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EDGEWORTH EXPANSIONS AND SMOOTHNESS

By P. J. BIcKEL! AND J. ROBINSON

University of California, Berkeley, and University of Sydney

We give a necessary and sufficient condition for the distribution function
of n7'2 ¥, X;, where the X, are independently identically distributed with
EX, =0, EX}=1and E|X, |**® < x, to possess an Edgeworth expansion to
k terms. The condition is not practicable but clarifies the relation between the
existence of an Edgeworth expansion and the smoothness of the distribution
function of the sum.

1. Introduction. Let X, ---, X, be independently and identically distributed ran-
dom variables with common distribution F and let F, be the distribution function of
nV2Y%, X, If EX; =0, EX?=1and E| X\ |*** < «, for k£ a non-negative integer, then the
kth order of Edgeworth expansion for F, is

3 ern(x) = ®(x) — ¢ (x) Ther n772 TU 12 @y Hya(x),

where @ is the distribution function of a standardised normal variate, ¢ (x) = ®'(x), H,(x)
are the Hermite polynomials defined by

H,(x)$(x) = (-1)'$"(x),

and the coefficients a;, are expressible in terms of the moments of X; up to the (& + 2)th
order.

It is well known (see, for example, Bhattacharya and Ranga Rao, 1976) that,
() if E| X, |? < C, then

2) | F. — eon ]| < Cn™'?  (Berry-Esseen bound)
and (ii) if E|X:|*** < C and
lim supy-. | Ee®* | <1  (Cramér’s condition)

» then

" F, — er+1,n " < snn—(k+1)/2,
where C > ¢, — 0 as n — « and a fortiori

@ | Fro — ern| < Cn=%*+V72,

where here and in the sequel C is used generically as a constant depending only on F and
k, and where we write

I| G|l = sup: | G(x)],

for any function G: R — R.

The Edgeworth expansion may be obtained formally by an asymptotic expansion of the
characteristic function under the moment condition E | X, |**? < C. Its validity, in the sense
of (3), entails a degree of smoothness for F,. Our theorem shows that a suitably defined
degree of smoothness of F, is both necessary and sufficient for (3) when E | X; [*** < C.
Although this result does not give a practical criterion, it does pinpoint the relation
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between the Edgeworth expansion for F, and smoothness of F, which is implicit in
Cramér’s condition.
2. The result. For any G: R — R and o > 0, define the first difference operator A, by
A,G(x) = G(x + o) — G(x)
and define the kth difference operator A? as the kth iterate of this, so that

(4) ARG (x) = Y%, (—1)k"'<f)G(x +jo).

The interpolating polynomial to G/(yy) of degree k at the points x, x + 0, --- , x + ko is
Pro(y; %, G) = G(x) + 251 07N AL G(x) [[i=1 (y — x — (i — 1))

(see for example Theorem 7.3.3 of Dahlquist and Bjork, 1974). Moreover, if G has a
bounded (2 + 1)th derivative then for all y and x

(5) | G(y) = Pro(y; x, G)| = C|| G** (| y — x [F** + o**).

For convenience, write o, = n™/%

THEOREM. Supppose E | X, |*** < C. Then the following statements are equivalent:
(a) The Edgeworth expansion to k terms is valid in the sense of (3).
(b) 3 C such that V x,y,n

(6) | Fu(y) = Prou(y; x, F)| < C(ly — x ™" + or™*).

Proor. From Theorem 9.10 of Bhattacharya and Ranga Rao (1976), if | ¢| < B,
where B is a constant depending only on %2 and F, then
(7) | Fn(t) _ ék.n | < Coﬁ”(l ¢ lk+8 + , t Ia(k+1))e-ﬂ/4’

where for G a function of bounded variation we denote by G its Fourier-Stieltjes transform.

Let Y be a random variable, independent of X;, .-, X, with distribution function
K, such that (i) EY = 0, (ii) E|Y|**' < C and (iii) K(¢) = 0 for || > B. Let K.(x) =
K(x/o,). Then

FoxKy(x) = f Fo(x — 0ny) dK(y)

has characteristic function F, K,. Now (¥, — ék,,,)I?,. vanishes for | ¢| > Bn'/, so from the
Fourier inversion formula the density corresponding to (F. — e,»)*K, is

Bn'/2
@n)7! f e (P (t) — érn(t)Rn(t) dt.

Bn1/2
So
Bn!/2
8  |(Fn— ern)*Kn | < (27)7" J [ 6] | Fou(t) — éxn(2)] | Ka(t)] dt < Cot*',
—Bnl/2 -
from (7).

Let 7m0, (x, G) = EPp, (x — 6,Y; x, G). Then

Fo+Ky (x) — mhon(x, Fn) = f [Fo(x — 62Y) — Pro,(x — 0nYy; x, Fr)] dK(y).
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From (6), the absolute value of the integrand is bounded by Co%*'(1 + | y |**"), so
9) | FoxK, — mrc,(-, Fa)|| < Cok*,

since E | Y|k+l < C. Also, since ey , has a finite (k£ + 1)th derivative, it follows in the same
way from (5) that

(10) " ek,n*Kn - '”k,an(" ek,n)" < Caﬁ‘ﬂ-
Now (8), (9) and (10) imply that
(11) " Wk,q,,(-, Fn) - ’ﬂk,q,,(-, ek,,,)" < Cdﬁﬂ.

In order to complete the proof we need the following lemma.

LEMMA. If (6) holds then
12) | A%5'F, || < Cok™' @ + | y |**Y).

Proor. From (4) and (6),

AR, (x) = Y455 (—1)’”1‘1'("’ ; I)F',,(x + jony)

ASFr(x)
!

=54 (—l)k*‘_j(k -; 1)<Fn(x) + X1 i Uy—i+ 1))

+0cF (1 + |y ¥,
where | 8] < C. Now

yati (—1)“1"(k ;' l)j ‘=0,

for /=0,1, ..., k, so each term in the above sum vanishes and the lemma follows.
From the lemma it is clear that

(13) I Ae5Fu |l < Con*'(1 + |y '),
fors=1,2, ..., k. Taking the sth difference inside the norm in (11) gives

Nt (Fr — en,n)

i ET[(. (Y =i+ 1) <Coh*.

|| AS.(Fr — ex,n) — X5

For s = k, this, together with (13), implies that
| A%, (F. — exn)]| < Cok*".

Repeating this for s =% — 1, ..., 1, we obtain (3).
Conversely, if (3) holds, then

(14) | & (Fn — ern)|| < Cak*,
forj=0,1, ..., k Now
| Fa(y) = Poon(y; % F)| = | Fa(3) = enn ()] + | €0 () = Pao, (% %, @1,0)|
+ | Prou(¥; X, €rn) — Pro(y; %, Fr)|.

From (3), (5) and (14), each of these terms is bounded by C(|y — x|**' + ¢%*"), so (6)
follows.

Notes. (i) If2=0,| A, F.| < Co, implies the Berry-Esseen bound (2). This was used
in a proof of the bound by Chen and Ho (1978), using Stein’s method. We did, in fact,
originally obtain our result using Stein’s method.
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(ii) If £ = 1, it is sufficient to assume that (12) holds in order to obtain (3). To see this
let K be symmetric about 0 and write

Kn#Fn(x) — Fo(x) = J’ [Fn(x — 0ny) — Fu(x)] dK(y)

= f % [Fr(x + 0,y) + Fu(x — 0,y) — 2F, (x)] dK (y)

1

=§f Ag,.y n(x - Uny) dK(y)

From (12), the integrand is bounded by Co%(1 + y?), so (3) follows since EY? < C.
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