1/h(t) > w) = 1/2.
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Proor. Let Z = z be the smallest point in 7, if any, with

F2) -2 2 s> w
h(2) )

Write
S =n[sh(Z) + Z] = an integer,
so that
nF,(z) = §.

Use Lemma 1.1 and apply Strong Markov to the finite-time parameter Markov-process
nF,(t),t € T, to get

P([Fu(a) — al/h(a) > w(l — 8) |Z = 2, nF,.(2) = §)

—1- B<n[a + w(l — 8)h(a) — sh(z) — z],‘;:j;n —§>

=1—B*<n[a+w(1—s)h(a)—sh(z)—z—(1—sh(z)—z)“_z],“—_-—2;n-s“>
1—-2 1—-2

=1 — B*(n[-wéh(a) — w(h(z) — h(a)) + H(s)], p; N) = A,

where p = (a — 2)/(1 — 2), N=n — § and H(s) = ((a — 2)sh(2))/(1 — 2) + (w — s)h(2).
Since H is nonincreasing and A nondecreasing we get

A =1 - B*(n[-wdh(a) — w(h(qa) — h(a)) + H(w)], p; N)
=1 — B*(n[-wdh(a) — w(h(ga) — h(a)) + awh(a)], p; N).
By (i), (ii), and the monotonicity of B*, the last term is greater than or equal to

8 s N)l=1- 4Np >1- 4a >l
1P )= T k(@ = T T nlwh(@e - 2

1-— B*(—nwh(a)[& - g -

where the first relation follows from Tschebychev’s inequality, and the last is a consequence
of (iii). Integrating proves Lemma 2.1. 0

The following lemma may be proved by the same arguments as in Lemma 2.1.

LEMMA 2.2. Under the assumptions of Lemma 2.1 we have

P([Fn(a) — a]/h(a) < —w(l — §) |infier[F.(t) — t]/A(t) < —w) = Y.

Lemma 2.1 implies that P(sup.er[F.(¢) — t]/h(t) > w) < 2P([F.(a) — a]/h(a) > w(l — 3)),
and similarly by Lemma 2.2 P(infier[F.(t) — t]/h(t) < —w) = 2P([Fn(a) — a]/h(a) <
—w(1 — §)). Summation yields P(supwer | Fr(t) — t|/h(t) > w) < 2P(| F.(a) — a|/h(a) >
w(l — 8)). It is notable that the right-hand side does not depend on 7. Hence if (7). is
any sequence of finite subsets in [ga, a), the last inequality may be applied for each m. In
particular, if 7. 1 T and T is dense in [ga, a] we obtain, since F, has sample paths in
D[0, 1] and A is continuous,

21)  P(supgest=a| Fult) — t|/h(t) > w) < 2P(| Fola) — a|/h(a) > w(l — 3)).

For A = 1 condition (i) in Lemma 2.1 is automatically satisfied with ¢ = 0. If s is any
positive number and if we let w = sva/n, then (iii) is equivalent to the condition 8 =< 5257
Furthermore, if s < x;vna, we may apply the first line in (1.2) to bound the right-hand
side in (2.1). In summary, we have proved
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LeEMMA 2.3. Suppose that for 0 < a, § < 1 and s > 0 we have
(i) a<8/4 (i) 8=<(s8)® (iv) s < xVna.
Then
P(SuPosi=a | a(t) | > sVa) < 2P(|an(a) | > s(1 — 8)Va) < 4 exp[—s*(1 — §)*/2].

Recall that the oscillation modulus of a, is defined by
wn(a) = SUp|¢-s|=<a ' an(t) — an(s) |~

The following lemma provides a sharp exponential upper bound for the tail of w.(a)/ Va.
For the proof we shall use Lemma 2.3 and the fact that a, has stationary increments.

LEMMA 2.4. For given 0 < a, § < 1 and s > 0 suppose that
(ii)) a<d/4 (iii) 8 =[s8/(1 + &) (iv) s= 8x5~/;sz/4,
then
P(wn(a) > sva) = Csa™ exp[—s*(1 — 8)°/2),
where Cs = 64572 depends only on 8.

ProoF. Let R be the smallest positive integer satisfying

8va/2=1/VR.

(i)~ ()]
(i) ()|

Check that

wn(@) = Maxo<i<r-15UPo=r=a

+ 2 MaXosi<r—1SUPo=<1/R

Apply Lemma 2.3 and use stationarity to get

P(wn(a) > sVa)
a,l(é + t) - a,l(l—"e) ' > sva/(1 + 3))

a,,(% + T) — an<é) | > 83\/;/(1 + 8))
=< 4R exp[—s*(1 — §)°/2(1 + 8)*] + RP(supo=i<i/r | an(t) | > s/(1 + 8)VR).

= P(maxOs,sR_lsupOSSG

+ P<2max05isk—lsup05-rsl/R

Since 1/R =a<é8/4and s < 8x5@/4 sts/r_t/2\/R — 1 =x;vn/R, Lemma 2.3 may be
applied to bound the last term in the above estimate. Hence

P(wa(a) > sva) < 8R exp[—s(1 — 8)*/2(1 + §)%]
= 640%a " exp[—s%(1 — §)%/2]. O

As a first application we give a simple proof for (0.3). To this end take any positive &
and n and let 0 < § < 1 be arbitrary, say 8 = %. Let a > 0 be chosen so small that

(i) a<% (iii) 8 < %a
(v) Ciza™! exp(—a~"2/64] =9 (vi) e=a't
Since for all large enough n

(iv) @ * = YxioVna/4,
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we may apply Lemma 2.4 with s = a™/* to get
P(wn(@) > ) < P(wa(@) > sva) < .

This proves (0.3) and hence (0.2), in view of the convergence of the finite-dimensional
distributions. However, as indicated earlier it is sometimes necessary (see e.g. Pyke and
Shorack (1968)) to study the asymptotic behavior of the weighted empirical process a./h.

In an equivalent form this amounts to the question, whether a, converges to B° w.r.t.
the stronger metric

dn(f, 8 = d(f/h, g/h),  f, g €D[0, 1],

where d is the Skorokhod metric (or sometimes the sup-norm metric) on D[0, 1] (cf.
Billingsley (1968)), and 4 is a preassigned weighting function. As before we assume that A
is continuous and positive on (0, 1). Furthermore, let 2 be nondecreasing (nonincreasing)
in some neighborhood of zero (one). Suppose that A(¢) | 0 as ¢ | 0 and (or) A(¢) | O as
t 1 1, for in the other case everything follows from (0.2). It can be easily seen (using almost
surely convergent versions of a,) that a, — B° w.r.t. d; if and only if

(2.2) For each ¢ > 0 and every 5 > 0 there is some a > 0 such that for all large n € N
P(supo<e<a | an(t) | /h(t) > &) =7
and
P(supi—a<i<1 | an(t) | /R(E) > &) = 7.

Cibisov (1964) showed (2.2) for the class of A’s which are regularly growing at the endpoints
of [0, 1] and for which

1
(2.3) J t' exp[—ehi(t)/t]dt <o  forall £e>0, i=1,2
1)

where hi(¢) = h(t) and hq(t) = A(1 — ¢).

O’Reilly (1974) proved (without the regularity assumptions) that (2.3) is both necessary
and sufficient for (2.2). While the necessity part follows from a characterization of the
lower and upper classes of B°, the sufficiency part presents some difficulties. In the above
mentioned papers the proof proceeds by associating to a, an appropriately standardized
Poisson process for which a condition like (2.2) follows from (2.3).

Let us show the usefulness of our analysis by giving a proof of (2.2) for which
poissonization is superfluous. For symmetry reasons we shall only consider the critical
point £ = 0. To simplify somewhat the arguments we assume that the function ¢ —
h(t)/ Vtis nonincreasing in a neighborhood of zero.

Now, for given positive ¢ and 1 choose a > 0 so small that for an arbitrary 0 < § < 1, say
8 = %, the following holds:

for some constant C > 0 to be specified later
2a
Cj t™ ! exp[—e%(1 — 8)°h2(¢)/2t] dt < 4 /2.
0

This is always possible because of (2.3). Put w =¢/vn. Furthermore, let a be such that
(i) a<8/4  and (i) 8a =< [eh(a)d]%
Note that by (2.3)
lim,_oh%(t)/t = oo,

so that (iii) is always satisfied for all small enough a. Let 0 < g < 1 be such that 1 —vg
=< §/4. By the monotonicity of ¢t — h(t)/ Vi
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1 h(qm+la) 1o /qm+1ah(qm+1a) /qma< ] Ja< 8
h(@g™a) Vgtavg™ah(q™a) 4
that is, (i) holds for all ¢™a, m = 0. Furthermore, conditions (ii) and (iii) are also satisfied
with a replaced by ¢™a, m = 0. Hence (2.1) is applicable for all g™a, m =0, 1, - - -. Fix n.

Let mo € N be defined by ¢™*'a < p/n < g™a, where 0 < p < 1 is a constant so that
1 — exp(—p) < /8. Now,

P(Sup0<t<a I an(t) |/h(t) >¢) =< P(supp/nsKa I an(t) I/h(t) > ¢)
+ P(supo<t=p/n| an(t) | /A(t) > e= A + B.

Use (1.2) and (2.1) to bound A by

A = 300 P(supgriaszqnal an(®) | /1(t) > &) < 2 Tm20 P(| anlg™a) | /h(g™a) > £(1 — 8))
21 — 3p2( m
SES RS

201 _ S\35,2
_e(l_zﬁt)h_(-t)_] dt + 4 ¥, exp(—coeh(a)Vog™ ™/ a)

) + exp(—co«/r_ih(q"‘a)e)] (co:=(1—8)x5/2)

4 2a

=——| ¢ exp[
1-q}),

=1/2 + 4 Y20 exp—coeh(a)Vp/aq?),

if we put C = 4/(1 — @). Since the last series converges for each a and h(a)/ Ja — » as
a — 0, the last term can be made less than 7/4 upon choosing a sufficiently small. Hence
A = 3n/4. It suffices to show

(2.4) B=qy/4 for all large n € N.
Let &1, := min(4,, - -, &). Then
Pr=p/n)=1—Pn>p/n)=1-(1—p/n)"— 1 — exp(—p) <1/8,
whence
P(¢1:n < p/n) =<7 /4 for all n = no(p), say.

On the set {{1., > p/n} Supo<i<p/n| an(t) | /R(t) = vn SUPo<t=p/n t/h(2) = A SUPo<t=p/n Vt/
h(t) — 0, as n — . This shows (2.4) and completes the proof of (2.2).

Up to a logarithmic term ho(¢) = [£(1 — ¢)]/? is the function for which (2.3) just fails to
hold. This is in actordance with a recent result obtained by Jaeschke (1979) who showed
that for some constants y, and p, the variable

Yn SupO<t<1] an(t) |/h0(t) — Pn

has in the limit an extreme value distribution. If A is even smaller than A, it will be
necessary to restrict the supremum on subintervals (e., 1 — €,), where &, | 0 sufficiently
slowly. We shall not discuss this in greater detail since it is beyond of the scope of the
present paper.

For investigating the local behavior of the empirical process the following estimate will
be useful. Shorack and Wellner (1982) adopted our technique to prove analogous results
also for more general weighting functions.

LEMMA 2.5. In the notation of Lemma 2.4 (with 0 < g < 1), suppose that for 0 < ¢ <
<

(ii) ca < 8/4 (i) 8 =s%¢8%/(1 +8)°  (iv) svg =< dxsVnca /4.
Then for some constant C > 0 depending only on ¢, ¢, ¢ and &
(25)  P(suPeasi-uszu| an(t) — an (W) | /Yt — u > s) = Ca™ exp[—s’q(1 — 8)°/2].
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ProoF. Let mo € N U {0} be defined by the relation ¢™*'¢ < ¢ < ¢"™¢. Apply Lemma
2.4 to get

P(SUPcast-u=ra| n(8) — an(w) | /VE — u > 5)
= Yo P(Supgntizuz—uzqnzal an(t) — an(@) | /VE —u > s)
= Y700 P(wa(g™a) > sVq Vg™Ca)
= Yo Cs(q™ca)™" exp[—s’q (1 — 8)°/2],
whence the assertion. [J

In the case ¢ = ¢ (2.5) is also true for ¢ = 1.
By Lemma 2.5 it is now possible to derive P-a.s. asymptotic upper bounds for the
oscillation of a,. Let 0 < ¢ =< ¢ < » be fixed throughout.
LEMMA 2.6. Let 0 < a, < 1 be any bandsequence as in Theorem 0.1, i.e. @, | 0 and
(i) na, 1 (ii) In a,;! = o(na,) (iii) In @, /In In n — oo,
Then with probability one
lan(t) - an(u) |

v2(t — u)ln a;;!
PrOOF. For given & > 0 let s, := V9(1 + ¢)ln g+ Define

(2.6) lim sup,—.« SUPca,<t-u=za, =1L

A, := {Supganst—uSc’anM> Sn} .
Vt—u
For the proof of (2.6) it remains to show
2.7) P(lim sup,—. A.) = 0.
For this, let 0 < p < 1 be a constant to be specified later, and put nx := ((1 + p)*),
ke NU {0}. Clearly as k£ — oo,
ng/np_1—>1+p and Inng/Inng_;— 1.
Finally, for each & and every n;_1 < n < n, we set

| &ny.,, (8) — an,,, () | e\ —/——
Ck = {Supgankst—u526(1+p)a,.,, £l = >(1+-= 2111 a,‘,l
vVt—u 8 '

and
Bony,, := {@nny.,(Can) < 2V€an In(can)™'},

where wp,n,,, is the oscillation modulus for the sample &,+1, - -+, &,,,. It follows from (ii)
that uniformly in n,_1 <= n < n,
In a;' = o((nz+1 — n)ay) as k — oo,
Hence we may apply Lemma 2.4 for all large % to obtain a lower bound for the probability
of By, . In particular, if 0 < & is chosen so small that 2(1 — 8)° = %, we get P(Bun,,) =
1 — Cs(ca,)? and therefore P(B,, ., ) = % for n = no, say.
Let us show that for all large &

(2.8) Uit A.N By, CCs.

Lo

For this note that for each pair (¢, u) with ca, =t — u < ¢a, one has from (i) ca,, <t —u
= 2¢(1 + p) an, [k large]. Furthermore, by additivity of nF,,

Np1(Fr,, (t) = Fp,, (W) — (t — u)) = n(F.(t) — F,(w) — (t — u))

+ (nk+1 - n)(Fn,nkH(t) - Fn,nk“(u) - (t - u))’
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where, according to the definition of wnx,, , Fun,,, is the empirical distribution function for
the sample &,v1, +«+, &n,,,- AS Npr1/nx — 1 + p for b — o, we therefore obtain on A, N
B n,,, [k large]:

1/2 .

| an,,, (t) — 0, () | n |an () — an (u) |

SUPca,, st—-u<2E(1+p)an, = o Supganst—usfan—’?“—
k+1 t—u

vVt—u
1/2
Ng+1— N —
—|——) wnn,,.(Can)

Np+1Can

= — \-17l/2
= (1 + 20)6n — 2[(nk+1 n)éa, In(ca,) ]
Nr+1CQn
< (1 + 2p)'sn — 2[40¢ In(Can) " /c]"* =: kn.
Suppose that p > 0 has been chosen so small that

v1+e¢
1+2p

— 2[208/c]?* > 1+ ¢/4,

then if n is large enough
En=(1+¢/4) V2Ina;' = (1 + ¢/4) V2 In[ne_/mean,] ~ (1 + ¢/4) v21n az,.

In summary, this proves (2.8). We shall use this and the fact that A, _, -+, A, are
independent of B, ., to prove the following inequality:

P A, <2P(Ck)  [klarge].

LY

In fact, since P(By,n,,,) = % for sufficiently large &, by (2.8),
P(Gy) = PV, (An N Bup,,,)) = $im,_, P((An N By, )\( m=ry_1 Am 0 Bmn,,,))

= Yuon, P((An O Bon, \Unih,_, An) Z % P(UR, , An),
whence the assertion. By Borel-Cantelli, the proof of (2.7) will be finished by showing

3% P(Cy) < . However, this is an easy consequence of Lemma 2.5, if one chooses 0 < 6 so
small and 0 < ¢ < 1 so large that

q(1—8)%(1 +¢/8)*=1+¢/16.
In this case
P(Cy) = Ca;! exp[— (1 + ¢/16)In an, ] = Cas®.

Since (n)s is geometrically increasing (iii) implies Y a,'® < o. This completes the proof
of Lemma 2.6. 0

To prove Theorem 0.1 it remains to show that the “lim sup” in (2.6) is in fact a “lim”.
For this we need two lemmas of which the first is well known. Namely, that n'%a, is a
centered Poisson process with parameter n, under the condition that n events have been
observed up to time 1.

LEMMA 2.7. Let N,(t), 0 < t < 1, be a Poisson process with parameter n, and let
N, (t) := N,(t) — nt. Then

P(n'?a, € -) = P(N, € - | N.(1) = n).
In using the above representation of the empirical process, it will be necessary to have

upper bounds for the Poisson distribution function. To this end the following lemma will
be useful as it relates Poisson tails to their corresponding normal ones.
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LEMMA 2.8. (Bohman (1963)). Suppose that n has a Poisson distribution with param-
eter A > 0. Then for each k € R

P(( =N /VA=Ek) < P(N#(0,1) < k+ A7),

where /10, 1) is a standard normal variate with expectation 0 and variance 1.

It is a notable though simple fact that, by the CLT,
P(g=MN/VA<k) > P(#0,1)<k) asl— .

LEMMA 2.9. For each bandsequence (a.).
| on(2) — an () | =

V2(t = u)ln a5’

2.9) lim inf, e SUPca,<t-u<za, 1 P-a.s.
Proor. Consider any partition
O=ci<ci<..-<cm,,=1

of the unit interval into m, subintervals with length ca, = ¢}, — ¢! = ca, for all
i=1, .., m,. For given 0 < ¢ < 1 define )

D, :=Dy,(¢) := {supi=l,...,m Mi—)s vl -¢2In a;l} .

" Vel —cf
By Lemma 2.7,
Np(ctv1) — No(c?) fr———e
p(Dn) = P(Supi=l,~--,m,, =v(1 - e)2nln a;lan(l) = n)
Vel — el
Ni(ci+1) — Ny(c?)
=|II% P( =v(1—-¢2nln a,Tl)]/P(Nn(l) =n)=: A.
[ Vel —cf

For the last inequality use the fact that N, has independent increments. To estimate
the denominator, apply Stirling’s formula to get

n

PO =) =2~ 2

Hence by Lemma 2.8 (applied with A = n(c?+1 — ci'))

1
A =< const-n** [ 7 P(JV(O, )=vad-¢2lna;t+ )

cnay

= const-n[P(A(0,1) < V(1 — ¢)2 In-a;' + (cna,) /%)™,
Since a, — 0 and na, — ®, we therefore obtain

P(Dy) = O(n*[P(A#10,1) = V(1 — ¢/2)2 In a;)]™)

1—¢/2 my
= 0<n1/2[1 ——a—"——] ) = O0(n"? exp(—mnai™*)).
27vIn ;!

Furthermore, (m.a.). is bounded against zero, so that
P(D,) = 0(n"? exp(—az*®)).

Condition (iii) of Lemma 2.6 implies that ¥ P(D,) < », i.e. we have shown P(lim sup,.=
D,) = 0. This yields

lim infy.o. SUParzr—umtn =22 > T=¢  Puas.
) v2(¢t — u)n a;’
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Letting & tend to zero proves Lemma 2.9. 0

Note that for the last result condition (ii) in Lemma 2.6 and the monotonicity assump-
tions on (a,). were superfluous. It is also a notable fact that the same arguments hold for
arbitrary (non-degenerate) subintervals ¢ of [0, 1], if instead of [0, 1], ¢} < +-- < Ch,, 1is
a partition of J. By letting ¢ tend to zero we therefore get

| an(t) — an ()|

v2(t — w)ln a;!

Together with Lemma 2.6 this gives the following extension of Theorem 0.1.

(2.9) * llm inf,._,m Supianst—usia"; tued =1 P-a.s.

THEOREM 2.10. For each bandsequence (a,), as in Theorem 0.1 and every subinterval
J of [0, 1] one has

|an(t) - an(u)l -

v2(t — w)ln a;;!

(2~10) limn—»oo Supia"st—usc"an; tued 1 P-a.s.

The interval J may be replaced by any subset of [0, 1] with nonempty interior. For a
sample with distribution function F the corresponding result may easily be derived by
considering the version (0.1). Since the set / now transforms into the set F(J) we have to
assume that F'(J) has a nonempty interior. As may be seen from a one point distribution
a condition like this is necessary to avoid trivial statements.

Consider the “non-transformed” empirical process 8, pertaining to &, - - -, &,:

Bu(t) :=n"*(F.(t) — F(t)), ¢t€ER.

THEOREM 2.11. Suppose that F(J) has a nonempty interior. Then for each bandse-
quence (a,),

VO[F(t) — F(u)]ln a;"

=1 P-a.s.

(2.11) lim . SUPca,<F () - Fwy=zm, Lues

In particular, if F is differentiable on JJ and if f = F’ is bounded against 0 and o:
O<m=fx) =M< for all x € J,

then ca, = ¢t — u =< ¢a, implies mca, < F(¢t) — F(u) = Méa,. Hence by (2.11) (with ¢ and
¢ replaced by mc and Mg, respectively) P-almost surely

|Bn(t) - Bn(u) l
Vo[F(t) — F(u)]ln a;

=1

lim SUpPn—w Supﬁansl —u=ca,; tLuceJ

For the lower part consider a partition o, - -, J,, of J into subintervals each of which
has length ca, < ¢(J;) < ¢a,. By assumption F(J;), -+ ., F (Jm,) is a partition of F'(J) with
meay, < ¢(F(J;)) = Mca,. The same arguments which led to (2.9) now yield that for the
particular version (0.1) and hence for general 3,

liminf, .. SUPcq,<t—u=za,; tues 1Bn(®) — Br(®)| =1 P-as.

V2[F(t) — F(w)]ln a;"

Thus we have proved

THEOREM 2.12. Suppose that F is differentiable on J with 0 <m < F'(x) = f(x) =M
< o for all x € J. Then for each bandsequence (a,),

[Bn(t) — Br(w) |
VO[F(t) — F(u)]ln ;'

=1 P-a.s.

llmn—>oo Supﬁa,,st—us&z,,; tued
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By the mean value theorem
F@t)-F@w) =f(y)(¢t—u) forsomeu=ys<t.

Under mild conditions on f, it is possible to replace y by an arbitrary point u < x,,, < ¢. For
example, suppose that f is uniformly continuous on oJ. Since f=m >0 on J and ¢ — u
=ca,— 0

f(¥) = f(xu,:)[1 + 0(1)]  uniformly in % and ¢.
THEOREM 2.13. Suppose that on J, F has a uniformly continuous derivative f such

that 0 <m = f(x) = M < » for all x € J. Let x.,, be any point between u and t. Then for
each bandsequence (a,),

|Bn(t) - Bn(u) |
V2(t — u) f(%4)In @y

=1 P-a.s.

lim, . SUPcan=t—u=zan; tucd

If F has finite support, i.e. when F(x,) = 0 and F(x;) = 1 for some real xo, x; it may
happen that the assumptions of Theorem 2.13 hold with J = [xo, x:]. If F has nonfinite
support, the situation is quite different. For example, suppose that F' has a uniformly
continuous (positive) derivative f on the real line. Then f(x) — 0 as ¥ — . So the
boundedness condition 0 < m =< f(x) excludes one from setting J = R (or any unbounded
subinterval of R). However, since such distributions play an important role in many fields
of statistical application, it would be useful to get related results also in this case. To this
end, consider the uniform empirical process a, and take ¢ = 1 = ¢. By Theorem 2.10,

I(X"(t) - an(u)l —

1 P-as.
v2a, In a;!

lim,,_,. sup;—y=q,

whence

lim inf, .. wn(@n)/v2a,Ina;'=1 P-as.

To show that the “lim inf” is in fact a “lim” it remains to prove that for A, := {w.(a»)
> V2(1 + €) a, In a;'}, € > 0, one has P(lim sup,_.. A.) = 0. However, this follows by
using the same method of proof as in Lemma 2.6. Hence we obtain the following result,
which is identical with our Theorem 0.2.

THEOREM 2.14. For the uniform empirical process and bands a,

(2.12) lim,_ o wn(@:)/vV2a, In a;' =1 P-a.s.

If F is differentiable on o, (2.12) implies (use (0.1))

(2-13) limsupn—mo SUP|t—u|=ay; t,usd l Bn(t) - Bn (u) l/\/2a,, In a;l = ‘/SprEJ F,(x) P-a.s.

For sufficiently smooth F’ (2.13) can be strengthened as follows.

THEOREM 2.15. Suppose that on J F has a (positive) uniformly continuous derivative
f. Then for each bandsequence (a,).,

limy, o SUP|t—u|=a,; t,ucs | Bult) — B,,(u)|/~/2a,,lna;1 = Vsup.es f(x) P-a.s.

Proor. By (2.13) it suffices to prove the “lim inf” -part. Since fis uniformly continuous
and has finite integral we get M:= sup.cs f(x) < ®. Furthermore, we may choose a
subinterval o/, of JJ such that for given 0 < ¢ < M/2

fx)=M—-—e>0 for all x € J5.
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For this J, we may apply Theorem 2.13 to get (with ¢ =1 = ¢)
lim inf, . SUP|c—ul<ay sued, | Bn(t) — Bu(u)|/V2a,lna;'= VM —¢  P-as.

Since Jo C J and & > 0 was arbitrary this proves the assertion. [

3. Approximation of Empirical Quantiles. For each d.f. F on the real line the
corresponding inverse function has been defined by

FY(p)=infteR: F(t)=p}, O<p<l.

In many procedures it is desirable to have some knowledge of F~' rather than F itself.
Intuitively one might think that, as F,(¢) is a good approximation of F (), the “empirical
quantile” F;'(p) could as well serve as a statistical substitute for F~'(p). In fact, under
some mild smoothness assumptions on F this is always possible uniformly in p within a
fixed interior set of (0, 1), i.e. when p is bounded from zero and one. However, if we let p
be arbitrarily close to 0 or 1, the deviation between F~' and F,' may be too large. This
stems from the fact that the asymptotic behavior of F';'(p) — F~'(p) depends on the local
behavior of F at F~'(p). To make this clear we first consider the case when F;'(p), 0 <
p < 1, is the empirical quantile of a uniform sample on [0, 1]. It is easy to check that

3.1) Supo<¢=1 | Fa(t) — t| = supo<p<: |F'_ll(p) -pl

By the Glivenko-Cantelli Theorem we therefore obtain that the maximal deviation between
F." and F " tends to zero with probability one, as n — . To get more detailed information
on the asymptotic behavior of F;(p), Bahadur (1966) initiated to study the effective error
F2(p) —F;Y(p), 0 < p <1, where F{?(p) is defined by

F2(p)=p—(Fup) —p), O0<p<L
He showed that for fixed 0 <p <1
|F2(p) —F='(p)| = 0(n™**(nn)"*(InIn n)"*)  P-as.
Kiefer (1967) proved that the exact rate is of order n~**(In In n)**. Hence n'/*( F;(p)
—p) has the same asymptotic behavior as n'/*(p — F,(p)) for each fixed p. To obtain

functional limit theorems, one has to study the maximal deviation between F? and F,".
As to this, Kiefer (1970) showed that with probability one

(3.2) lim sup,—«supo<p<12**(In In n)~*(In n) 2| F&(p) — F,'(p)| = 27/
From this it follows that the (uniform) quantile process
gn(p) :=n"2(F;'(p) —p), 0<p<],

obeys the same invariance principles as the uniform empirical process. Clearly, to derive
such a result it suffices to prove any constant in (3.2) with “<” rather than equality. Let
us show that (with 27'/*) this is an easy consequence of Theorem 0.2 and the Chung-
Smirnov LIL for the empirical d.f. (cf. Gaenssler and Stute (1979), page 202).

Actually, given ¢ > 0, define a, := (1 + ¢)[In In n/2r]"% n = 3. Then (a.). is a
bandsequence for which by (3.1) and the above mentioned results

|an(F;l(p)) - an(p)l =1

P-a.s.
v2a, In a;’

lim Supr—,«SUPo<p<1

Since

n 1/2 91/4y, 3/4
2a, In a,! (1 + &)2(In In n)*(In n)"?
and ¢ > 0 was arbitrary, we get P-a.s.

24 n”*| F(F\(p)) — Fu(p) — F7'(p) +p|_ 1
(In In n)4(In n)? -

lim sup,—«SUpPo<p<r
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The upper bound in (3.2) now follows from the observation that

1

Supo<p<1| Fa( Fr'(p)) —p|=n7"

A close look at Kiefer’s (1970) original proof of (3.2) will show that his method is somewhat
related to our technique. However, from our asymptotic approach it is more or less
straightforward to see why the peculiar norming factor occurs.

By iteration it is possible to get even better estimates for F,'(p). As a k-th, £ = 3,
approximation we put

FP(p) = F¥(p) — Fu(F¥ (D) +p,
i.e. within 1/n, we have
F¥(p) = F7'(p) = n”/[an( F7'(p)) = au( FE"(p))]

The analogue of (3.2) is only stated for the case k& = 3, but it presents no difficulties to treat
a general k:

3 1/4
(3.3)  lim Sup,_«SUPo<p<1n”®(In In n)"4(In n)"**| F(p) — F,'(p)| = [W] P-as.

By the Hewitt-Savage zero-one law, the left-hand side of (3.3) is equal to some constant C
=< (3/2%*)/*, However, our method does not provide anything about the true value of C.

Suppose now that the sample comes from an arbitrary d.f. F. The empirical quantile
may be easily expressed in terms of F ' and the corresponding uniform empirical quantile,
if for F,, we consider the particular version (0.1). We then have

(3.4) F.'(p)=F(F:'(p), O<p<LlL

Assume that F has a continuous first derivative f, which is positive on the support of F. In
this general case the empirical quantile process is defined by

gn(p) = '’ f(F (D) (F(p) =F(p)), O0<p<Ll

Putting % = foF~, the so-called density-quantile function (cf. Parzen (1979)), we then get
from (3.4)

gn(p) = n*U(p)(F'(F;'(p)) — F7\(p))

_ . UDp)
=(qn )__,
an(p 2
where @, is the quantile process pertaining to F,' and 7 is some point between p and
F;'(p). Write

(3.5) q.(p) = q.(p) + [%(p )

Am)

From (3.2) we get g. —+ B° as n — «, where as before B° is a Brownian Bridge and
“%” denotes convergence in distribution in the space D[0, 1]. Since F,'(p) converges to
p and f is continuous and positive on the support of F, the second summand in (3.5)
converges to zero in probability uniformly in p within each fixed compact subinterval of
(0, 1). Hence to show g, —« B ° it suffices to prove that for given ¢ > 0 there exists some
(small) @ > 0 such that for all large n € N
(p) _
=a|l—>7—— n =g =g

P (supo<p=a| it = L1 Gulp)| = 9 = &
and similarly, for 1 — @ = p < 1 (cf. (2.2)). Suppose that % is nondecreasing in some
neighborhood of 0. It is known (cf., e.g., Wellner (1978), Remark 1), that for some (large)
Az=1

1] an(p), O0<p<lL

p/A=F.'(p)

with probability greater than or equal to 1 — ¢/2. Hence it remains to show that for some
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small @ > 0 and all large n € N (note that {g,} is tight)

|g(P)]
h\(p)

where hy(p) := U(p/A)/U(p), 0<p<1l A=1.

For the sake of completeness @, has to be redefined on (0, 1/n) by putting g.(p) =0
there; similarly on (1 — 1/n, 1). O’Reilly (1974) showed that as for the empirical process
(cf. (2.2)), the integrability condition (2.3) with A = h, is both necessary and sufficient for
(3.6). We have thus arrived at the following theorem.

(3.6) P(supo<p=a =¢) =¢/2,

THEOREM 3.1 Let F have a derivative f, which is positive and continuous on the
support of F. Assume that the density-quantile function % = foF~' is nondecreasing
(nonincreasing) in some neighborhood of zero (one), and that (2.3) is satisfied for each
h=h,,A=1. Then q,—>+B° asn — o,

Analogous results may be obtained for the weighted quantile process. Our regularity
conditions are somewhat weaker than those in Shorack (1972). Csorgé and Révész (1978)
introduced the regularity condition

!

zz—(x—) =y
fi(x)
However, this implies, e.g., that the function p — f(F~*(p))/p®" is nonincreasing in a
neighborhood of zero. Hence in the above considerations f( F~'(p)) may be replaced by
p2. But (p/A)?"/p?* = A2Y < w is bounded. Observe that, more generally, A5* is bounded
from above (at zero) if %/g is nonincreasing in a neighborhood of zero for some regular
varying function g.

Csorgé and Révész (1978) derived a somewhat stronger result than convergence in
distribution. They considered the distance between the general and the uniform quantile
process and obtained rates of uniform convergence under the stronger condition (3.7).
However, their representation does not provide any information for determining confidence
contours for statistics 7'(g,) in the finite sample case.

At the end of this chapter we shall derive some estimates for the relative error

F.'(p) = F;'(p’)
p—p
As always suppose first that F,, comes from a uniform sample. In this case
Fi'(p) = Fa'(p) _ | | Ba(p) = Ba(p) _ au(p) = an(p’)
p—p p—-p Vn(p-p’)

(3-7) SupprsuppFF(x)(l - F(x)) < o,

asp—p’'— 0and n— .

where
R.(p):=F;'(p) + Fa(p) —2p, 0<p<l.
Let (a@.)4 be any bandsequence. From (3.2) and (2.12) we get
F\(p) — F'(p') _
p-p

(3.8) SUPp—p'=a, 1 | =0 (en) P-a.s.

where

e, = (InIn n)*(n n)*n"%*a;' + (In a;*/na,) ™"

Suppose that (ay), is such that e, — 0 as n — . (3.8) then implies
p—p _
F:'(p) - F:'(p))

SUPp—p'=a, 1 ' =o0(1) P — as.
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From this we get uniformly in p — p’ = a,, as n — oo:

Vna, ( ya (p’; s T 1) ~ a:"[0n(p) — en(p’) + nYA(Ru(p) = Ru(p))]
(3.9)

= a;"?[en(p) — an(p’) + O((In1n n)*(In n)"*n~"*)].
Suppose that n™% = O (a,) for some 8 < %. Then the last expression can be written
(3.10) az"[an(p) — an(p’)] + 0(1).

Hence the left-hand side of (3.9) has asymptotically (/P-almost surely and in distribution)
the same behavior as the modulus of the uniform empirical process.
The case of a general F with positive derivative f is again handled by considering the
particular version (0.1), namely:
-1 -1 ’ -1 -1 Il
p-p f(2) p—p

where z is a suitable point between F;!(p) and F;!(p’). Since F, is the empirical
distribution function of a uniform sample, the second factor may be estimated via (3.8).
Furthermore, if fis bounded against zero on the support of F, we have that uniformly in
p—p = a, F;'(p) — F,'(p’) is of order O(a,) (provided the right-hand side of (3.8)
converges to zero or is at least bounded). If f attains arbitrarily small values, then F;*(p)
— F;'(p’) may be considerably larger than p — p’.

REMARK 3.2. We did not aim at finding the most general growth conditions on (a.).
for which e, — 0 as n — . This problem should be attacked along lines similar to Wellner
(1978), where the convergence of F;,(p)/p has been studied uniformly on intervals (a,, 1)
under various growth conditions on a,.

4. Estimation of A Density. For testing any hypothesis about the p-quantile F~*(p)
of the underlying d.f. F, the asymptotic normality obtained in Theorem 3.1 suggests to
consider the statistics

n*(F;'(p) — F7\(p)).

However, to obtain proper confidence intervals it will be necessary to have some knowledge
about the value of f(F~'(p)). Therefore the problem arises of constructing an empirical
estimate f, of the true density £, For such an f, the value of f, (F~(p)) [or f,(F'(p))]
may then serve as an estimate of the variance of the normal limit distribution. Rosenblatt
(1956) proposed to study a type of density estimate, which is obtained as a convolution
between F, and a properly scaled kernel function K:

t—x

fu(t) = a, fK( a

) F, (dx), teER.

n

Here, (a.). is a sequence of “window-widths” tending to zero as n — . In his fundamental
paper Parzen (1962) showed that under some mild smoothness conditions on K (and f)
f~(t) is a consistent estimator of f(¢). For example, if K = 1{_1/2, 1/2), we get the well-known
“naive estimator”

fi(t) = az'[Fo(t + % a,) — Fo(t — % an)].
For sufficiently smooth fit is easy to see that
Ef= Var[f.(t)] = f(t)[na.](A + o(1))

and
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E:=E(f.(t)) — f(t) = O(an).

Hence f, is consistent in quadratic mean if na, — « (as well as a, — 0). Moreover, the
random effect f,(¢) — E (f.(t)) becomes small if a, is not too large, while the bias E,
becomes small with a,.. The problem which arises is one of finding the optimal a, which
minimizes E$ + E3. This question has been extensively studied in the literature, even for
more general kernel functions K. See for example the survey articles of Scott et al. (1977)
and Wertz (1978). As to the almost sure convergence of f, to f the existing results do not
provide any satisfactory solution of this problem. Let us show below how Theorem 2.13
may be applied to get optimal window-widths, if f, is the naive estimator. The case of a
general kernel function K needs some further calculations and will be treated in a
forthcoming paper (Stute (1982)).

We have to assume that the window-widths a, form a bandsequence as defined in
section 0. The deviation f, — fis measured on some central interval o of the real line. For
each ¢ > 0, J, denotes the inner e-parallel set of JJ. To avoid trivial statements, let </, # &
throughout. Theorem 2.13 then implies that, if

L) =E(f,(t)) =a,'[F(t+% a,) - F(t—% a,)],

one has
: na, |£u(8) = Fu(®)] _ _
(41) hm,,,_,w ml- sup,eJE————f-(—t)-——- =1 P a.s.

(put¢c=1=—cand x,: = (u+t)/2).

To obtain proper estimates for the bias E., one has to assume that higher derivatives
of f exist. For example, if f = F’ is twice-continuously differentiable on J, then for all large
enough n € N,

SupceJ, If—;t(t) -f)= O(a?),

provided that f” is bounded. Hence E; is asymptotically negligible if a2 = o ((In a,'/
nay)?, i.e. when nal/In a;' — 0.
In this case we have under the assumptions of Theorem 2.13

nan_ o 1RO =FO]
21In a;' ‘ W

If f is only once differentiable we get E> = O (a,). In this case the bias is asymptotically
negligible whenever nal/In a,* — 0.

Suppose now that f admits a third continuous derivative f”. By Taylor’s expansion we
get

(4.2) lim, ... 1 P —as.

2 1/2
(4.3) f(2) = f(2) =%f”(t) y>dy+ O(al)  uniformlyint€ o,
—-1/2
(provided f” is bounded). Furthermore, if f is bounded and if na’/In a;' — , Theorem
2.15 implies
1/2
limy o 2a7? supeey, | F(£) = f(£) | = supwes, | f"(2) | ¥ dy.
—-1/2
The optimal a,, is obtained if both (f, — )/ x/f and (f, — f)/ «/f are of the same order. By
(4.1) and (4.3) this is achieved by choosing a. so as to minimize

]f/f(t)]lJ‘I/Z 2d . 2]na;1
JF(o) 2 o na.

2
an SuptEJc
—1/2
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One can easily see that for this a,

Inn 15

1/2 2 4
10n supses, | f7(t) lz/f(t)(f ¥ dy) '

—-1/2

ap, ~ n— «©

The dependence on f (and f”) makes it impossible to determine the exact order of
a.. Anyway, putting a. = (In n/n)'/® will give us the appropriate rate at which the
window-widths should converge to zero. For this choice of a, we have(f, — f)/vf — 0 as
(In n/n)*® uniformly on J,.

It is known that the advantage of kernel type density estimation lies in a reduction of
the bias of the resulting estimator. This property is not shared by the estimator which is
undoubtedly the oldest, namely the histogram. One considers a sequence of points

<2<z <P <P <P < ..

on the real line, finite or not. Put 2% = —w and 2% = . If J is the central portion of R
where f(¢) should be estimated, and if we put z; = 2{”, the corresponding histogram is
defined by

Fo(2i41) — Fu(2)
fra(t)= Zi+1 — Ri
0 otherwise, ted

ifz;=t<zy forsomei€ Z

In other words, f}(t) is a certain difference quotient of F, which is determined from the
location of ¢ with respect to the grid {z{®}. To a certain extent this is similar to the
definition of the naive kernel estimator. The only though important difference lies in the
fact that in the latter case the points z; are chosen symmetrically around ¢ and therefore
depend on ¢. Actually, this is responsible for the reduction of the bias.

In the classical setup the points z; = z{” are nonrandom and equidistant, say z;+; — z;
= a,, where a, | 0. We have

-1/2 ,Bn(zi+1) - Bn(zi) + 1 JVZ'H

@) —f@)=n [f(x) = f(®)] dx,

2iv1 — 2 2i+1 — 2 2,
2i = t < z;s1. This shows that as in the case of kernel type estimation, the asymptotic
properties of the histogram may be easily derived from the local behavior of the empirical
process. If fis not constant on [ z;, 2:41] the best possible rate for the bias is of order O (a..).
Hence up to a logarithmic term the rate of almost sure uniform convergence of f* — f
cannot be faster than n™"/>. We only mention the following result which plays the same
role as (4.2) for the kernel type estimators.

THEOREM 4.1 Suppose that f = F’ is continuously differentiable on J with 0 < m <
f(x) =M< owandf(x) <M <o forall x €J. Let (a,). be any bandsequence such that
nai/ln a;' — 0. Then if f* is any histogram with nonrandom grid of length a,, we have
P — as.

. nay |2 @) — )] _
lim, . m SupreJ, T =1.

If f attains arbitrarily small values on ¢J, it is still possible to obtain a (somewhat weaker)
limit result, for which the right-hand side has the same form as in Theorem 2.15.

We are now going to study histograms corresponding to random grids. In most cases
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the points z{” are taken from the set{{” < ... <¢% of order statistics of the underlying
sample &, - -+, &. For example, one mlght consider a sequence (k). of positive integers

such that @, == k,/n— 0asn — o, Putz{” = z;=¢P, i =1, - -, (n/k,). By definition of

%
n?

F,(z: — F.(z;
f:(t)= n( z+l) zn( l)’ 2i5t<2i+1,
+1 — <

so that in this case
Qar
FN (i + Dan) — Fil(ian)

For investigating the last term we may assume w.l.o.g. that F, has the form considered in
(0.1) and (3.11), respectively. We then have

fa(t) =

Qarn

(4.4) 8 =22 g ey — FoGan)”

where z is some point between F;!(ia,) and F; (i + 1)a.). Suppose that (a,), is some
bandsequence with n~% = O(a,), for some & < %. Then from (3.9) and (3.10) we get
uniformly in ¢(P — a.s.):

45)  (nan)” (ff(‘t‘)) _ 1) ~ a7 an (i + Dan) — an (ian)]

(z) — f(¢)
(@)

The problem is one of finding sufficiently weak smoothness conditions on F (and f)
such that the last term in (4.5) converges to zero uniformly in ¢. Parzen (1979) proposed to
describe each possible continuous d.f. by its density-quantile function % = fo F~'. Recall
(cf. Parzen (1979), page 162) that F has lower tail exponent « € R iff % (u) ~ u* as u — 0,
and upper tail exponent 8 € R iff % (u) ~ (1 — u)® as n — 1. Suppose that # has a
continuous derivative %’; then, e.g., a = limu_,oi‘:;—(i%)- .

To estimate the last term in (4.5), note that by (3.8) P-almost surely

2= F()| = |F((i + Dan) — F7'(ian) | = (1 + O(e))an

+o(l) + O ((na,)"?).

Hence
Uu(z) — f(t)
f(t)

uniformly in ¢ on each finite subinterval of the real line. For small values of ¢t we obtain for
some u between z and F(¢)

= O(an)

%(Z)_%(F(t))_ %'(u) _ ~%/(u) E_(L) —a _
wF@) aFe %(u)( ) (z = F(2))
~—(F(t)) (z - F(2)).
u u

Since
Fi'ia,) _ F(@) _ Fi((i+Das)
F((i+VDa,) -~ u ~  Fil(iam)

it follows from Theorem 4 in Wellner (1978), that P — a.s.
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F(t)/u= 0(Q1) uniformly in ¢
and therefore

U(z) = f(¥)
f(#)
At this point we have to make one further restriction on the location of the point %

Suppose that 2; < t < z;;; and i issuch that i, =i <n — i,, i,/n — 0.
Then

= O(a./u).

1/u=1/F;'(i,a,) = 0(1/ira,) P —as,
again by Theorem 4 in Wellner (1978). In summary, by (4.5),

(na,)"? <——ff"(i§) 1) a:"[an ((i + Dan) — an(ian)] + 0(1) + O ((na.)"*/i,)

= (na,)’[(F(8)) = 1] + o(1) + O((na,)"*/iy),

where £, is the histogram of the uniform sample £, - - -, &, with respect to the nonrandom
grid Z{” = ia,. We have thus obtained a representation of the general randomized
histogram in terms of the uniform histogram with equidistant grid. For example, Theorem
2.10 immediately yields the following result.

THEOREM 4.2. Suppose that F has upper and lower tail exponents. For each n € N
let k. € N be such that a,.= k,/n forms a bandsequence with n™® = 0(a,) for some § <
Y. Let f} denote the histogram with respect to the random grid z{® = ¢, Then, if i, €
N is such that na,/i2 = 0(1),

nan

lim, W SUDg(m <p<g, P — as.

f2(0) —f(t)| .
7(®)

The essence of the result is that better rates of convergence may be obtained at the
price, that the deviation between f} and f is measured only between({, and£®; . (of
course, i,k,/n — 0). This important property is not shared by the ordinary histogram
considered in Theorem 4.1. In the same way it is also possible to derive distributional
results for f from corresponding results for f, (cf., e.g., Bickel and Rosenblatt (1973)).

It is an important fact that similar estimates are also valid if, for each ¢ € R, the points
2; < t < 241 are taken from the set of order statistics £{™ .+ < £ insuch a way, that
2z, and z,; have a spacing k, also in this case (i.e. z, =¢" and 21 =£%, for some j), but
may differ from ¢ to ¢, depending on the location of ¢ Such histogram type estimators have
been investigated, among others, by van Ryzin (1973). An attractive feature of (4.5) is that
one is led to choose z; and z,+; so that | F~'(z) — | and hence | %(z) — f(¢) | become small.
This is achieved by choosing j so as to minimize the set of values £/7,, — £™ with ¢V < ¢

< ¢, . We have thus arrived at the so-called “nearest neighbor density estimator” which
was first proposed by Loftsgaarden and Quesenberry (1965). Moore and Henrichon (1969)
investigated the almost sure uniform consistency of such estimators. We also refer to
Moore and Yackel (1977), and Devroye and Wagner (1977). Theorem 4.2 also applies in
this case and is, as far as we know, the first estimate of this form.
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